Bi-objective feature selection in high-dimensional datasets using improved binary chimp optimization algorithm
The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires th...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 15; no. 12; pp. 6107 - 6148 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02308-y |
Cover
Loading…
Abstract | The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the
β
-hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and
β
-hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests. |
---|---|
AbstractList | The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the
β
-hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and
β
-hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests. The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the β-hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and β-hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests. |
Author | Abed-alguni, Bilal H. Barhoush, Malek Al-qudah, Nour Elhuda A. |
Author_xml | – sequence: 1 givenname: Nour Elhuda A. surname: Al-qudah fullname: Al-qudah, Nour Elhuda A. organization: Department of Computer Science, Yarmouk University – sequence: 2 givenname: Bilal H. surname: Abed-alguni fullname: Abed-alguni, Bilal H. email: Bilal.h@yu.edu.jo organization: Department of Computer Science, Yarmouk University – sequence: 3 givenname: Malek surname: Barhoush fullname: Barhoush, Malek organization: Department of Information Technology (Cybersecurity Program), Yarmouk University |
BookMark | eNp9kF1LwzAYhYNMcM79Aa8CXlfz1Sa71OEXCN4oeBfSJG0z2nQm7WD-erNV9M5AyMvhnMOb5xzMfO8tAJcYXWOE-E3EFDGSIcLSpUhk-xMwx6IQmUDiY_Y7c3wGljFuUDoFohSROfB3LuvLjdWD21lYWTWMwcJo24PSe-g8bFzdZMZ11sekqBYaNahohwjH6HwNXbcN_c4aWDqvwh7qJimw3w6uc1_q2KLaug9uaLoLcFqpNtrlz7sA7w_3b-un7OX18Xl9-5JpwtGQ5YqRfGW5qnLDKyS4RtQSUZXlqlCM60IXhmJaaFUpUzKTs5IIwQzBjBJsK7oAV1NvWu1ztHGQm34MafkoKSaJB-GEJReZXDr0MQZbyW1wXfqDxEge0MoJrUxo5RGt3KcQnUIxmX1tw1_1P6lvwg6A1g |
Cites_doi | 10.1007/s42235-024-00558-8 10.1155/2022/6473507 10.1007/s12652-020-02484-z 10.1108/02644400410511864 10.1109/CIMCA.2005.1631345 10.1016/j.engappai.2014.03.007 10.1080/08839514.2020.1861407 10.1145/1835804.1835848 10.1016/j.engappai.2020.103479 10.1016/j.knosys.2022.108457 10.1007/s00521-017-2837-7 10.1007/s00500-018-3102-4 10.1007/s00500-020-05070-9 10.1007/s10489-022-03269-x 10.1016/j.compbiomed.2021.105152 10.1016/j.eswa.2022.119130 10.1007/s00500-019-03887-7 10.1016/j.advengsoft.2016.01.008 10.1007/s42235-023-00387-1 10.1007/s11227-023-05444-4 10.1007/s00521-022-07836-8 10.1016/j.enconman.2018.05.062 10.1007/s10489-021-02524-x 10.1016/j.future.2019.02.028 10.1007/s11227-022-04650-w 10.3390/math10111929 10.1007/s00521-023-08772-x 10.1016/j.asoc.2020.106092 10.1007/s00366-011-0241-y 10.1007/978-981-32-9990-0_12 10.1007/978-3-642-00267-0_14 10.1007/978-981-15-3290-0_19 10.1109/ACCESS.2021.3138403 10.1016/j.patcog.2021.108307 10.1016/j.swevo.2020.100671 10.1016/j.eswa.2019.112898 10.1201/9781003158745 10.1016/j.asoc.2023.110237 10.1016/j.eswa.2020.113338 10.1145/2480741.2480752 10.1007/s00521-019-04629-4 10.1016/j.jocs.2023.102201 10.1007/s10462-020-09909-3 10.1111/j.1365-2664.2006.01214.x 10.1016/j.patcog.2015.03.020 10.1016/j.eswa.2018.12.022 10.3390/electronics8101130 10.1109/TNNLS.2017.2785403 10.1007/s10462-022-10277-3 10.1016/j.compbiomed.2022.105675 10.1016/j.chemolab.2018.11.010 10.1016/j.asoc.2020.106761 10.1016/j.future.2020.05.020 10.1016/j.knosys.2022.110111 10.1016/j.asoc.2023.109987 10.1007/s12530-022-09461-1 10.1007/s13369-020-04871-2 10.1016/j.bspc.2023.105073 10.1007/s00521-021-06775-0 10.1016/j.eswa.2019.112824 10.1007/s10462-018-9634-2 10.1007/s00500-021-05939-3 10.1016/j.eswa.2022.117217 10.1007/s00366-019-00837-7 10.1016/j.eswa.2011.09.073 10.1371/journal.pone.0280006 10.1007/s10489-022-03554-9 10.1007/s12652-020-02580-0 10.1109/CCST.2019.8888419 10.1016/j.asoc.2017.04.050 10.1016/j.asoc.2017.02.034 10.1007/s10462-023-10446-y 10.4135/9781412985314 10.1007/s12539-018-0295-2 10.1016/j.knosys.2021.107625 10.1016/j.eswa.2021.114778 10.1016/j.eswa.2019.113122 10.1007/s10489-022-04201-z 10.3390/math10111942 10.1007/s00521-015-1923-y 10.1109/ACCESS.2020.2985986 10.1016/j.knosys.2015.12.022 10.1109/PICICT.2017.11 10.1109/TNNLS.2020.3009209 10.1007/s00521-023-08812-6 10.1109/ICCKE48569.2019.8965106 10.1109/MED.2007.4433821 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02308-y |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 6148 |
ExternalDocumentID | 10_1007_s13042_024_02308_y |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c270t-5a4259e7af5d7f087c03e28fbb96a47c6c6d3136cafadb4d54b2884d214321ef3 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Sun Jul 13 05:39:02 EDT 2025 Tue Jul 01 03:51:05 EDT 2025 Fri Feb 21 02:36:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | High-dimensional datasets Feature selection Chimp optimization algorithm Hill climbing algorithm Opposition-based learning Lévy flight |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-5a4259e7af5d7f087c03e28fbb96a47c6c6d3136cafadb4d54b2884d214321ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3121862724 |
PQPubID | 2043904 |
PageCount | 42 |
ParticipantIDs | proquest_journals_3121862724 crossref_primary_10_1007_s13042_024_02308_y springer_journals_10_1007_s13042_024_02308_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Singh, Singh (CR73) 2022; 122 Allouche, Tsoar, Kadmon (CR77) 2006; 43 Gandomi, Yang, Alavi (CR68) 2013; 29 Xue, Zhu, Neri (CR6) 2023; 134 Sun, Si, Zhao, Jiucheng, Lin, Lv (CR46) 2023; 53 Meenachi, Ramakrishnan (CR90) 2020; 24 Mafarja, Thaher, Too, Chantar, Turabieh, Houssein, Emam (CR36) 2023; 35 Guo, Wang, Guo (CR79) 2020; 2020 Shehab, Khader, Al-Betar (CR67) 2017; 61 Li, Gao, Li (CR70) 2024; 84 Barhoush, Abed-alguni, Al-qudah (CR11) 2023; 79 CR48 Al-Betar, Aljarah, Awadallah, Faris, Mirjalili (CR65) 2019; 23 CR44 Mirjalili (CR37) 2016; 96 Blagus, Lusa (CR76) 2013; 14 Zhang, Fan, Wang, Zhou, Tao (CR92) 2020; 32 Shi, Miao, Wang, Zhang, Niu (CR95) 2018; 29 Khishe, Mosavi (CR20) 2020; 149 Piri, Mohapatra, Pradhan, Acharya, Patra (CR91) 2021; 10 Abed-alguni, Alawad, Barhoush, Hammad (CR66) 2021; 25 Braik, Hammouri, Atwan, Al-Betar, Awadallah (CR40) 2022; 243 Tabakhi, Moradi, Akhlaghian (CR31) 2014; 32 Nadimi-Shahraki, Taghian, Mirjalili, Faris (CR58) 2020; 97 Nadimi-Shahraki, Moeini, Taghian, Mirjalili (CR57) 2023; 20 Abed-Alguni, Alawad, Al-Betar, Paul (CR2) 2023; 53 Mohamed, Braik, Al-Betar, Awadallah (CR16) 2024 Balakrishnan, Dhanalakshmi, Akila, Sinha (CR51) 2023; 14 Nuiaa, Manickam, Alsaeedi, Alomari (CR99) 2022; 12 Li, Chen, Zhang (CR1) 2023; 139 Awadallah, Al-Betar, Hammouri, Alomari (CR7) 2020; 45 Seyyedabbasi, Kiani (CR56) 2021; 37 Abed-alguni, AL-Jarah (CR9) 2023; 75 CR69 Pant, Zaheer, Garcia-Hernandez, Abraham (CR35) 2020; 90 Faris, Heidari, Ala’M, Mafarja, Aljarah, Eshtay, Mirjalili (CR80) 2020; 140 Tabakhi, Moradi (CR32) 2015; 48 CR62 Zhang, Yang, Biao, Liu, Li (CR8) 2020; 8 Tubishat, Idris, Shuib, Abushariah, Mirjalili (CR17) 2020; 145 Abualigah, Shehab, Alshinwan, Alabool (CR43) 2020; 32 CR60 Abdel-Basset, Mohamed, Jameel, Abouhawwash (CR61) 2023; 56 Ma, Zhou, Zhu, Li, Jiao (CR29) 2021; 116 Mirjalili, Lewis (CR13) 2016; 95 Yan, Ma, Luo, Patel (CR19) 2019; 184 Agrawal, Kaur, Sharma (CR89) 2020; 89 Awadallah, Al-Betar, Braik, Hammouri, Doush, Zitar (CR54) 2022; 147 Fukunaga (CR74) 2013 Hussain, Neggaz, Zhu, Houssein (CR50) 2021; 176 Abualigah, Diabat (CR39) 2021; 54 CR78 Kaidi, Khishe, Mohammadi (CR22) 2022; 235 Rizk-Allah, Hassanien (CR38) 2023; 56 CR75 Too, Abdullah, Saad (CR81) 2019; 8 Abed-alguni, Barhoush (CR100) 2018; 4 Pan, Chen, Xiong (CR34) 2023; 135 Kabir, Shahjahan, Murase (CR30) 2012; 39 CR3 Karimi, Dowlatshahi, Hashemi (CR5) 2023; 214 Shambour, Abusnaina, Alsalibi (CR83) 2019; 11 Alhenawi, Alazzam, Al-Sayyed, AbuAlghanam, Adwan (CR63) 2022; 22 Abed-Alguni, Paul, Hammad (CR49) 2022; 52 CR87 Hatta, Zain, Roselina Sallehuddin, Shayfull (CR33) 2019; 52 Sayed, Nassef, Badr, Farag (CR52) 2019; 121 Islam, Li, Mei (CR71) 2017; 59 Braik, Hammouri, Awadallah, Al-Betar, Khtatneh (CR15) 2023; 85 Awadallah, Hammouri, Al-Betar, Braik, Elaziz (CR53) 2022; 141 Zhang, Sun, Tsang, Ford (CR96) 2004; 21 Abdel-Basset, El-Shahat, El-Henawy, De Victor Hugo, Albuquerque (CR82) 2020; 139 Zhu, Li, Li (CR28) 2023; 260 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR47) 2019; 97 Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (CR25) 2020; 54 Nadimi-Shahraki, Taghian, Mirjalili, Abualigah (CR97) 2022; 10 Dahou, Elaziz, Chelloug, Awadallah, Al-Betar, Al-Qaness, Forestiero (CR42) 2022 CR98 Giraud (CR18) 2021 Sindhu, Ngadiran, Yacob, Zahri, Hariharan (CR85) 2017; 28 CR94 CR93 Dong, Liu (CR64) 2018 Too, Mirjalili (CR86) 2021; 35 Wang, Deb, Cui (CR45) 2019; 31 Mafarja, Heidari, Habib, Faris, Thaher, Aljarah (CR41) 2020; 112 Abasabadi, Nematzadeh, Motameni, Akbari (CR4) 2022; 78 Elaziz, Oliva (CR12) 2018; 171 Črepinšek, Liu, Mernik (CR24) 2013; 45 Dhiman, Garg, Nagar, Kumar, Dehghani (CR55) 2021; 12 CR23 Alawad, Abed-alguni, Al-Betar, Jaradat (CR10) 2023; 35 Awadallah, Braik, Al-Betar, Doush (CR14) 2023; 35 Nadimi-Shahraki, Taghian, Zamani, Mirjalili, Elaziz (CR59) 2023; 18 Long, Ming, Jiao, Tiebin, Tang, Cai (CR27) 2022; 201 Pashaei, Pashaei (CR21) 2022; 34 Zhou, Wang, Zhu (CR88) 2022; 52 Al-Betar, Hammouri, Awadallah, Doush (CR72) 2021; 12 Arora, Singh (CR26) 2019; 23 Li (CR84) 2023; 142 MM Kabir (2308_CR30) 2012; 39 MKY Shambour (2308_CR83) 2019; 11 O Allouche (2308_CR77) 2006; 43 MH Nadimi-Shahraki (2308_CR58) 2020; 97 S Guo (2308_CR79) 2020; 2020 2308_CR98 R Blagus (2308_CR76) 2013; 14 2308_CR94 MA Awadallah (2308_CR7) 2020; 45 B Morales-Castañeda (2308_CR25) 2020; 54 MA Al-Betar (2308_CR65) 2019; 23 G Dong (2308_CR64) 2018 L Abualigah (2308_CR39) 2021; 54 S Mirjalili (2308_CR13) 2016; 95 H Zhou (2308_CR88) 2022; 52 2308_CR23 MS Braik (2308_CR15) 2023; 85 M Tubishat (2308_CR17) 2020; 145 M Abdel-Basset (2308_CR61) 2023; 56 AH Gandomi (2308_CR68) 2013; 29 BH Abed-Alguni (2308_CR2) 2023; 53 BH Abed-Alguni (2308_CR49) 2022; 52 K Fukunaga (2308_CR74) 2013 S Tabakhi (2308_CR31) 2014; 32 M Abdel-Basset (2308_CR82) 2020; 139 BH Abed-alguni (2308_CR66) 2021; 25 J Li (2308_CR70) 2024; 84 G-G Wang (2308_CR45) 2019; 31 MH Nadimi-Shahraki (2308_CR59) 2023; 18 K Li (2308_CR1) 2023; 139 M Shehab (2308_CR67) 2017; 61 MH Nadimi-Shahraki (2308_CR97) 2022; 10 S Abasabadi (2308_CR4) 2022; 78 2308_CR78 2308_CR75 MA Elaziz (2308_CR12) 2018; 171 MJ Islam (2308_CR71) 2017; 59 B Zhang (2308_CR8) 2020; 8 L Abualigah (2308_CR43) 2020; 32 BH Abed-alguni (2308_CR9) 2023; 75 M Khishe (2308_CR20) 2020; 149 S Mirjalili (2308_CR37) 2016; 96 A Dahou (2308_CR42) 2022 W Kaidi (2308_CR22) 2022; 235 J Too (2308_CR81) 2019; 8 NM Hatta (2308_CR33) 2019; 52 J Piri (2308_CR91) 2021; 10 MA Awadallah (2308_CR54) 2022; 147 2308_CR87 2308_CR3 2308_CR93 RR Nuiaa (2308_CR99) 2022; 12 G Dhiman (2308_CR55) 2021; 12 BH Abed-alguni (2308_CR100) 2018; 4 C Giraud (2308_CR18) 2021 W Long (2308_CR27) 2022; 201 M Mafarja (2308_CR41) 2020; 112 Y Zhu (2308_CR28) 2023; 260 RM Rizk-Allah (2308_CR38) 2023; 56 RK Agrawal (2308_CR89) 2020; 89 S Tabakhi (2308_CR32) 2015; 48 2308_CR60 K Balakrishnan (2308_CR51) 2023; 14 EA Mohamed (2308_CR16) 2024 H Pan (2308_CR34) 2023; 135 D Singh (2308_CR73) 2022; 122 Y Shi (2308_CR95) 2018; 29 M Črepinšek (2308_CR24) 2013; 45 2308_CR69 MA Awadallah (2308_CR53) 2022; 141 Z Li (2308_CR84) 2023; 142 MA Al-Betar (2308_CR72) 2021; 12 M Barhoush (2308_CR11) 2023; 79 2308_CR62 Q Zhang (2308_CR96) 2004; 21 K Hussain (2308_CR50) 2021; 176 E Pashaei (2308_CR21) 2022; 34 H Faris (2308_CR80) 2020; 140 E Alhenawi (2308_CR63) 2022; 22 S Arora (2308_CR26) 2019; 23 M Mafarja (2308_CR36) 2023; 35 X Zhang (2308_CR92) 2020; 32 F Karimi (2308_CR5) 2023; 214 J Too (2308_CR86) 2021; 35 NA Alawad (2308_CR10) 2023; 35 W Ma (2308_CR29) 2021; 116 S Sayed (2308_CR52) 2019; 121 MA Awadallah (2308_CR14) 2023; 35 AA Heidari (2308_CR47) 2019; 97 R Sindhu (2308_CR85) 2017; 28 MH Nadimi-Shahraki (2308_CR57) 2023; 20 Yu Xue (2308_CR6) 2023; 134 2308_CR48 L Sun (2308_CR46) 2023; 53 L Meenachi (2308_CR90) 2020; 24 C Yan (2308_CR19) 2019; 184 2308_CR44 M Braik (2308_CR40) 2022; 243 A Seyyedabbasi (2308_CR56) 2021; 37 M Pant (2308_CR35) 2020; 90 |
References_xml | – volume: 243 year: 2022 ident: CR40 article-title: White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl Based Syst – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: CR68 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput – volume: 141 year: 2022 ident: CR53 article-title: Binary horse herd optimization algorithm with crossover operators for feature selection publication-title: Comput Biol Med – volume: 56 start-page: 11675 issue: 10 year: 2023 end-page: 11738 ident: CR61 article-title: Spider wasp optimizer: a novel meta-heuristic optimization algorithm publication-title: Artif Intell Rev – volume: 12 start-page: 8457 year: 2021 end-page: 8482 ident: CR55 article-title: A novel algorithm for global optimization: rat swarm optimizer publication-title: J Ambient Intell Humaniz Comput – volume: 90 start-page: 103479 year: 2020 ident: CR35 article-title: Differential evolution: a review of more than two decades of research publication-title: Eng Appl Artif Intell – volume: 147 start-page: 105675 year: 2022 ident: CR54 article-title: An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection publication-title: Comput Biol Med – volume: 61 start-page: 1041 year: 2017 end-page: 1059 ident: CR67 article-title: A survey on applications and variants of the cuckoo search algorithm publication-title: Appl Soft Comput – volume: 2020 start-page: 6502807 issue: 1 year: 2020 ident: CR79 article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm publication-title: Comput Intell Neurosci – volume: 52 start-page: 5457 issue: 5 year: 2022 end-page: 5474 ident: CR88 article-title: Feature selection based on mutual information with correlation coefficient publication-title: Appl Intell – volume: 135 year: 2023 ident: CR34 article-title: A high-dimensional feature selection method based on modified gray wolf optimization publication-title: Appl Soft Comput – volume: 52 start-page: 17217 issue: 15 year: 2022 end-page: 17236 ident: CR49 article-title: Improved salp swarm algorithm for solving single-objective continuous optimization problems publication-title: Appl Intell – volume: 22 start-page: 73 issue: 4 year: 2022 end-page: 90 ident: CR63 article-title: Hybrid feature selection method for intrusion detection systems based on an improved intelligent water drop algorithm publication-title: Cybern Inf Technol – volume: 35 start-page: 19427 issue: 26 year: 2023 end-page: 19451 ident: CR10 article-title: Binary improved white shark algorithm for intrusion detection systems publication-title: Neural Comput Appl – volume: 35 start-page: 1749 issue: 2 year: 2023 end-page: 1775 ident: CR36 article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification publication-title: Neural Comput Appl – ident: CR60 – volume: 45 start-page: 1 issue: 3 year: 2013 end-page: 33 ident: CR24 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput Surv (CSUR) – volume: 176 start-page: 114778 year: 2021 ident: CR50 article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Syst Appl – volume: 39 start-page: 3747 issue: 3 year: 2012 end-page: 3763 ident: CR30 article-title: A new hybrid ant colony optimization algorithm for feature selection publication-title: Expert Syst Appl – volume: 54 start-page: 2567 issue: 4 year: 2021 end-page: 2608 ident: CR39 article-title: Advances in sine cosine algorithm: a comprehensive survey publication-title: Artif Intell Rev – year: 2024 ident: CR16 article-title: Boosted spider wasp optimizer for high-dimensional feature selection publication-title: J Bionic Eng doi: 10.1007/s42235-024-00558-8 – volume: 235 start-page: 107625 year: 2022 ident: CR22 article-title: Dynamic levy flight chimp optimization publication-title: Knowl Based Syst – volume: 18 start-page: e0280006 issue: 1 year: 2023 ident: CR59 article-title: MMKE: multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems publication-title: PLoS ONE – year: 2021 ident: CR18 publication-title: Introduction to high-dimensional statistics – volume: 8 start-page: 67799 year: 2020 end-page: 67812 ident: CR8 article-title: OEbBOA: a novel improved binary butterfly optimization approaches with various strategies for feature selection publication-title: IEEE Access – volume: 32 start-page: 11195 year: 2020 end-page: 11215 ident: CR43 article-title: Salp swarm algorithm: a comprehensive survey publication-title: Neural Comput Appl – volume: 14 start-page: 735 issue: 4 year: 2023 end-page: 746 ident: CR51 article-title: Improved equilibrium optimization based on levy flight approach for feature selection publication-title: Evol Syst – volume: 21 start-page: 91 issue: 1 year: 2004 end-page: 107 ident: CR96 article-title: Hybrid estimation of distribution algorithm for global optimization publication-title: Eng Comput – volume: 201 start-page: 117217 year: 2022 ident: CR27 article-title: A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection publication-title: Expert Syst Appl – volume: 140 start-page: 112898 year: 2020 ident: CR80 article-title: Time-varying hierarchical chains of salps with random weight networks for feature selection publication-title: Expert Syst Appl – volume: 75 start-page: 102201 year: 2023 ident: CR9 article-title: IBJA: an improved binary DJaya algorithm for feature selection publication-title: J Comput Sci – volume: 29 start-page: 4967 issue: 10 year: 2018 end-page: 4982 ident: CR95 article-title: Feature selection with ell\_ regularization publication-title: IEEE Trans Neural Netw Learn Syst – volume: 11 start-page: 496 year: 2019 end-page: 507 ident: CR83 article-title: Modified global flower pollination algorithm and its application for optimization problems publication-title: Interdiscip Sci Comput Life Sci – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR37 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Based Syst – volume: 171 start-page: 1843 year: 2018 end-page: 1859 ident: CR12 article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm publication-title: Energy Convers Manag – volume: 4 start-page: 21 issue: 03 year: 2018 ident: CR100 article-title: Distributed grey wolf optimizer for numerical optimization problems publication-title: Jordan J Comput Inf Technol – volume: 35 start-page: 20013 issue: 27 year: 2023 end-page: 20068 ident: CR14 article-title: An enhanced binary artificial rabbits optimization for feature selection in medical diagnosis publication-title: Neural Comput Appl – ident: CR69 – ident: CR94 – ident: CR44 – volume: 34 start-page: 6427 issue: 8 year: 2022 end-page: 6451 ident: CR21 article-title: An efficient binary chimp optimization algorithm for feature selection in biomedical data classification publication-title: Neural Comput Appl – ident: CR3 – volume: 10 start-page: 1756 year: 2021 end-page: 1774 ident: CR91 article-title: A binary multi-objective chimp optimizer with dual archive for feature selection in the healthcare domain publication-title: IEEE Access – volume: 79 start-page: 21265 issue: 18 year: 2023 end-page: 21309 ident: CR11 article-title: Improved discrete salp swarm algorithm using exploration and exploitation techniques for feature selection in intrusion detection systems publication-title: J Supercomput – volume: 121 start-page: 233 year: 2019 end-page: 243 ident: CR52 article-title: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets publication-title: Expert Syst Appl – volume: 23 start-page: 13489 issue: 24 year: 2019 end-page: 13512 ident: CR65 article-title: Adaptive -hill climbing for optimization publication-title: Soft Comput – volume: 14 start-page: 1 year: 2013 end-page: 16 ident: CR76 article-title: Smote for high-dimensional class-imbalanced data publication-title: BMC Bioinform – volume: 53 start-page: 706 issue: 1 year: 2023 end-page: 727 ident: CR46 article-title: Feature selection using binary monarch butterfly optimization publication-title: Appl Intell – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR13 article-title: The whale optimization algorithm publication-title: Adv Eng Softw – volume: 89 year: 2020 ident: CR89 article-title: Quantum based whale optimization algorithm for wrapper feature selection publication-title: Appl Soft Comput – volume: 78 start-page: 19725 issue: 18 year: 2022 end-page: 19753 ident: CR4 article-title: Hybrid feature selection based on SLI and genetic algorithm for microarray datasets publication-title: J Supercomput – volume: 97 start-page: 106761 year: 2020 ident: CR58 article-title: MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl Soft Comput – volume: 122 start-page: 108307 year: 2022 ident: CR73 article-title: Feature wise normalization: an effective way of normalizing data publication-title: Pattern Recogn – ident: CR93 – year: 2018 ident: CR64 publication-title: Feature engineering for machine learning and data analytics – volume: 184 start-page: 102 year: 2019 end-page: 111 ident: CR19 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets publication-title: Chemom Intell Lab Syst – ident: CR87 – volume: 12 start-page: 7637 issue: 7 year: 2021 end-page: 7665 ident: CR72 article-title: Binary -hill climbing optimizer with s-shape transfer function for feature selection publication-title: J Ambient Intell Humaniz Comput – volume: 31 start-page: 1995 year: 2019 end-page: 2014 ident: CR45 article-title: Monarch butterfly optimization publication-title: Neural Comput Appl – volume: 32 start-page: 112 year: 2014 end-page: 123 ident: CR31 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng Appl Artif Intell – volume: 43 start-page: 1223 issue: 6 year: 2006 end-page: 1232 ident: CR77 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: J Appl Ecol – volume: 54 start-page: 100671 year: 2020 ident: CR25 article-title: A better balance in metaheuristic algorithms: does it exist? publication-title: Swarm Evol Comput – volume: 134 start-page: 109987 year: 2023 ident: CR6 article-title: A feature selection approach based on NSGA-II with ReliefF publication-title: Appl Soft Comput – volume: 20 start-page: 2331 issue: 5 year: 2023 end-page: 2358 ident: CR57 article-title: Discrete improved grey wolf optimizer for community detection publication-title: J Bionic Eng – year: 2013 ident: CR74 publication-title: Introduction to statistical pattern recognition – volume: 59 start-page: 182 year: 2017 end-page: 196 ident: CR71 article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO publication-title: Appl Soft Comput – volume: 24 start-page: 18463 issue: 24 year: 2020 end-page: 18475 ident: CR90 article-title: Differential evolution and ACO based global optimal feature selection with fuzzy rough set for cancer data classification publication-title: Soft Comput – volume: 28 start-page: 2947 year: 2017 end-page: 2958 ident: CR85 article-title: Sine-cosine algorithm for feature selection with elitism strategy and new updating mechanism publication-title: Neural Comput Appl – ident: CR75 – volume: 85 start-page: 105073 year: 2023 ident: CR15 article-title: An improved hybrid chameleon swarm algorithm for feature selection in medical diagnosis publication-title: Biomed Signal Process Control – volume: 12 start-page: 1869 issue: 2 year: 2022 end-page: 1880 ident: CR99 article-title: A new proactive feature selection model based on the enhanced optimization algorithms to detect DRDoS attacks publication-title: Int J Electr Comput Eng – volume: 8 start-page: 1130 issue: 10 year: 2019 ident: CR81 article-title: A new quadratic binary Harris hawk optimization for feature selection publication-title: Electronics – volume: 112 start-page: 18 year: 2020 end-page: 40 ident: CR41 article-title: Augmented whale feature selection for IoT attacks: structure, analysis and applications publication-title: Future Gener Comput Syst – volume: 53 start-page: 13224 issue: 11 year: 2023 end-page: 13260 ident: CR2 article-title: Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection publication-title: Appl Intell – ident: CR78 – volume: 139 year: 2020 ident: CR82 article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection publication-title: Expert Syst Appl – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: CR26 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput – year: 2022 ident: CR42 article-title: Intrusion detection system for IoT based on deep learning and modified reptile search algorithm publication-title: Comput Intell Neurosci doi: 10.1155/2022/6473507 – volume: 139 start-page: 110237 year: 2023 ident: CR1 article-title: Mining online reviews for ranking products: a novel method based on multiple classifiers and interval-valued intuitionistic fuzzy TOPSIS publication-title: Appl Soft Comput – volume: 116 year: 2021 ident: CR29 article-title: A two-stage hybrid ant colony optimization for high-dimensional feature selection publication-title: Pattern Recogn – volume: 84 year: 2024 ident: CR70 article-title: Multi-operator opposition-based learning with the neighborhood structure for numerical optimization problems and its applications publication-title: Swarm Evol Comput – volume: 35 start-page: 247 issue: 3 year: 2021 end-page: 263 ident: CR86 article-title: General learning equilibrium optimizer: a new feature selection method for biological data classification publication-title: Appl Artif Intell – volume: 37 start-page: 509 issue: 1 year: 2021 end-page: 532 ident: CR56 article-title: I-GWO and Ex-GWO: improved algorithms of the grey wolf optimizer to solve global optimization problems publication-title: Eng Comput – volume: 214 start-page: 119130 year: 2023 ident: CR5 article-title: SemiACO: a semi-supervised feature selection based on ant colony optimization publication-title: Expert Syst Appl – volume: 142 year: 2023 ident: CR84 article-title: A local opposition-learning golden-sine grey wolf optimization algorithm for feature selection in data classification publication-title: Appl Soft Comput – volume: 32 start-page: 3005 issue: 7 year: 2020 end-page: 3019 ident: CR92 article-title: Top-k feature selection framework using robust 0–1 integer programming publication-title: IEEE Trans Neural Netw Learn Syst – volume: 10 start-page: 1929 issue: 11 year: 2022 ident: CR97 article-title: Binary aquila optimizer for selecting effective features from medical data: a covid-19 case study publication-title: Mathematics – volume: 260 start-page: 110111 year: 2023 ident: CR28 article-title: A hybrid artificial immune optimization for high-dimensional feature selection publication-title: Knowl Based Syst – ident: CR98 – ident: CR23 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR47 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener Comput Syst – volume: 25 start-page: 10167 issue: 15 year: 2021 end-page: 10180 ident: CR66 article-title: Exploratory cuckoo search for solving single-objective optimization problems publication-title: Soft Comput – volume: 48 start-page: 2798 issue: 9 year: 2015 end-page: 2811 ident: CR32 article-title: Relevance-redundancy feature selection based on ant colony optimization publication-title: Pattern Recogn – ident: CR48 – volume: 52 start-page: 2651 year: 2019 end-page: 2683 ident: CR33 article-title: Recent studies on optimisation method of grey wolf optimiser (GWO): a review (2014–2017) publication-title: Artif Intell Rev – volume: 145 start-page: 113122 year: 2020 ident: CR17 article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Syst Appl – volume: 56 start-page: 4801 issue: 6 year: 2023 end-page: 4858 ident: CR38 article-title: A comprehensive survey on the sine-cosine optimization algorithm publication-title: Artif Intell Rev – volume: 45 start-page: 10875 issue: 12 year: 2020 end-page: 10890 ident: CR7 article-title: Binary JAYA algorithm with adaptive mutation for feature selection publication-title: Arab J Sci Eng – ident: CR62 – volume: 149 start-page: 113338 year: 2020 ident: CR20 article-title: Chimp optimization algorithm publication-title: Expert Syst Appl – volume: 12 start-page: 7637 issue: 7 year: 2021 ident: 2308_CR72 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02484-z – volume: 21 start-page: 91 issue: 1 year: 2004 ident: 2308_CR96 publication-title: Eng Comput doi: 10.1108/02644400410511864 – volume: 135 year: 2023 ident: 2308_CR34 publication-title: Appl Soft Comput – ident: 2308_CR69 doi: 10.1109/CIMCA.2005.1631345 – volume: 32 start-page: 112 year: 2014 ident: 2308_CR31 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.03.007 – volume: 35 start-page: 247 issue: 3 year: 2021 ident: 2308_CR86 publication-title: Appl Artif Intell doi: 10.1080/08839514.2020.1861407 – ident: 2308_CR93 doi: 10.1145/1835804.1835848 – volume: 90 start-page: 103479 year: 2020 ident: 2308_CR35 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103479 – volume: 243 year: 2022 ident: 2308_CR40 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.108457 – volume: 28 start-page: 2947 year: 2017 ident: 2308_CR85 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2837-7 – volume: 23 start-page: 715 year: 2019 ident: 2308_CR26 publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – volume: 24 start-page: 18463 issue: 24 year: 2020 ident: 2308_CR90 publication-title: Soft Comput doi: 10.1007/s00500-020-05070-9 – volume: 52 start-page: 17217 issue: 15 year: 2022 ident: 2308_CR49 publication-title: Appl Intell doi: 10.1007/s10489-022-03269-x – volume: 141 year: 2022 ident: 2308_CR53 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105152 – volume: 214 start-page: 119130 year: 2023 ident: 2308_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119130 – volume: 116 year: 2021 ident: 2308_CR29 publication-title: Pattern Recogn – volume: 23 start-page: 13489 issue: 24 year: 2019 ident: 2308_CR65 publication-title: Soft Comput doi: 10.1007/s00500-019-03887-7 – volume: 95 start-page: 51 year: 2016 ident: 2308_CR13 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – year: 2022 ident: 2308_CR42 publication-title: Comput Intell Neurosci doi: 10.1155/2022/6473507 – volume: 20 start-page: 2331 issue: 5 year: 2023 ident: 2308_CR57 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00387-1 – volume: 79 start-page: 21265 issue: 18 year: 2023 ident: 2308_CR11 publication-title: J Supercomput doi: 10.1007/s11227-023-05444-4 – volume: 35 start-page: 1749 issue: 2 year: 2023 ident: 2308_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07836-8 – volume: 14 start-page: 1 year: 2013 ident: 2308_CR76 publication-title: BMC Bioinform – volume: 171 start-page: 1843 year: 2018 ident: 2308_CR12 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.05.062 – volume: 52 start-page: 5457 issue: 5 year: 2022 ident: 2308_CR88 publication-title: Appl Intell doi: 10.1007/s10489-021-02524-x – volume: 97 start-page: 849 year: 2019 ident: 2308_CR47 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – ident: 2308_CR94 – volume: 78 start-page: 19725 issue: 18 year: 2022 ident: 2308_CR4 publication-title: J Supercomput doi: 10.1007/s11227-022-04650-w – volume: 10 start-page: 1929 issue: 11 year: 2022 ident: 2308_CR97 publication-title: Mathematics doi: 10.3390/math10111929 – volume: 35 start-page: 19427 issue: 26 year: 2023 ident: 2308_CR10 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08772-x – volume: 142 year: 2023 ident: 2308_CR84 publication-title: Appl Soft Comput – volume: 89 year: 2020 ident: 2308_CR89 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106092 – volume: 29 start-page: 17 year: 2013 ident: 2308_CR68 publication-title: Eng Comput doi: 10.1007/s00366-011-0241-y – volume: 4 start-page: 21 issue: 03 year: 2018 ident: 2308_CR100 publication-title: Jordan J Comput Inf Technol – ident: 2308_CR48 doi: 10.1007/978-981-32-9990-0_12 – ident: 2308_CR60 doi: 10.1007/978-3-642-00267-0_14 – ident: 2308_CR78 doi: 10.1007/978-981-15-3290-0_19 – volume: 10 start-page: 1756 year: 2021 ident: 2308_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3138403 – volume: 122 start-page: 108307 year: 2022 ident: 2308_CR73 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108307 – volume: 54 start-page: 100671 year: 2020 ident: 2308_CR25 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100671 – volume: 140 start-page: 112898 year: 2020 ident: 2308_CR80 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112898 – volume-title: Introduction to high-dimensional statistics year: 2021 ident: 2308_CR18 doi: 10.1201/9781003158745 – volume: 139 start-page: 110237 year: 2023 ident: 2308_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110237 – volume: 149 start-page: 113338 year: 2020 ident: 2308_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113338 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 2308_CR24 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2480741.2480752 – volume: 32 start-page: 11195 year: 2020 ident: 2308_CR43 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04629-4 – volume: 75 start-page: 102201 year: 2023 ident: 2308_CR9 publication-title: J Comput Sci doi: 10.1016/j.jocs.2023.102201 – volume: 54 start-page: 2567 issue: 4 year: 2021 ident: 2308_CR39 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09909-3 – volume: 43 start-page: 1223 issue: 6 year: 2006 ident: 2308_CR77 publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2006.01214.x – volume: 48 start-page: 2798 issue: 9 year: 2015 ident: 2308_CR32 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.03.020 – volume: 121 start-page: 233 year: 2019 ident: 2308_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.022 – volume-title: Feature engineering for machine learning and data analytics year: 2018 ident: 2308_CR64 – volume: 8 start-page: 1130 issue: 10 year: 2019 ident: 2308_CR81 publication-title: Electronics doi: 10.3390/electronics8101130 – volume: 29 start-page: 4967 issue: 10 year: 2018 ident: 2308_CR95 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2785403 – volume: 56 start-page: 4801 issue: 6 year: 2023 ident: 2308_CR38 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10277-3 – volume: 147 start-page: 105675 year: 2022 ident: 2308_CR54 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105675 – volume: 184 start-page: 102 year: 2019 ident: 2308_CR19 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 – volume: 97 start-page: 106761 year: 2020 ident: 2308_CR58 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106761 – volume: 112 start-page: 18 year: 2020 ident: 2308_CR41 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.05.020 – volume: 260 start-page: 110111 year: 2023 ident: 2308_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110111 – ident: 2308_CR62 – volume: 134 start-page: 109987 year: 2023 ident: 2308_CR6 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.109987 – volume: 14 start-page: 735 issue: 4 year: 2023 ident: 2308_CR51 publication-title: Evol Syst doi: 10.1007/s12530-022-09461-1 – volume: 45 start-page: 10875 issue: 12 year: 2020 ident: 2308_CR7 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04871-2 – volume: 85 start-page: 105073 year: 2023 ident: 2308_CR15 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105073 – volume: 34 start-page: 6427 issue: 8 year: 2022 ident: 2308_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06775-0 – volume: 139 year: 2020 ident: 2308_CR82 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112824 – volume: 52 start-page: 2651 year: 2019 ident: 2308_CR33 publication-title: Artif Intell Rev doi: 10.1007/s10462-018-9634-2 – volume: 25 start-page: 10167 issue: 15 year: 2021 ident: 2308_CR66 publication-title: Soft Comput doi: 10.1007/s00500-021-05939-3 – volume: 201 start-page: 117217 year: 2022 ident: 2308_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117217 – volume: 2020 start-page: 6502807 issue: 1 year: 2020 ident: 2308_CR79 publication-title: Comput Intell Neurosci – volume: 37 start-page: 509 issue: 1 year: 2021 ident: 2308_CR56 publication-title: Eng Comput doi: 10.1007/s00366-019-00837-7 – volume: 39 start-page: 3747 issue: 3 year: 2012 ident: 2308_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.073 – volume: 18 start-page: e0280006 issue: 1 year: 2023 ident: 2308_CR59 publication-title: PLoS ONE doi: 10.1371/journal.pone.0280006 – volume: 22 start-page: 73 issue: 4 year: 2022 ident: 2308_CR63 publication-title: Cybern Inf Technol – volume: 53 start-page: 706 issue: 1 year: 2023 ident: 2308_CR46 publication-title: Appl Intell doi: 10.1007/s10489-022-03554-9 – volume: 12 start-page: 8457 year: 2021 ident: 2308_CR55 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02580-0 – ident: 2308_CR98 doi: 10.1109/CCST.2019.8888419 – volume: 59 start-page: 182 year: 2017 ident: 2308_CR71 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.050 – volume: 61 start-page: 1041 year: 2017 ident: 2308_CR67 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.02.034 – volume: 56 start-page: 11675 issue: 10 year: 2023 ident: 2308_CR61 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10446-y – ident: 2308_CR87 doi: 10.4135/9781412985314 – volume: 12 start-page: 1869 issue: 2 year: 2022 ident: 2308_CR99 publication-title: Int J Electr Comput Eng – volume: 11 start-page: 496 year: 2019 ident: 2308_CR83 publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-018-0295-2 – volume: 235 start-page: 107625 year: 2022 ident: 2308_CR22 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107625 – volume-title: Introduction to statistical pattern recognition year: 2013 ident: 2308_CR74 – volume: 176 start-page: 114778 year: 2021 ident: 2308_CR50 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114778 – volume: 145 start-page: 113122 year: 2020 ident: 2308_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113122 – volume: 53 start-page: 13224 issue: 11 year: 2023 ident: 2308_CR2 publication-title: Appl Intell doi: 10.1007/s10489-022-04201-z – ident: 2308_CR75 doi: 10.3390/math10111942 – volume: 31 start-page: 1995 year: 2019 ident: 2308_CR45 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1923-y – volume: 8 start-page: 67799 year: 2020 ident: 2308_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985986 – volume: 96 start-page: 120 year: 2016 ident: 2308_CR37 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: 2308_CR23 doi: 10.1109/PICICT.2017.11 – volume: 32 start-page: 3005 issue: 7 year: 2020 ident: 2308_CR92 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3009209 – volume: 35 start-page: 20013 issue: 27 year: 2023 ident: 2308_CR14 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08812-6 – volume: 84 year: 2024 ident: 2308_CR70 publication-title: Swarm Evol Comput – ident: 2308_CR3 doi: 10.1109/ICCKE48569.2019.8965106 – year: 2024 ident: 2308_CR16 publication-title: J Bionic Eng doi: 10.1007/s42235-024-00558-8 – ident: 2308_CR44 doi: 10.1109/MED.2007.4433821 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3646007 |
Snippet | The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6107 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Complex Systems Complexity Computational Intelligence Continuity (mathematics) Control Datasets Engineering Feature selection Heuristic methods Integer programming Machine learning Mechatronics Methods Mutation Optimization Optimization algorithms Optimization techniques Original Article Pattern Recognition Performance enhancement Robotics Search methods Statistical analysis Statistical tests Systems Biology Transfer functions |
Title | Bi-objective feature selection in high-dimensional datasets using improved binary chimp optimization algorithm |
URI | https://link.springer.com/article/10.1007/s13042-024-02308-y https://www.proquest.com/docview/3121862724 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xcSmHqkArtqXIhx5A1JLXcWznuFuxICo4sRKcIn_CIsgikh7497WdhNAKDpwiOVYi-Y1nxvabZ4AfmdROM8tx8HUSs1wSrARxWFNjOdVC6iSmc3bOT-bs9DK_7IrC6p7t3h9JJk89FLvFlTcOMQXHvFnip1VYz8PaPRL55nTSW1E2jvoqQ5DNMpZ0pp53XggPbS0ZUXIZ1XjHXTXN67_5N2INaeh_J6cpIM0-wccuk0STFvpNWHHVFmy80Bfcgs1u5tZov5OXPtiGarrAS33bOjrkXVL2RHW6DyeAhBYVihrG2Ebd_1azA0Ueae2aGkWa_DVapJ0IZ5FO1bzI3IQWtAze574r60Tq7nr5uGhu7j_DfHZ08esEd7cuYEMFaXCuwjQunFA-t8ITKQzJHJVe64IrJgw33GbjjBvllQ0w50xTKZmlIfOiY-ezL7BWLSu3A4gbQmxBPLNCM8VZIanwIaFzBfeGKD6Cw35ky4dWXKMcZJQjDmXAoUw4lE8j2O0Hv-wmWl0GtAOKVFA2gp89IMPrt7_29X3dv8EHGm0iEVl2Ya15_OO-h3Sk0XuwPplNp-fxeXz1-2gvWeNfonTXxw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAcgBYqFgr4wAEErryOYzvHgloW-jh1pXKK_GwXaBY16aH8emzHIVDBoVcncuSZyczY_uYbgFeF1E4zy3HwdRKzUhKsBHFYU2M51ULqRKZzeMTnC_b5pDzJRWHtgHYfriSTpx6L3eLOG4eYgmPeLPHVbVhjYQ_OJrC28_HL_u5gR8UsMqyMYbYoWGKa-n32QngY6-GIksvIxzvL9TT__tDfMWtMRK_dnaaQtPcAFsNieiTKt-3LTm-bn9d4Hm-62odwP-eoaKc3qnW45ZoNuPcHc-EGrGef0KLXmbj6zSNo3i_xSn_tXSjyLnGGojZ12gnqR8sGRXZkbGNHgZ4NBEWEauu6FkUA_ilapjMOZ5FOdcLInIURtAp-7TwXjCL1_XR1sezOzh_DYm_3-MMc534O2FBBOlyq4CAqJ5QvrfBECkMKR6XXuuKKCcMNt8Ws4EZ5ZYMBlUxTKZmlIaejM-eLTZg0q8Y9AcQNIbYinlmhmeKsklT4kCq6intDFJ_C20Fj9Y-etqMeCZqjaOsg2jqJtr6awtag1Dr_wm0drChYBxWUTeHdoKPx8f9ne3qz11_Cnfnx4UF98Olo_xncpVHlCS6zBZPu4tI9D0lPp19kG_8FH7z02A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NU9UwEMB38DHj6EE-1PEpYg4edDSQl6ZJekTlAaKMB5nBUyef8FT6GFoO-NeTpK0FRg-O17TTTna3u9tk9xeAl5nUTjPLcfB1ErNcEqwEcVhTYznVQuoE0_l8wHcP2cej_OhaF3-qdu-3JNuehkhpqprNM-s3h8a3-BeOQ3zBMYeW-PIOLLIIZx_B4tbOt_3t3qaySaStDCE3y1iiTv1ehyE8jLWliZLLyOaddL01f37Rzfg1JKW39lFTeJougeon1lal_Ni4aPSG-XWL-fg_M1-GB13uirZaY1uBBVetwv1rRMNVWOl8RY1edUDr1w-hejfDc_29da3Iu8QSRXU6gSeYBZpVKFKTsY0nDbSUEBQrV2vX1CgW5h-jWVr7cBbp1D-MzEkYQfPg7067RlKkfh7Pz2fNyekjOJxuf32_i7tzHrChgjQ4V8FxFE4on1vhgxYNyRyVXuuCKyYMN9xmk4wb5ZUNhpUzTaVkloZcj06czx7DqJpX7gkgbgixBfHMCs0UZ4WkwocU0hXcG6L4GN702ivPWpxHOYCbo2jLINoyiba8HMNar-Cy-7TrMlhUsBQqKBvD215fw-W_P-3pv93-Au5--TAtP-0d7D-DezRqPFXRrMGoOb9wz0Mu1Oj1ztyvAHA0_bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-objective+feature+selection+in+high-dimensional+datasets+using+improved+binary+chimp+optimization+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Al-qudah%2C+Nour+Elhuda+A.&rft.au=Abed-alguni%2C+Bilal+H.&rft.au=Barhoush%2C+Malek&rft.date=2024-12-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=6107&rft.epage=6148&rft_id=info:doi/10.1007%2Fs13042-024-02308-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02308_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |