Bi-objective feature selection in high-dimensional datasets using improved binary chimp optimization algorithm

The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 12; pp. 6107 - 6148
Main Authors Al-qudah, Nour Elhuda A., Abed-alguni, Bilal H., Barhoush, Malek
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02308-y

Cover

Loading…
Abstract The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the β -hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and β -hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests.
AbstractList The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the β -hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and β -hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests.
The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires the combination of several search techniques. The Chimp Optimization Algorithm, known as ChOA, is a new meta-heuristic method inspired by the chimps’ individual intellect and sexual incentive in cooperative hunting. It is basically employed in solving complex continuous optimization problems, while its binary version is frequently utilized in solving difficult binary optimization problems. Both versions of ChOA are subject to premature convergence and are incapable of effectively solving high-dimensional optimization problems. This paper proposes the Binary Improved ChOA Algorithm (BICHOA) for solving the bi-objective, high-dimensional FS problems (i.e., high-dimensional FS problems that aim to maximize the classifier’s accuracy and minimize the number of selected features from a dataset). BICHOA improves the performance of ChOA using four new exploration and exploitation techniques. First, it employs the opposition-based learning approach to initially create a population of diverse binary feasible solutions. Second, it incorporates the Lévy mutation function in the main probabilistic update function of ChOA to boost its searching and exploring capabilities. Third, it uses an iterative exploration technique based on an exploratory local search method called the β-hill climbing algorithm. Finally, it employs a new binary time-varying transfer function to calculate binary feasible solutions from the continuous feasible solutions generated by the update equations of the ChOA and β-hill climbing algorithms. BICHOA’s performance was assessed and compared against six machine learning classifiers, five integer programming methods, and nine efficient popular optimization algorithms using 25 real-world high-dimensional datasets from various domains. According to the overall experimental findings, BICHOA scored the highest accuracy, best objective value, and fewest selected features for each of the 25 real-world high-dimensional datasets. Besides, the reliability of the experimental findings was established using Friedman and Wilcoxon statistical tests.
Author Abed-alguni, Bilal H.
Barhoush, Malek
Al-qudah, Nour Elhuda A.
Author_xml – sequence: 1
  givenname: Nour Elhuda A.
  surname: Al-qudah
  fullname: Al-qudah, Nour Elhuda A.
  organization: Department of Computer Science, Yarmouk University
– sequence: 2
  givenname: Bilal H.
  surname: Abed-alguni
  fullname: Abed-alguni, Bilal H.
  email: Bilal.h@yu.edu.jo
  organization: Department of Computer Science, Yarmouk University
– sequence: 3
  givenname: Malek
  surname: Barhoush
  fullname: Barhoush, Malek
  organization: Department of Information Technology (Cybersecurity Program), Yarmouk University
BookMark eNp9kF1LwzAYhYNMcM79Aa8CXlfz1Sa71OEXCN4oeBfSJG0z2nQm7WD-erNV9M5AyMvhnMOb5xzMfO8tAJcYXWOE-E3EFDGSIcLSpUhk-xMwx6IQmUDiY_Y7c3wGljFuUDoFohSROfB3LuvLjdWD21lYWTWMwcJo24PSe-g8bFzdZMZ11sekqBYaNahohwjH6HwNXbcN_c4aWDqvwh7qJimw3w6uc1_q2KLaug9uaLoLcFqpNtrlz7sA7w_3b-un7OX18Xl9-5JpwtGQ5YqRfGW5qnLDKyS4RtQSUZXlqlCM60IXhmJaaFUpUzKTs5IIwQzBjBJsK7oAV1NvWu1ztHGQm34MafkoKSaJB-GEJReZXDr0MQZbyW1wXfqDxEge0MoJrUxo5RGt3KcQnUIxmX1tw1_1P6lvwg6A1g
Cites_doi 10.1007/s42235-024-00558-8
10.1155/2022/6473507
10.1007/s12652-020-02484-z
10.1108/02644400410511864
10.1109/CIMCA.2005.1631345
10.1016/j.engappai.2014.03.007
10.1080/08839514.2020.1861407
10.1145/1835804.1835848
10.1016/j.engappai.2020.103479
10.1016/j.knosys.2022.108457
10.1007/s00521-017-2837-7
10.1007/s00500-018-3102-4
10.1007/s00500-020-05070-9
10.1007/s10489-022-03269-x
10.1016/j.compbiomed.2021.105152
10.1016/j.eswa.2022.119130
10.1007/s00500-019-03887-7
10.1016/j.advengsoft.2016.01.008
10.1007/s42235-023-00387-1
10.1007/s11227-023-05444-4
10.1007/s00521-022-07836-8
10.1016/j.enconman.2018.05.062
10.1007/s10489-021-02524-x
10.1016/j.future.2019.02.028
10.1007/s11227-022-04650-w
10.3390/math10111929
10.1007/s00521-023-08772-x
10.1016/j.asoc.2020.106092
10.1007/s00366-011-0241-y
10.1007/978-981-32-9990-0_12
10.1007/978-3-642-00267-0_14
10.1007/978-981-15-3290-0_19
10.1109/ACCESS.2021.3138403
10.1016/j.patcog.2021.108307
10.1016/j.swevo.2020.100671
10.1016/j.eswa.2019.112898
10.1201/9781003158745
10.1016/j.asoc.2023.110237
10.1016/j.eswa.2020.113338
10.1145/2480741.2480752
10.1007/s00521-019-04629-4
10.1016/j.jocs.2023.102201
10.1007/s10462-020-09909-3
10.1111/j.1365-2664.2006.01214.x
10.1016/j.patcog.2015.03.020
10.1016/j.eswa.2018.12.022
10.3390/electronics8101130
10.1109/TNNLS.2017.2785403
10.1007/s10462-022-10277-3
10.1016/j.compbiomed.2022.105675
10.1016/j.chemolab.2018.11.010
10.1016/j.asoc.2020.106761
10.1016/j.future.2020.05.020
10.1016/j.knosys.2022.110111
10.1016/j.asoc.2023.109987
10.1007/s12530-022-09461-1
10.1007/s13369-020-04871-2
10.1016/j.bspc.2023.105073
10.1007/s00521-021-06775-0
10.1016/j.eswa.2019.112824
10.1007/s10462-018-9634-2
10.1007/s00500-021-05939-3
10.1016/j.eswa.2022.117217
10.1007/s00366-019-00837-7
10.1016/j.eswa.2011.09.073
10.1371/journal.pone.0280006
10.1007/s10489-022-03554-9
10.1007/s12652-020-02580-0
10.1109/CCST.2019.8888419
10.1016/j.asoc.2017.04.050
10.1016/j.asoc.2017.02.034
10.1007/s10462-023-10446-y
10.4135/9781412985314
10.1007/s12539-018-0295-2
10.1016/j.knosys.2021.107625
10.1016/j.eswa.2021.114778
10.1016/j.eswa.2019.113122
10.1007/s10489-022-04201-z
10.3390/math10111942
10.1007/s00521-015-1923-y
10.1109/ACCESS.2020.2985986
10.1016/j.knosys.2015.12.022
10.1109/PICICT.2017.11
10.1109/TNNLS.2020.3009209
10.1007/s00521-023-08812-6
10.1109/ICCKE48569.2019.8965106
10.1109/MED.2007.4433821
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02308-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 6148
ExternalDocumentID 10_1007_s13042_024_02308_y
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c270t-5a4259e7af5d7f087c03e28fbb96a47c6c6d3136cafadb4d54b2884d214321ef3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Sun Jul 13 05:39:02 EDT 2025
Tue Jul 01 03:51:05 EDT 2025
Fri Feb 21 02:36:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords High-dimensional datasets
Feature selection
Chimp optimization algorithm
Hill climbing algorithm
Opposition-based learning
Lévy flight
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-5a4259e7af5d7f087c03e28fbb96a47c6c6d3136cafadb4d54b2884d214321ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3121862724
PQPubID 2043904
PageCount 42
ParticipantIDs proquest_journals_3121862724
crossref_primary_10_1007_s13042_024_02308_y
springer_journals_10_1007_s13042_024_02308_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Singh, Singh (CR73) 2022; 122
Allouche, Tsoar, Kadmon (CR77) 2006; 43
Gandomi, Yang, Alavi (CR68) 2013; 29
Xue, Zhu, Neri (CR6) 2023; 134
Sun, Si, Zhao, Jiucheng, Lin, Lv (CR46) 2023; 53
Meenachi, Ramakrishnan (CR90) 2020; 24
Mafarja, Thaher, Too, Chantar, Turabieh, Houssein, Emam (CR36) 2023; 35
Guo, Wang, Guo (CR79) 2020; 2020
Shehab, Khader, Al-Betar (CR67) 2017; 61
Li, Gao, Li (CR70) 2024; 84
Barhoush, Abed-alguni, Al-qudah (CR11) 2023; 79
CR48
Al-Betar, Aljarah, Awadallah, Faris, Mirjalili (CR65) 2019; 23
CR44
Mirjalili (CR37) 2016; 96
Blagus, Lusa (CR76) 2013; 14
Zhang, Fan, Wang, Zhou, Tao (CR92) 2020; 32
Shi, Miao, Wang, Zhang, Niu (CR95) 2018; 29
Khishe, Mosavi (CR20) 2020; 149
Piri, Mohapatra, Pradhan, Acharya, Patra (CR91) 2021; 10
Abed-alguni, Alawad, Barhoush, Hammad (CR66) 2021; 25
Braik, Hammouri, Atwan, Al-Betar, Awadallah (CR40) 2022; 243
Tabakhi, Moradi, Akhlaghian (CR31) 2014; 32
Nadimi-Shahraki, Taghian, Mirjalili, Faris (CR58) 2020; 97
Nadimi-Shahraki, Moeini, Taghian, Mirjalili (CR57) 2023; 20
Abed-Alguni, Alawad, Al-Betar, Paul (CR2) 2023; 53
Mohamed, Braik, Al-Betar, Awadallah (CR16) 2024
Balakrishnan, Dhanalakshmi, Akila, Sinha (CR51) 2023; 14
Nuiaa, Manickam, Alsaeedi, Alomari (CR99) 2022; 12
Li, Chen, Zhang (CR1) 2023; 139
Awadallah, Al-Betar, Hammouri, Alomari (CR7) 2020; 45
Seyyedabbasi, Kiani (CR56) 2021; 37
Abed-alguni, AL-Jarah (CR9) 2023; 75
CR69
Pant, Zaheer, Garcia-Hernandez, Abraham (CR35) 2020; 90
Faris, Heidari, Ala’M, Mafarja, Aljarah, Eshtay, Mirjalili (CR80) 2020; 140
Tabakhi, Moradi (CR32) 2015; 48
CR62
Zhang, Yang, Biao, Liu, Li (CR8) 2020; 8
Tubishat, Idris, Shuib, Abushariah, Mirjalili (CR17) 2020; 145
Abualigah, Shehab, Alshinwan, Alabool (CR43) 2020; 32
CR60
Abdel-Basset, Mohamed, Jameel, Abouhawwash (CR61) 2023; 56
Ma, Zhou, Zhu, Li, Jiao (CR29) 2021; 116
Mirjalili, Lewis (CR13) 2016; 95
Yan, Ma, Luo, Patel (CR19) 2019; 184
Agrawal, Kaur, Sharma (CR89) 2020; 89
Awadallah, Al-Betar, Braik, Hammouri, Doush, Zitar (CR54) 2022; 147
Fukunaga (CR74) 2013
Hussain, Neggaz, Zhu, Houssein (CR50) 2021; 176
Abualigah, Diabat (CR39) 2021; 54
CR78
Kaidi, Khishe, Mohammadi (CR22) 2022; 235
Rizk-Allah, Hassanien (CR38) 2023; 56
CR75
Too, Abdullah, Saad (CR81) 2019; 8
Abed-alguni, Barhoush (CR100) 2018; 4
Pan, Chen, Xiong (CR34) 2023; 135
Kabir, Shahjahan, Murase (CR30) 2012; 39
CR3
Karimi, Dowlatshahi, Hashemi (CR5) 2023; 214
Shambour, Abusnaina, Alsalibi (CR83) 2019; 11
Alhenawi, Alazzam, Al-Sayyed, AbuAlghanam, Adwan (CR63) 2022; 22
Abed-Alguni, Paul, Hammad (CR49) 2022; 52
CR87
Hatta, Zain, Roselina Sallehuddin, Shayfull (CR33) 2019; 52
Sayed, Nassef, Badr, Farag (CR52) 2019; 121
Islam, Li, Mei (CR71) 2017; 59
Braik, Hammouri, Awadallah, Al-Betar, Khtatneh (CR15) 2023; 85
Awadallah, Hammouri, Al-Betar, Braik, Elaziz (CR53) 2022; 141
Zhang, Sun, Tsang, Ford (CR96) 2004; 21
Abdel-Basset, El-Shahat, El-Henawy, De Victor Hugo, Albuquerque (CR82) 2020; 139
Zhu, Li, Li (CR28) 2023; 260
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR47) 2019; 97
Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (CR25) 2020; 54
Nadimi-Shahraki, Taghian, Mirjalili, Abualigah (CR97) 2022; 10
Dahou, Elaziz, Chelloug, Awadallah, Al-Betar, Al-Qaness, Forestiero (CR42) 2022
CR98
Giraud (CR18) 2021
Sindhu, Ngadiran, Yacob, Zahri, Hariharan (CR85) 2017; 28
CR94
CR93
Dong, Liu (CR64) 2018
Too, Mirjalili (CR86) 2021; 35
Wang, Deb, Cui (CR45) 2019; 31
Mafarja, Heidari, Habib, Faris, Thaher, Aljarah (CR41) 2020; 112
Abasabadi, Nematzadeh, Motameni, Akbari (CR4) 2022; 78
Elaziz, Oliva (CR12) 2018; 171
Črepinšek, Liu, Mernik (CR24) 2013; 45
Dhiman, Garg, Nagar, Kumar, Dehghani (CR55) 2021; 12
CR23
Alawad, Abed-alguni, Al-Betar, Jaradat (CR10) 2023; 35
Awadallah, Braik, Al-Betar, Doush (CR14) 2023; 35
Nadimi-Shahraki, Taghian, Zamani, Mirjalili, Elaziz (CR59) 2023; 18
Long, Ming, Jiao, Tiebin, Tang, Cai (CR27) 2022; 201
Pashaei, Pashaei (CR21) 2022; 34
Zhou, Wang, Zhu (CR88) 2022; 52
Al-Betar, Hammouri, Awadallah, Doush (CR72) 2021; 12
Arora, Singh (CR26) 2019; 23
Li (CR84) 2023; 142
MM Kabir (2308_CR30) 2012; 39
MKY Shambour (2308_CR83) 2019; 11
O Allouche (2308_CR77) 2006; 43
MH Nadimi-Shahraki (2308_CR58) 2020; 97
S Guo (2308_CR79) 2020; 2020
2308_CR98
R Blagus (2308_CR76) 2013; 14
2308_CR94
MA Awadallah (2308_CR7) 2020; 45
B Morales-Castañeda (2308_CR25) 2020; 54
MA Al-Betar (2308_CR65) 2019; 23
G Dong (2308_CR64) 2018
L Abualigah (2308_CR39) 2021; 54
S Mirjalili (2308_CR13) 2016; 95
H Zhou (2308_CR88) 2022; 52
2308_CR23
MS Braik (2308_CR15) 2023; 85
M Tubishat (2308_CR17) 2020; 145
M Abdel-Basset (2308_CR61) 2023; 56
AH Gandomi (2308_CR68) 2013; 29
BH Abed-Alguni (2308_CR2) 2023; 53
BH Abed-Alguni (2308_CR49) 2022; 52
K Fukunaga (2308_CR74) 2013
S Tabakhi (2308_CR31) 2014; 32
M Abdel-Basset (2308_CR82) 2020; 139
BH Abed-alguni (2308_CR66) 2021; 25
J Li (2308_CR70) 2024; 84
G-G Wang (2308_CR45) 2019; 31
MH Nadimi-Shahraki (2308_CR59) 2023; 18
K Li (2308_CR1) 2023; 139
M Shehab (2308_CR67) 2017; 61
MH Nadimi-Shahraki (2308_CR97) 2022; 10
S Abasabadi (2308_CR4) 2022; 78
2308_CR78
2308_CR75
MA Elaziz (2308_CR12) 2018; 171
MJ Islam (2308_CR71) 2017; 59
B Zhang (2308_CR8) 2020; 8
L Abualigah (2308_CR43) 2020; 32
BH Abed-alguni (2308_CR9) 2023; 75
M Khishe (2308_CR20) 2020; 149
S Mirjalili (2308_CR37) 2016; 96
A Dahou (2308_CR42) 2022
W Kaidi (2308_CR22) 2022; 235
J Too (2308_CR81) 2019; 8
NM Hatta (2308_CR33) 2019; 52
J Piri (2308_CR91) 2021; 10
MA Awadallah (2308_CR54) 2022; 147
2308_CR87
2308_CR3
2308_CR93
RR Nuiaa (2308_CR99) 2022; 12
G Dhiman (2308_CR55) 2021; 12
BH Abed-alguni (2308_CR100) 2018; 4
C Giraud (2308_CR18) 2021
W Long (2308_CR27) 2022; 201
M Mafarja (2308_CR41) 2020; 112
Y Zhu (2308_CR28) 2023; 260
RM Rizk-Allah (2308_CR38) 2023; 56
RK Agrawal (2308_CR89) 2020; 89
S Tabakhi (2308_CR32) 2015; 48
2308_CR60
K Balakrishnan (2308_CR51) 2023; 14
EA Mohamed (2308_CR16) 2024
H Pan (2308_CR34) 2023; 135
D Singh (2308_CR73) 2022; 122
Y Shi (2308_CR95) 2018; 29
M Črepinšek (2308_CR24) 2013; 45
2308_CR69
MA Awadallah (2308_CR53) 2022; 141
Z Li (2308_CR84) 2023; 142
MA Al-Betar (2308_CR72) 2021; 12
M Barhoush (2308_CR11) 2023; 79
2308_CR62
Q Zhang (2308_CR96) 2004; 21
K Hussain (2308_CR50) 2021; 176
E Pashaei (2308_CR21) 2022; 34
H Faris (2308_CR80) 2020; 140
E Alhenawi (2308_CR63) 2022; 22
S Arora (2308_CR26) 2019; 23
M Mafarja (2308_CR36) 2023; 35
X Zhang (2308_CR92) 2020; 32
F Karimi (2308_CR5) 2023; 214
J Too (2308_CR86) 2021; 35
NA Alawad (2308_CR10) 2023; 35
W Ma (2308_CR29) 2021; 116
S Sayed (2308_CR52) 2019; 121
MA Awadallah (2308_CR14) 2023; 35
AA Heidari (2308_CR47) 2019; 97
R Sindhu (2308_CR85) 2017; 28
MH Nadimi-Shahraki (2308_CR57) 2023; 20
Yu Xue (2308_CR6) 2023; 134
2308_CR48
L Sun (2308_CR46) 2023; 53
L Meenachi (2308_CR90) 2020; 24
C Yan (2308_CR19) 2019; 184
2308_CR44
M Braik (2308_CR40) 2022; 243
A Seyyedabbasi (2308_CR56) 2021; 37
M Pant (2308_CR35) 2020; 90
References_xml – volume: 243
  year: 2022
  ident: CR40
  article-title: White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl Based Syst
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: CR68
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng Comput
– volume: 141
  year: 2022
  ident: CR53
  article-title: Binary horse herd optimization algorithm with crossover operators for feature selection
  publication-title: Comput Biol Med
– volume: 56
  start-page: 11675
  issue: 10
  year: 2023
  end-page: 11738
  ident: CR61
  article-title: Spider wasp optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Artif Intell Rev
– volume: 12
  start-page: 8457
  year: 2021
  end-page: 8482
  ident: CR55
  article-title: A novel algorithm for global optimization: rat swarm optimizer
  publication-title: J Ambient Intell Humaniz Comput
– volume: 90
  start-page: 103479
  year: 2020
  ident: CR35
  article-title: Differential evolution: a review of more than two decades of research
  publication-title: Eng Appl Artif Intell
– volume: 147
  start-page: 105675
  year: 2022
  ident: CR54
  article-title: An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection
  publication-title: Comput Biol Med
– volume: 61
  start-page: 1041
  year: 2017
  end-page: 1059
  ident: CR67
  article-title: A survey on applications and variants of the cuckoo search algorithm
  publication-title: Appl Soft Comput
– volume: 2020
  start-page: 6502807
  issue: 1
  year: 2020
  ident: CR79
  article-title: Z-shaped transfer functions for binary particle swarm optimization algorithm
  publication-title: Comput Intell Neurosci
– volume: 52
  start-page: 5457
  issue: 5
  year: 2022
  end-page: 5474
  ident: CR88
  article-title: Feature selection based on mutual information with correlation coefficient
  publication-title: Appl Intell
– volume: 135
  year: 2023
  ident: CR34
  article-title: A high-dimensional feature selection method based on modified gray wolf optimization
  publication-title: Appl Soft Comput
– volume: 52
  start-page: 17217
  issue: 15
  year: 2022
  end-page: 17236
  ident: CR49
  article-title: Improved salp swarm algorithm for solving single-objective continuous optimization problems
  publication-title: Appl Intell
– volume: 22
  start-page: 73
  issue: 4
  year: 2022
  end-page: 90
  ident: CR63
  article-title: Hybrid feature selection method for intrusion detection systems based on an improved intelligent water drop algorithm
  publication-title: Cybern Inf Technol
– volume: 35
  start-page: 19427
  issue: 26
  year: 2023
  end-page: 19451
  ident: CR10
  article-title: Binary improved white shark algorithm for intrusion detection systems
  publication-title: Neural Comput Appl
– volume: 35
  start-page: 1749
  issue: 2
  year: 2023
  end-page: 1775
  ident: CR36
  article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification
  publication-title: Neural Comput Appl
– ident: CR60
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  end-page: 33
  ident: CR24
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput Surv (CSUR)
– volume: 176
  start-page: 114778
  year: 2021
  ident: CR50
  article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
  publication-title: Expert Syst Appl
– volume: 39
  start-page: 3747
  issue: 3
  year: 2012
  end-page: 3763
  ident: CR30
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Syst Appl
– volume: 54
  start-page: 2567
  issue: 4
  year: 2021
  end-page: 2608
  ident: CR39
  article-title: Advances in sine cosine algorithm: a comprehensive survey
  publication-title: Artif Intell Rev
– year: 2024
  ident: CR16
  article-title: Boosted spider wasp optimizer for high-dimensional feature selection
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-024-00558-8
– volume: 235
  start-page: 107625
  year: 2022
  ident: CR22
  article-title: Dynamic levy flight chimp optimization
  publication-title: Knowl Based Syst
– volume: 18
  start-page: e0280006
  issue: 1
  year: 2023
  ident: CR59
  article-title: MMKE: multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems
  publication-title: PLoS ONE
– year: 2021
  ident: CR18
  publication-title: Introduction to high-dimensional statistics
– volume: 8
  start-page: 67799
  year: 2020
  end-page: 67812
  ident: CR8
  article-title: OEbBOA: a novel improved binary butterfly optimization approaches with various strategies for feature selection
  publication-title: IEEE Access
– volume: 32
  start-page: 11195
  year: 2020
  end-page: 11215
  ident: CR43
  article-title: Salp swarm algorithm: a comprehensive survey
  publication-title: Neural Comput Appl
– volume: 14
  start-page: 735
  issue: 4
  year: 2023
  end-page: 746
  ident: CR51
  article-title: Improved equilibrium optimization based on levy flight approach for feature selection
  publication-title: Evol Syst
– volume: 21
  start-page: 91
  issue: 1
  year: 2004
  end-page: 107
  ident: CR96
  article-title: Hybrid estimation of distribution algorithm for global optimization
  publication-title: Eng Comput
– volume: 201
  start-page: 117217
  year: 2022
  ident: CR27
  article-title: A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection
  publication-title: Expert Syst Appl
– volume: 140
  start-page: 112898
  year: 2020
  ident: CR80
  article-title: Time-varying hierarchical chains of salps with random weight networks for feature selection
  publication-title: Expert Syst Appl
– volume: 75
  start-page: 102201
  year: 2023
  ident: CR9
  article-title: IBJA: an improved binary DJaya algorithm for feature selection
  publication-title: J Comput Sci
– volume: 29
  start-page: 4967
  issue: 10
  year: 2018
  end-page: 4982
  ident: CR95
  article-title: Feature selection with ell\_ regularization
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 11
  start-page: 496
  year: 2019
  end-page: 507
  ident: CR83
  article-title: Modified global flower pollination algorithm and its application for optimization problems
  publication-title: Interdiscip Sci Comput Life Sci
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR37
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl Based Syst
– volume: 171
  start-page: 1843
  year: 2018
  end-page: 1859
  ident: CR12
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Convers Manag
– volume: 4
  start-page: 21
  issue: 03
  year: 2018
  ident: CR100
  article-title: Distributed grey wolf optimizer for numerical optimization problems
  publication-title: Jordan J Comput Inf Technol
– volume: 35
  start-page: 20013
  issue: 27
  year: 2023
  end-page: 20068
  ident: CR14
  article-title: An enhanced binary artificial rabbits optimization for feature selection in medical diagnosis
  publication-title: Neural Comput Appl
– ident: CR69
– ident: CR94
– ident: CR44
– volume: 34
  start-page: 6427
  issue: 8
  year: 2022
  end-page: 6451
  ident: CR21
  article-title: An efficient binary chimp optimization algorithm for feature selection in biomedical data classification
  publication-title: Neural Comput Appl
– ident: CR3
– volume: 10
  start-page: 1756
  year: 2021
  end-page: 1774
  ident: CR91
  article-title: A binary multi-objective chimp optimizer with dual archive for feature selection in the healthcare domain
  publication-title: IEEE Access
– volume: 79
  start-page: 21265
  issue: 18
  year: 2023
  end-page: 21309
  ident: CR11
  article-title: Improved discrete salp swarm algorithm using exploration and exploitation techniques for feature selection in intrusion detection systems
  publication-title: J Supercomput
– volume: 121
  start-page: 233
  year: 2019
  end-page: 243
  ident: CR52
  article-title: A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets
  publication-title: Expert Syst Appl
– volume: 23
  start-page: 13489
  issue: 24
  year: 2019
  end-page: 13512
  ident: CR65
  article-title: Adaptive -hill climbing for optimization
  publication-title: Soft Comput
– volume: 14
  start-page: 1
  year: 2013
  end-page: 16
  ident: CR76
  article-title: Smote for high-dimensional class-imbalanced data
  publication-title: BMC Bioinform
– volume: 53
  start-page: 706
  issue: 1
  year: 2023
  end-page: 727
  ident: CR46
  article-title: Feature selection using binary monarch butterfly optimization
  publication-title: Appl Intell
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR13
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 89
  year: 2020
  ident: CR89
  article-title: Quantum based whale optimization algorithm for wrapper feature selection
  publication-title: Appl Soft Comput
– volume: 78
  start-page: 19725
  issue: 18
  year: 2022
  end-page: 19753
  ident: CR4
  article-title: Hybrid feature selection based on SLI and genetic algorithm for microarray datasets
  publication-title: J Supercomput
– volume: 97
  start-page: 106761
  year: 2020
  ident: CR58
  article-title: MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Appl Soft Comput
– volume: 122
  start-page: 108307
  year: 2022
  ident: CR73
  article-title: Feature wise normalization: an effective way of normalizing data
  publication-title: Pattern Recogn
– ident: CR93
– year: 2018
  ident: CR64
  publication-title: Feature engineering for machine learning and data analytics
– volume: 184
  start-page: 102
  year: 2019
  end-page: 111
  ident: CR19
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets
  publication-title: Chemom Intell Lab Syst
– ident: CR87
– volume: 12
  start-page: 7637
  issue: 7
  year: 2021
  end-page: 7665
  ident: CR72
  article-title: Binary -hill climbing optimizer with s-shape transfer function for feature selection
  publication-title: J Ambient Intell Humaniz Comput
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: CR45
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput Appl
– volume: 32
  start-page: 112
  year: 2014
  end-page: 123
  ident: CR31
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng Appl Artif Intell
– volume: 43
  start-page: 1223
  issue: 6
  year: 2006
  end-page: 1232
  ident: CR77
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: J Appl Ecol
– volume: 54
  start-page: 100671
  year: 2020
  ident: CR25
  article-title: A better balance in metaheuristic algorithms: does it exist?
  publication-title: Swarm Evol Comput
– volume: 134
  start-page: 109987
  year: 2023
  ident: CR6
  article-title: A feature selection approach based on NSGA-II with ReliefF
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 2331
  issue: 5
  year: 2023
  end-page: 2358
  ident: CR57
  article-title: Discrete improved grey wolf optimizer for community detection
  publication-title: J Bionic Eng
– year: 2013
  ident: CR74
  publication-title: Introduction to statistical pattern recognition
– volume: 59
  start-page: 182
  year: 2017
  end-page: 196
  ident: CR71
  article-title: A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO
  publication-title: Appl Soft Comput
– volume: 24
  start-page: 18463
  issue: 24
  year: 2020
  end-page: 18475
  ident: CR90
  article-title: Differential evolution and ACO based global optimal feature selection with fuzzy rough set for cancer data classification
  publication-title: Soft Comput
– volume: 28
  start-page: 2947
  year: 2017
  end-page: 2958
  ident: CR85
  article-title: Sine-cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput Appl
– ident: CR75
– volume: 85
  start-page: 105073
  year: 2023
  ident: CR15
  article-title: An improved hybrid chameleon swarm algorithm for feature selection in medical diagnosis
  publication-title: Biomed Signal Process Control
– volume: 12
  start-page: 1869
  issue: 2
  year: 2022
  end-page: 1880
  ident: CR99
  article-title: A new proactive feature selection model based on the enhanced optimization algorithms to detect DRDoS attacks
  publication-title: Int J Electr Comput Eng
– volume: 8
  start-page: 1130
  issue: 10
  year: 2019
  ident: CR81
  article-title: A new quadratic binary Harris hawk optimization for feature selection
  publication-title: Electronics
– volume: 112
  start-page: 18
  year: 2020
  end-page: 40
  ident: CR41
  article-title: Augmented whale feature selection for IoT attacks: structure, analysis and applications
  publication-title: Future Gener Comput Syst
– volume: 53
  start-page: 13224
  issue: 11
  year: 2023
  end-page: 13260
  ident: CR2
  article-title: Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection
  publication-title: Appl Intell
– ident: CR78
– volume: 139
  year: 2020
  ident: CR82
  article-title: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection
  publication-title: Expert Syst Appl
– volume: 23
  start-page: 715
  year: 2019
  end-page: 734
  ident: CR26
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput
– year: 2022
  ident: CR42
  article-title: Intrusion detection system for IoT based on deep learning and modified reptile search algorithm
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/6473507
– volume: 139
  start-page: 110237
  year: 2023
  ident: CR1
  article-title: Mining online reviews for ranking products: a novel method based on multiple classifiers and interval-valued intuitionistic fuzzy TOPSIS
  publication-title: Appl Soft Comput
– volume: 116
  year: 2021
  ident: CR29
  article-title: A two-stage hybrid ant colony optimization for high-dimensional feature selection
  publication-title: Pattern Recogn
– volume: 84
  year: 2024
  ident: CR70
  article-title: Multi-operator opposition-based learning with the neighborhood structure for numerical optimization problems and its applications
  publication-title: Swarm Evol Comput
– volume: 35
  start-page: 247
  issue: 3
  year: 2021
  end-page: 263
  ident: CR86
  article-title: General learning equilibrium optimizer: a new feature selection method for biological data classification
  publication-title: Appl Artif Intell
– volume: 37
  start-page: 509
  issue: 1
  year: 2021
  end-page: 532
  ident: CR56
  article-title: I-GWO and Ex-GWO: improved algorithms of the grey wolf optimizer to solve global optimization problems
  publication-title: Eng Comput
– volume: 214
  start-page: 119130
  year: 2023
  ident: CR5
  article-title: SemiACO: a semi-supervised feature selection based on ant colony optimization
  publication-title: Expert Syst Appl
– volume: 142
  year: 2023
  ident: CR84
  article-title: A local opposition-learning golden-sine grey wolf optimization algorithm for feature selection in data classification
  publication-title: Appl Soft Comput
– volume: 32
  start-page: 3005
  issue: 7
  year: 2020
  end-page: 3019
  ident: CR92
  article-title: Top-k feature selection framework using robust 0–1 integer programming
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 10
  start-page: 1929
  issue: 11
  year: 2022
  ident: CR97
  article-title: Binary aquila optimizer for selecting effective features from medical data: a covid-19 case study
  publication-title: Mathematics
– volume: 260
  start-page: 110111
  year: 2023
  ident: CR28
  article-title: A hybrid artificial immune optimization for high-dimensional feature selection
  publication-title: Knowl Based Syst
– ident: CR98
– ident: CR23
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR47
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener Comput Syst
– volume: 25
  start-page: 10167
  issue: 15
  year: 2021
  end-page: 10180
  ident: CR66
  article-title: Exploratory cuckoo search for solving single-objective optimization problems
  publication-title: Soft Comput
– volume: 48
  start-page: 2798
  issue: 9
  year: 2015
  end-page: 2811
  ident: CR32
  article-title: Relevance-redundancy feature selection based on ant colony optimization
  publication-title: Pattern Recogn
– ident: CR48
– volume: 52
  start-page: 2651
  year: 2019
  end-page: 2683
  ident: CR33
  article-title: Recent studies on optimisation method of grey wolf optimiser (GWO): a review (2014–2017)
  publication-title: Artif Intell Rev
– volume: 145
  start-page: 113122
  year: 2020
  ident: CR17
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Syst Appl
– volume: 56
  start-page: 4801
  issue: 6
  year: 2023
  end-page: 4858
  ident: CR38
  article-title: A comprehensive survey on the sine-cosine optimization algorithm
  publication-title: Artif Intell Rev
– volume: 45
  start-page: 10875
  issue: 12
  year: 2020
  end-page: 10890
  ident: CR7
  article-title: Binary JAYA algorithm with adaptive mutation for feature selection
  publication-title: Arab J Sci Eng
– ident: CR62
– volume: 149
  start-page: 113338
  year: 2020
  ident: CR20
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 7637
  issue: 7
  year: 2021
  ident: 2308_CR72
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02484-z
– volume: 21
  start-page: 91
  issue: 1
  year: 2004
  ident: 2308_CR96
  publication-title: Eng Comput
  doi: 10.1108/02644400410511864
– volume: 135
  year: 2023
  ident: 2308_CR34
  publication-title: Appl Soft Comput
– ident: 2308_CR69
  doi: 10.1109/CIMCA.2005.1631345
– volume: 32
  start-page: 112
  year: 2014
  ident: 2308_CR31
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.03.007
– volume: 35
  start-page: 247
  issue: 3
  year: 2021
  ident: 2308_CR86
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2020.1861407
– ident: 2308_CR93
  doi: 10.1145/1835804.1835848
– volume: 90
  start-page: 103479
  year: 2020
  ident: 2308_CR35
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103479
– volume: 243
  year: 2022
  ident: 2308_CR40
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.108457
– volume: 28
  start-page: 2947
  year: 2017
  ident: 2308_CR85
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2837-7
– volume: 23
  start-page: 715
  year: 2019
  ident: 2308_CR26
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– volume: 24
  start-page: 18463
  issue: 24
  year: 2020
  ident: 2308_CR90
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05070-9
– volume: 52
  start-page: 17217
  issue: 15
  year: 2022
  ident: 2308_CR49
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03269-x
– volume: 141
  year: 2022
  ident: 2308_CR53
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105152
– volume: 214
  start-page: 119130
  year: 2023
  ident: 2308_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119130
– volume: 116
  year: 2021
  ident: 2308_CR29
  publication-title: Pattern Recogn
– volume: 23
  start-page: 13489
  issue: 24
  year: 2019
  ident: 2308_CR65
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03887-7
– volume: 95
  start-page: 51
  year: 2016
  ident: 2308_CR13
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2022
  ident: 2308_CR42
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/6473507
– volume: 20
  start-page: 2331
  issue: 5
  year: 2023
  ident: 2308_CR57
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00387-1
– volume: 79
  start-page: 21265
  issue: 18
  year: 2023
  ident: 2308_CR11
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05444-4
– volume: 35
  start-page: 1749
  issue: 2
  year: 2023
  ident: 2308_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07836-8
– volume: 14
  start-page: 1
  year: 2013
  ident: 2308_CR76
  publication-title: BMC Bioinform
– volume: 171
  start-page: 1843
  year: 2018
  ident: 2308_CR12
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.05.062
– volume: 52
  start-page: 5457
  issue: 5
  year: 2022
  ident: 2308_CR88
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02524-x
– volume: 97
  start-page: 849
  year: 2019
  ident: 2308_CR47
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– ident: 2308_CR94
– volume: 78
  start-page: 19725
  issue: 18
  year: 2022
  ident: 2308_CR4
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04650-w
– volume: 10
  start-page: 1929
  issue: 11
  year: 2022
  ident: 2308_CR97
  publication-title: Mathematics
  doi: 10.3390/math10111929
– volume: 35
  start-page: 19427
  issue: 26
  year: 2023
  ident: 2308_CR10
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08772-x
– volume: 142
  year: 2023
  ident: 2308_CR84
  publication-title: Appl Soft Comput
– volume: 89
  year: 2020
  ident: 2308_CR89
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106092
– volume: 29
  start-page: 17
  year: 2013
  ident: 2308_CR68
  publication-title: Eng Comput
  doi: 10.1007/s00366-011-0241-y
– volume: 4
  start-page: 21
  issue: 03
  year: 2018
  ident: 2308_CR100
  publication-title: Jordan J Comput Inf Technol
– ident: 2308_CR48
  doi: 10.1007/978-981-32-9990-0_12
– ident: 2308_CR60
  doi: 10.1007/978-3-642-00267-0_14
– ident: 2308_CR78
  doi: 10.1007/978-981-15-3290-0_19
– volume: 10
  start-page: 1756
  year: 2021
  ident: 2308_CR91
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138403
– volume: 122
  start-page: 108307
  year: 2022
  ident: 2308_CR73
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108307
– volume: 54
  start-page: 100671
  year: 2020
  ident: 2308_CR25
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100671
– volume: 140
  start-page: 112898
  year: 2020
  ident: 2308_CR80
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112898
– volume-title: Introduction to high-dimensional statistics
  year: 2021
  ident: 2308_CR18
  doi: 10.1201/9781003158745
– volume: 139
  start-page: 110237
  year: 2023
  ident: 2308_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110237
– volume: 149
  start-page: 113338
  year: 2020
  ident: 2308_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113338
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 2308_CR24
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2480741.2480752
– volume: 32
  start-page: 11195
  year: 2020
  ident: 2308_CR43
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04629-4
– volume: 75
  start-page: 102201
  year: 2023
  ident: 2308_CR9
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2023.102201
– volume: 54
  start-page: 2567
  issue: 4
  year: 2021
  ident: 2308_CR39
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09909-3
– volume: 43
  start-page: 1223
  issue: 6
  year: 2006
  ident: 2308_CR77
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2006.01214.x
– volume: 48
  start-page: 2798
  issue: 9
  year: 2015
  ident: 2308_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.03.020
– volume: 121
  start-page: 233
  year: 2019
  ident: 2308_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.022
– volume-title: Feature engineering for machine learning and data analytics
  year: 2018
  ident: 2308_CR64
– volume: 8
  start-page: 1130
  issue: 10
  year: 2019
  ident: 2308_CR81
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 29
  start-page: 4967
  issue: 10
  year: 2018
  ident: 2308_CR95
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2785403
– volume: 56
  start-page: 4801
  issue: 6
  year: 2023
  ident: 2308_CR38
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10277-3
– volume: 147
  start-page: 105675
  year: 2022
  ident: 2308_CR54
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105675
– volume: 184
  start-page: 102
  year: 2019
  ident: 2308_CR19
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 97
  start-page: 106761
  year: 2020
  ident: 2308_CR58
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106761
– volume: 112
  start-page: 18
  year: 2020
  ident: 2308_CR41
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.05.020
– volume: 260
  start-page: 110111
  year: 2023
  ident: 2308_CR28
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110111
– ident: 2308_CR62
– volume: 134
  start-page: 109987
  year: 2023
  ident: 2308_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.109987
– volume: 14
  start-page: 735
  issue: 4
  year: 2023
  ident: 2308_CR51
  publication-title: Evol Syst
  doi: 10.1007/s12530-022-09461-1
– volume: 45
  start-page: 10875
  issue: 12
  year: 2020
  ident: 2308_CR7
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04871-2
– volume: 85
  start-page: 105073
  year: 2023
  ident: 2308_CR15
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105073
– volume: 34
  start-page: 6427
  issue: 8
  year: 2022
  ident: 2308_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06775-0
– volume: 139
  year: 2020
  ident: 2308_CR82
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112824
– volume: 52
  start-page: 2651
  year: 2019
  ident: 2308_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-9634-2
– volume: 25
  start-page: 10167
  issue: 15
  year: 2021
  ident: 2308_CR66
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05939-3
– volume: 201
  start-page: 117217
  year: 2022
  ident: 2308_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117217
– volume: 2020
  start-page: 6502807
  issue: 1
  year: 2020
  ident: 2308_CR79
  publication-title: Comput Intell Neurosci
– volume: 37
  start-page: 509
  issue: 1
  year: 2021
  ident: 2308_CR56
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00837-7
– volume: 39
  start-page: 3747
  issue: 3
  year: 2012
  ident: 2308_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.073
– volume: 18
  start-page: e0280006
  issue: 1
  year: 2023
  ident: 2308_CR59
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0280006
– volume: 22
  start-page: 73
  issue: 4
  year: 2022
  ident: 2308_CR63
  publication-title: Cybern Inf Technol
– volume: 53
  start-page: 706
  issue: 1
  year: 2023
  ident: 2308_CR46
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03554-9
– volume: 12
  start-page: 8457
  year: 2021
  ident: 2308_CR55
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02580-0
– ident: 2308_CR98
  doi: 10.1109/CCST.2019.8888419
– volume: 59
  start-page: 182
  year: 2017
  ident: 2308_CR71
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.050
– volume: 61
  start-page: 1041
  year: 2017
  ident: 2308_CR67
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.02.034
– volume: 56
  start-page: 11675
  issue: 10
  year: 2023
  ident: 2308_CR61
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10446-y
– ident: 2308_CR87
  doi: 10.4135/9781412985314
– volume: 12
  start-page: 1869
  issue: 2
  year: 2022
  ident: 2308_CR99
  publication-title: Int J Electr Comput Eng
– volume: 11
  start-page: 496
  year: 2019
  ident: 2308_CR83
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-018-0295-2
– volume: 235
  start-page: 107625
  year: 2022
  ident: 2308_CR22
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107625
– volume-title: Introduction to statistical pattern recognition
  year: 2013
  ident: 2308_CR74
– volume: 176
  start-page: 114778
  year: 2021
  ident: 2308_CR50
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114778
– volume: 145
  start-page: 113122
  year: 2020
  ident: 2308_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113122
– volume: 53
  start-page: 13224
  issue: 11
  year: 2023
  ident: 2308_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-04201-z
– ident: 2308_CR75
  doi: 10.3390/math10111942
– volume: 31
  start-page: 1995
  year: 2019
  ident: 2308_CR45
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1923-y
– volume: 8
  start-page: 67799
  year: 2020
  ident: 2308_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985986
– volume: 96
  start-page: 120
  year: 2016
  ident: 2308_CR37
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: 2308_CR23
  doi: 10.1109/PICICT.2017.11
– volume: 32
  start-page: 3005
  issue: 7
  year: 2020
  ident: 2308_CR92
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3009209
– volume: 35
  start-page: 20013
  issue: 27
  year: 2023
  ident: 2308_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08812-6
– volume: 84
  year: 2024
  ident: 2308_CR70
  publication-title: Swarm Evol Comput
– ident: 2308_CR3
  doi: 10.1109/ICCKE48569.2019.8965106
– year: 2024
  ident: 2308_CR16
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-024-00558-8
– ident: 2308_CR44
  doi: 10.1109/MED.2007.4433821
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3646007
Snippet The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6107
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Complex Systems
Complexity
Computational Intelligence
Continuity (mathematics)
Control
Datasets
Engineering
Feature selection
Heuristic methods
Integer programming
Machine learning
Mechatronics
Methods
Mutation
Optimization
Optimization algorithms
Optimization techniques
Original Article
Pattern Recognition
Performance enhancement
Robotics
Search methods
Statistical analysis
Statistical tests
Systems Biology
Transfer functions
Title Bi-objective feature selection in high-dimensional datasets using improved binary chimp optimization algorithm
URI https://link.springer.com/article/10.1007/s13042-024-02308-y
https://www.proquest.com/docview/3121862724
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xcSmHqkArtqXIhx5A1JLXcWznuFuxICo4sRKcIn_CIsgikh7497WdhNAKDpwiOVYi-Y1nxvabZ4AfmdROM8tx8HUSs1wSrARxWFNjOdVC6iSmc3bOT-bs9DK_7IrC6p7t3h9JJk89FLvFlTcOMQXHvFnip1VYz8PaPRL55nTSW1E2jvoqQ5DNMpZ0pp53XggPbS0ZUXIZ1XjHXTXN67_5N2INaeh_J6cpIM0-wccuk0STFvpNWHHVFmy80Bfcgs1u5tZov5OXPtiGarrAS33bOjrkXVL2RHW6DyeAhBYVihrG2Ebd_1azA0Ueae2aGkWa_DVapJ0IZ5FO1bzI3IQWtAze574r60Tq7nr5uGhu7j_DfHZ08esEd7cuYEMFaXCuwjQunFA-t8ITKQzJHJVe64IrJgw33GbjjBvllQ0w50xTKZmlIfOiY-ezL7BWLSu3A4gbQmxBPLNCM8VZIanwIaFzBfeGKD6Cw35ky4dWXKMcZJQjDmXAoUw4lE8j2O0Hv-wmWl0GtAOKVFA2gp89IMPrt7_29X3dv8EHGm0iEVl2Ya15_OO-h3Sk0XuwPplNp-fxeXz1-2gvWeNfonTXxw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAcgBYqFgr4wAEErryOYzvHgloW-jh1pXKK_GwXaBY16aH8emzHIVDBoVcncuSZyczY_uYbgFeF1E4zy3HwdRKzUhKsBHFYU2M51ULqRKZzeMTnC_b5pDzJRWHtgHYfriSTpx6L3eLOG4eYgmPeLPHVbVhjYQ_OJrC28_HL_u5gR8UsMqyMYbYoWGKa-n32QngY6-GIksvIxzvL9TT__tDfMWtMRK_dnaaQtPcAFsNieiTKt-3LTm-bn9d4Hm-62odwP-eoaKc3qnW45ZoNuPcHc-EGrGef0KLXmbj6zSNo3i_xSn_tXSjyLnGGojZ12gnqR8sGRXZkbGNHgZ4NBEWEauu6FkUA_ilapjMOZ5FOdcLInIURtAp-7TwXjCL1_XR1sezOzh_DYm_3-MMc534O2FBBOlyq4CAqJ5QvrfBECkMKR6XXuuKKCcMNt8Ws4EZ5ZYMBlUxTKZmlIaejM-eLTZg0q8Y9AcQNIbYinlmhmeKsklT4kCq6intDFJ_C20Fj9Y-etqMeCZqjaOsg2jqJtr6awtag1Dr_wm0drChYBxWUTeHdoKPx8f9ne3qz11_Cnfnx4UF98Olo_xncpVHlCS6zBZPu4tI9D0lPp19kG_8FH7z02A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NU9UwEMB38DHj6EE-1PEpYg4edDSQl6ZJekTlAaKMB5nBUyef8FT6GFoO-NeTpK0FRg-O17TTTna3u9tk9xeAl5nUTjPLcfB1ErNcEqwEcVhTYznVQuoE0_l8wHcP2cej_OhaF3-qdu-3JNuehkhpqprNM-s3h8a3-BeOQ3zBMYeW-PIOLLIIZx_B4tbOt_3t3qaySaStDCE3y1iiTv1ehyE8jLWliZLLyOaddL01f37Rzfg1JKW39lFTeJougeon1lal_Ni4aPSG-XWL-fg_M1-GB13uirZaY1uBBVetwv1rRMNVWOl8RY1edUDr1w-hejfDc_29da3Iu8QSRXU6gSeYBZpVKFKTsY0nDbSUEBQrV2vX1CgW5h-jWVr7cBbp1D-MzEkYQfPg7067RlKkfh7Pz2fNyekjOJxuf32_i7tzHrChgjQ4V8FxFE4on1vhgxYNyRyVXuuCKyYMN9xmk4wb5ZUNhpUzTaVkloZcj06czx7DqJpX7gkgbgixBfHMCs0UZ4WkwocU0hXcG6L4GN702ivPWpxHOYCbo2jLINoyiba8HMNar-Cy-7TrMlhUsBQqKBvD215fw-W_P-3pv93-Au5--TAtP-0d7D-DezRqPFXRrMGoOb9wz0Mu1Oj1ztyvAHA0_bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-objective+feature+selection+in+high-dimensional+datasets+using+improved+binary+chimp+optimization+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Al-qudah%2C+Nour+Elhuda+A.&rft.au=Abed-alguni%2C+Bilal+H.&rft.au=Barhoush%2C+Malek&rft.date=2024-12-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=6107&rft.epage=6148&rft_id=info:doi/10.1007%2Fs13042-024-02308-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02308_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon