Multimode long-wave approximation for a viscoelastic coating subject to antiplane shear
A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. Th...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 75; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a
$$\delta $$
δ
-type loading, it proves to be robust for various scenarios dominated by long-wave response. |
---|---|
AbstractList | A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a
$$\delta $$
δ
-type loading, it proves to be robust for various scenarios dominated by long-wave response. A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear of a viscoelastic coating. For the first time, a 1D equation of motion with the coefficients depending on frequency parameters is derived. The associated dispersion relation also seems to be a fresh development approximating its exact counterpart near the vicinities of all the cut-off frequencies. As might be expected, the developed formulation is not valid for short wavelength patterns. At the same time, as it is shown for a δ-type loading, it proves to be robust for various scenarios dominated by long-wave response. |
ArticleNumber | 234 |
Author | Erbaş, Barış Itskov, Mikhail Kaplunov, Julius Prikazchikov, Danila |
Author_xml | – sequence: 1 givenname: Barış orcidid: 0000-0003-3211-9930 surname: Erbaş fullname: Erbaş, Barış – sequence: 2 givenname: Mikhail surname: Itskov fullname: Itskov, Mikhail – sequence: 3 givenname: Julius surname: Kaplunov fullname: Kaplunov, Julius – sequence: 4 givenname: Danila orcidid: 0000-0001-7682-3079 surname: Prikazchikov fullname: Prikazchikov, Danila |
BookMark | eNotkE1PwzAMhiM0JLbBH-AUiXPASdqmPaKJL2mIC4hjlKbJ6NQlJUk3-PcExsHywY9sv88CzZx3BqFLCtcUQNxEAOCcACty8ZqRwwma04IBaYA3MzQHKArCmCjP0CLGbcYFBT5H78_TkPqd7wwevNuQg9obrMYx-K9-p1LvHbY-YIX3fdTeDCqmXmPt88htcJzardEJJ4-VS_04KGdw_DAqnKNTq4ZoLv77Er3d372uHsn65eFpdbsmmglIpOItdEDbsquauuwUVBooa6lgpdGtsrZRqrUVVbXhnejKxjKmS9XUVJQt2IIv0dVxb_74czIxya2fgssnJaecC1pDTTPFjpQOPsZgrBxDjhe-JQX5K1AeBcosUP4JlAf-A3JXZuE |
Cites_doi | 10.1016/j.carbon.2013.09.080 10.1016/S0020-7683(97)00011-5 10.1093/imamat/66.4.357 10.1016/j.compositesb.2021.109278 10.1016/S0925-9635(03)00081-5 10.1007/s00033-015-0509-y 10.1016/j.ijnonlinmec.2008.11.002 10.1142/9048 10.1016/j.mechrescom.2019.06.008 10.1016/B978-0-12-804622-7.00005-X 10.1023/A:1015293700959 10.1002/9780470754085 10.1016/j.wavemoti.2004.09.002 10.1016/j.mechrescom.2009.11.008 10.47964/1120.9200.19397 10.1093/qjmam/48.3.311 10.1016/0165-2125(93)90001-V |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00033-024-02382-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1420-9039 |
ExternalDocumentID | 10_1007_s00033_024_02382_w |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFFNX AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CITATION COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PQQKQ PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 ZMTXR ~EX ABRTQ |
ID | FETCH-LOGICAL-c270t-63b0d01b5d6985da06c012b1725ecbaff9aabf61a8e3d7d59f22c5a98175b0f43 |
ISSN | 0044-2275 |
IngestDate | Sun Jul 13 05:37:08 EDT 2025 Tue Jul 01 03:39:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-63b0d01b5d6985da06c012b1725ecbaff9aabf61a8e3d7d59f22c5a98175b0f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7682-3079 0000-0003-3211-9930 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00033-024-02382-w.pdf |
PQID | 3133718081 |
PQPubID | 2043593 |
ParticipantIDs | proquest_journals_3133718081 crossref_primary_10_1007_s00033_024_02382_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Zeitschrift für angewandte Mathematik und Physik |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | L Pawlowski (2382_CR4) 2008 JD Kaplunov (2382_CR11) 1998 JD Kaplunov (2382_CR12) 1995; 48 AV Pichugin (2382_CR16) 2001; 66 M Li (2382_CR5) 2014; 67 AL Goldenveizer (2382_CR22) 1978 KC Le (2382_CR14) 1997; 34 R Hauert (2382_CR3) 2003; 12 VI Alshits (2382_CR8) 2005; 41 M Sathish (2382_CR7) 2021; 225 B Erbaş (2382_CR19) 2019; 99 GA Rogerson (2382_CR15) 2009; 44 2382_CR21 AL Goldenveiser (2382_CR1) 1992; 3 M Lutianov (2382_CR9) 2010; 37 2382_CR13 2382_CR6 2382_CR23 B Erbaş (2382_CR18) 2018; 474 JD Kaplunov (2382_CR20) 1993; 17 MI Lashhab (2382_CR10) 2015; 66 AV Pichugin (2382_CR17) 2002; 42 A Aghalovyan Lenser (2382_CR2) 2015 |
References_xml | – volume: 67 start-page: 185 year: 2014 ident: 2382_CR5 publication-title: Carbon doi: 10.1016/j.carbon.2013.09.080 – volume: 34 start-page: 3923 issue: 30 year: 1997 ident: 2382_CR14 publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(97)00011-5 – volume: 66 start-page: 357 issue: 4 year: 2001 ident: 2382_CR16 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/66.4.357 – volume: 225 start-page: 109278 year: 2021 ident: 2382_CR7 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2021.109278 – volume-title: Free Vibrations of Thin Shells year: 1978 ident: 2382_CR22 – volume: 3 start-page: 17 issue: 3 year: 1992 ident: 2382_CR1 publication-title: Mech. Sol. – volume: 12 start-page: 583 issue: 3–7 year: 2003 ident: 2382_CR3 publication-title: Diamond Related Mater. doi: 10.1016/S0925-9635(03)00081-5 – ident: 2382_CR21 – volume: 66 start-page: 2741 year: 2015 ident: 2382_CR10 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-015-0509-y – volume: 44 start-page: 520 issue: 5 year: 2009 ident: 2382_CR15 publication-title: Int. J. Nonlinear Mech. doi: 10.1016/j.ijnonlinmec.2008.11.002 – volume-title: Asymptotic Theory of Anisotropic Plates and Shells year: 2015 ident: 2382_CR2 doi: 10.1142/9048 – volume: 99 start-page: 64 year: 2019 ident: 2382_CR19 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2019.06.008 – ident: 2382_CR6 doi: 10.1016/B978-0-12-804622-7.00005-X – volume: 42 start-page: 181 year: 2002 ident: 2382_CR17 publication-title: J. Eng. Math. doi: 10.1023/A:1015293700959 – volume-title: The Science and Engineering of Thermal Spray Coatings year: 2008 ident: 2382_CR4 doi: 10.1002/9780470754085 – volume: 41 start-page: 357 issue: 4 year: 2005 ident: 2382_CR8 publication-title: Wave Motion doi: 10.1016/j.wavemoti.2004.09.002 – volume-title: Dynamics of Thin Walled Elastic Bodies year: 1998 ident: 2382_CR11 – volume: 37 start-page: 219 issue: 2 year: 2010 ident: 2382_CR9 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2009.11.008 – ident: 2382_CR23 doi: 10.47964/1120.9200.19397 – volume: 48 start-page: 311 issue: 3 year: 1995 ident: 2382_CR12 publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/48.3.311 – volume: 474 start-page: 20180103 issue: 2214 year: 2018 ident: 2382_CR18 publication-title: P. Roy. Soc. A-Math. Phy. – volume: 17 start-page: 199 issue: 3 year: 1993 ident: 2382_CR20 publication-title: Wave Motion doi: 10.1016/0165-2125(93)90001-V – ident: 2382_CR13 |
SSID | ssj0007103 |
Score | 2.3748975 |
Snippet | A general asymptotic approach involving multimode long-wave approximations is illustrated by a 2D time-harmonic scalar problem for the dynamic antiplane shear... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Approximation Equations of motion Viscoelasticity |
Title | Multimode long-wave approximation for a viscoelastic coating subject to antiplane shear |
URI | https://www.proquest.com/docview/3133718081 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgCAkOCAqIQkE-cItcJf5KcixVqwq15bIrVlwi23FKVNhUTcoifj0zzsd2KULAJYqyn5qXjJ_t92YIeWs0PAZVkjGVaMWkF4blOk1ZKcuMG-FlatGcfHqmj-fy_UIt1g3vgruks3vux299Jf-DKlwDXNEl-w_ITl8KF-Ac8IUjIAzHv8I4uGexl030pVmesxV2EgpFwr_XX9ciQhN9q1vXeODJWJ3VNSZIndtri2swSD4huvUlql6j9nMvrJ0I6ydfdzABvqqrLqpwV_3dAaouz_3KoBEgOh3Lvl5gR93QSqe-uLmUwOUvsoxxKRF10rh7MVld-tQpJeO8b3Oy5_tsKWHumcd9NaIxnQ7vqNe58VaW7oUZWMFK4CayZEgcOFutx6RxH_7sQ3E0PzkpZoeL2V1yj8NcAJPZnO9Pwy1QpEFG0P-_wRkV_JG3fmGTfWwOvoFRzB6TR8NUgO73uD4hd_xymzycAurabXI_xNO1T8nHCWs6YU03sKaANTX0JtZ0wJoOWNOuoRPWNGD9jMyPDmcHx2xoisEcT-OOaWHjMk6sKnWeqdLE2gHHsMBDlXfWVFVujK10YjIvyrRUecW5UybPgCfauJLiOdlaNkv_gtDYlPDpTMgceWmiTOyU80mmjfTcaL1DojFYxWVf-6SYqlyH0BYQ2iKEtljtkN0xnsXwjLSFSIQA9gO88-WfX35FHqzvyF2y1V1d-9dA9zr7JsD9E8l7Vno |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimode+long-wave+approximation+for+a+viscoelastic+coating+subject+to+antiplane+shear&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=75&rft.issue=6&rft_id=info:doi/10.1007%2Fs00033-024-02382-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon |