Multimode long-wave approximation for a viscoelastic coating subject to antiplane shear

A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. Th...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 75; no. 6
Main Authors Erbaş, Barış, Itskov, Mikhail, Kaplunov, Julius, Prikazchikov, Danila
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a $$\delta $$ δ -type loading, it proves to be robust for various scenarios dominated by long-wave response.
AbstractList A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a $$\delta $$ δ -type loading, it proves to be robust for various scenarios dominated by long-wave response.
A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a δ-type loading, it proves to be robust for various scenarios dominated by long-wave response.
ArticleNumber 234
Author Erbaş, Barış
Itskov, Mikhail
Kaplunov, Julius
Prikazchikov, Danila
Author_xml – sequence: 1
  givenname: Barış
  orcidid: 0000-0003-3211-9930
  surname: Erbaş
  fullname: Erbaş, Barış
– sequence: 2
  givenname: Mikhail
  surname: Itskov
  fullname: Itskov, Mikhail
– sequence: 3
  givenname: Julius
  surname: Kaplunov
  fullname: Kaplunov, Julius
– sequence: 4
  givenname: Danila
  orcidid: 0000-0001-7682-3079
  surname: Prikazchikov
  fullname: Prikazchikov, Danila
BookMark eNotkE1PwzAMhiM0JLbBH-AUiXPASdqmPaKJL2mIC4hjlKbJ6NQlJUk3-PcExsHywY9sv88CzZx3BqFLCtcUQNxEAOCcACty8ZqRwwma04IBaYA3MzQHKArCmCjP0CLGbcYFBT5H78_TkPqd7wwevNuQg9obrMYx-K9-p1LvHbY-YIX3fdTeDCqmXmPt88htcJzardEJJ4-VS_04KGdw_DAqnKNTq4ZoLv77Er3d372uHsn65eFpdbsmmglIpOItdEDbsquauuwUVBooa6lgpdGtsrZRqrUVVbXhnejKxjKmS9XUVJQt2IIv0dVxb_74czIxya2fgssnJaecC1pDTTPFjpQOPsZgrBxDjhe-JQX5K1AeBcosUP4JlAf-A3JXZuE
Cites_doi 10.1016/j.carbon.2013.09.080
10.1016/S0020-7683(97)00011-5
10.1093/imamat/66.4.357
10.1016/j.compositesb.2021.109278
10.1016/S0925-9635(03)00081-5
10.1007/s00033-015-0509-y
10.1016/j.ijnonlinmec.2008.11.002
10.1142/9048
10.1016/j.mechrescom.2019.06.008
10.1016/B978-0-12-804622-7.00005-X
10.1023/A:1015293700959
10.1002/9780470754085
10.1016/j.wavemoti.2004.09.002
10.1016/j.mechrescom.2009.11.008
10.47964/1120.9200.19397
10.1093/qjmam/48.3.311
10.1016/0165-2125(93)90001-V
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2024
Copyright_xml – notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s00033-024-02382-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1420-9039
ExternalDocumentID 10_1007_s00033_024_02382_w
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFEXP
AFFNX
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
ABRTQ
ID FETCH-LOGICAL-c270t-63b0d01b5d6985da06c012b1725ecbaff9aabf61a8e3d7d59f22c5a98175b0f43
ISSN 0044-2275
IngestDate Sun Jul 13 05:37:08 EDT 2025
Tue Jul 01 03:39:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-63b0d01b5d6985da06c012b1725ecbaff9aabf61a8e3d7d59f22c5a98175b0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7682-3079
0000-0003-3211-9930
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00033-024-02382-w.pdf
PQID 3133718081
PQPubID 2043593
ParticipantIDs proquest_journals_3133718081
crossref_primary_10_1007_s00033_024_02382_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References L Pawlowski (2382_CR4) 2008
JD Kaplunov (2382_CR11) 1998
JD Kaplunov (2382_CR12) 1995; 48
AV Pichugin (2382_CR16) 2001; 66
M Li (2382_CR5) 2014; 67
AL Goldenveizer (2382_CR22) 1978
KC Le (2382_CR14) 1997; 34
R Hauert (2382_CR3) 2003; 12
VI Alshits (2382_CR8) 2005; 41
M Sathish (2382_CR7) 2021; 225
B Erbaş (2382_CR19) 2019; 99
GA Rogerson (2382_CR15) 2009; 44
2382_CR21
AL Goldenveiser (2382_CR1) 1992; 3
M Lutianov (2382_CR9) 2010; 37
2382_CR13
2382_CR6
2382_CR23
B Erbaş (2382_CR18) 2018; 474
JD Kaplunov (2382_CR20) 1993; 17
MI Lashhab (2382_CR10) 2015; 66
AV Pichugin (2382_CR17) 2002; 42
A Aghalovyan Lenser (2382_CR2) 2015
References_xml – volume: 67
  start-page: 185
  year: 2014
  ident: 2382_CR5
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.080
– volume: 34
  start-page: 3923
  issue: 30
  year: 1997
  ident: 2382_CR14
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(97)00011-5
– volume: 66
  start-page: 357
  issue: 4
  year: 2001
  ident: 2382_CR16
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/66.4.357
– volume: 225
  start-page: 109278
  year: 2021
  ident: 2382_CR7
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2021.109278
– volume-title: Free Vibrations of Thin Shells
  year: 1978
  ident: 2382_CR22
– volume: 3
  start-page: 17
  issue: 3
  year: 1992
  ident: 2382_CR1
  publication-title: Mech. Sol.
– volume: 12
  start-page: 583
  issue: 3–7
  year: 2003
  ident: 2382_CR3
  publication-title: Diamond Related Mater.
  doi: 10.1016/S0925-9635(03)00081-5
– ident: 2382_CR21
– volume: 66
  start-page: 2741
  year: 2015
  ident: 2382_CR10
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-015-0509-y
– volume: 44
  start-page: 520
  issue: 5
  year: 2009
  ident: 2382_CR15
  publication-title: Int. J. Nonlinear Mech.
  doi: 10.1016/j.ijnonlinmec.2008.11.002
– volume-title: Asymptotic Theory of Anisotropic Plates and Shells
  year: 2015
  ident: 2382_CR2
  doi: 10.1142/9048
– volume: 99
  start-page: 64
  year: 2019
  ident: 2382_CR19
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.06.008
– ident: 2382_CR6
  doi: 10.1016/B978-0-12-804622-7.00005-X
– volume: 42
  start-page: 181
  year: 2002
  ident: 2382_CR17
  publication-title: J. Eng. Math.
  doi: 10.1023/A:1015293700959
– volume-title: The Science and Engineering of Thermal Spray Coatings
  year: 2008
  ident: 2382_CR4
  doi: 10.1002/9780470754085
– volume: 41
  start-page: 357
  issue: 4
  year: 2005
  ident: 2382_CR8
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2004.09.002
– volume-title: Dynamics of Thin Walled Elastic Bodies
  year: 1998
  ident: 2382_CR11
– volume: 37
  start-page: 219
  issue: 2
  year: 2010
  ident: 2382_CR9
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2009.11.008
– ident: 2382_CR23
  doi: 10.47964/1120.9200.19397
– volume: 48
  start-page: 311
  issue: 3
  year: 1995
  ident: 2382_CR12
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/48.3.311
– volume: 474
  start-page: 20180103
  issue: 2214
  year: 2018
  ident: 2382_CR18
  publication-title: P. Roy. Soc. A-Math. Phy.
– volume: 17
  start-page: 199
  issue: 3
  year: 1993
  ident: 2382_CR20
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(93)90001-V
– ident: 2382_CR13
SSID ssj0007103
Score 2.3748975
Snippet A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Approximation
Equations of motion
Viscoelasticity
Title Multimode long-wave approximation for a viscoelastic coating subject to antiplane shear
URI https://www.proquest.com/docview/3133718081
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCAkOCAqIQkE-cItcJf5KcixVqwq15bIrVlwi23FKVNhUTcoifj0zzsd2KULAJYqyn5qXjJ_t92YIeWs0PAZVkjGVaMWkF4blOk1ZKcuMG-FlatGcfHqmj-fy_UIt1g3vgruks3vux299Jf-DKlwDXNEl-w_ITl8KF-Ac8IUjIAzHv8I4uGexl030pVmesxV2EgpFwr_XX9ciQhN9q1vXeODJWJ3VNSZIndtri2swSD4huvUlql6j9nMvrJ0I6ydfdzABvqqrLqpwV_3dAaouz_3KoBEgOh3Lvl5gR93QSqe-uLmUwOUvsoxxKRF10rh7MVld-tQpJeO8b3Oy5_tsKWHumcd9NaIxnQ7vqNe58VaW7oUZWMFK4CayZEgcOFutx6RxH_7sQ3E0PzkpZoeL2V1yj8NcAJPZnO9Pwy1QpEFG0P-_wRkV_JG3fmGTfWwOvoFRzB6TR8NUgO73uD4hd_xymzycAurabXI_xNO1T8nHCWs6YU03sKaANTX0JtZ0wJoOWNOuoRPWNGD9jMyPDmcHx2xoisEcT-OOaWHjMk6sKnWeqdLE2gHHsMBDlXfWVFVujK10YjIvyrRUecW5UybPgCfauJLiOdlaNkv_gtDYlPDpTMgceWmiTOyU80mmjfTcaL1DojFYxWVf-6SYqlyH0BYQ2iKEtljtkN0xnsXwjLSFSIQA9gO88-WfX35FHqzvyF2y1V1d-9dA9zr7JsD9E8l7Vno
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimode+long-wave+approximation+for+a+viscoelastic+coating+subject+to+antiplane+shear&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=75&rft.issue=6&rft_id=info:doi/10.1007%2Fs00033-024-02382-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon