A Deep Learning Method for the Security Vulnerability Study of Feed-Forward Physical Unclonable Functions
Authentication is critical for Internet-of-Things. The traditional approach of using cryptographic keys is subject to invasive attacks. Being unclonable even by the manufacturers, physical unclonable functions (PUFs) leverage integrated circuits’ manufacturing variations to produce responses unique...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 49; no. 9; pp. 12291 - 12303 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Authentication is critical for Internet-of-Things. The traditional approach of using cryptographic keys is subject to invasive attacks. Being unclonable even by the manufacturers, physical unclonable functions (PUFs) leverage integrated circuits’ manufacturing variations to produce responses unique for individual devices, and hence are of great potential as security primitives. While physically unclonable, many PUFs were reported to be mathematically cloneable by machine learning-based modeling methods. The feed-forward arbiter PUFs (FF PUFs) are among the PUFs with strong resistance against machine learning attacks. Existing studies revealed that only a very small group of FF PUFs with special loop patterns had been broken, and the vast majority of FF PUFs are still secure against all machine learning attack methods tried so far. In this paper, we introduce a neural network that can successfully attack FF PUFs with any loop patterns, with training time even magnitudes lower than existing methods attacking PUFs of the restrictive loop patterns. Experimental results show that, on the one hand, FF PUFs are not secure against attacks even with a large number of complex feed-forward loops, hence susceptible to attacks by response-prediction-based malicious software. On the other hand, the new approach of designing problem-tailored attack methods points to a new way to identify PUF security risks which might be difficult to discover by general-purpose machine learning methods. |
---|---|
AbstractList | Authentication is critical for Internet-of-Things. The traditional approach of using cryptographic keys is subject to invasive attacks. Being unclonable even by the manufacturers, physical unclonable functions (PUFs) leverage integrated circuits’ manufacturing variations to produce responses unique for individual devices, and hence are of great potential as security primitives. While physically unclonable, many PUFs were reported to be mathematically cloneable by machine learning-based modeling methods. The feed-forward arbiter PUFs (FF PUFs) are among the PUFs with strong resistance against machine learning attacks. Existing studies revealed that only a very small group of FF PUFs with special loop patterns had been broken, and the vast majority of FF PUFs are still secure against all machine learning attack methods tried so far. In this paper, we introduce a neural network that can successfully attack FF PUFs with any loop patterns, with training time even magnitudes lower than existing methods attacking PUFs of the restrictive loop patterns. Experimental results show that, on the one hand, FF PUFs are not secure against attacks even with a large number of complex feed-forward loops, hence susceptible to attacks by response-prediction-based malicious software. On the other hand, the new approach of designing problem-tailored attack methods points to a new way to identify PUF security risks which might be difficult to discover by general-purpose machine learning methods. |
Author | Zhuang, Yu Alkatheiri, Mohammed Saeed Aseeri, Ahmad O. |
Author_xml | – sequence: 1 givenname: Mohammed Saeed surname: Alkatheiri fullname: Alkatheiri, Mohammed Saeed organization: Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah – sequence: 2 givenname: Ahmad O. orcidid: 0000-0001-9863-4551 surname: Aseeri fullname: Aseeri, Ahmad O. email: a.aseeri@psau.edu.sa organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University – sequence: 3 givenname: Yu surname: Zhuang fullname: Zhuang, Yu organization: Department of Computer Science, Texas Tech University |
BookMark | eNp9kE1LAzEQhoNUUKt_wFPAczTfu3uUalWoKPiBt5DdTOzKmtRkF-m_d9sK3jzNDDzvO_AcoUmIARA6ZfScUVpcZCaErgjlgtBSS0H0HjrkrGJE8pJNtrsgShdvB-gk57amshSVYkwcovYSXwGs8AJsCm14x_fQL6PDPibcLwE_QTOktl_j16ELkGzddpvrqR_cGkeP5wCOzGP6tsnhx-U6t43t8Etouhhs3QGeD6Hp2xjyMdr3tstw8jun6GV-_Ty7JYuHm7vZ5YI0vKA9UaVzUkpd8xK8qkQtKidF6WoolPbANfeS8sbW0jZeFJwJ6pyCqvRalaKoxRSd7XpXKX4NkHvzEYcUxpdGjLq4YkqpkeI7qkkx5wTerFL7adPaMGo2Vs3Oqhmtmq1Vo8eQ2IXyCId3SH_V_6R-AFwofHM |
Cites_doi | 10.1109/TMSCS.2016.2553027 10.1109/TIFS.2013.2279798 10.3390/s22249825 10.1126/science.1074376 10.1109/TC.2017.2749226 10.1145/328236.328110 10.1145/2851486 10.1002/cpe.805 10.1145/2815621 10.1016/j.adhoc.2012.02.016 10.1109/JPROC.2014.2320516 10.1109/TVLSI.2005.859470 10.1016/j.pmcj.2023.101753 10.1145/3557742 10.1145/586110.586132 10.1109/EuroSPW.2019.00036 10.4018/978-1-60566-725-6 10.46586/tches.v2019.i4.243-290 10.1109/WIFS.2012.6412622 10.1109/MWSCAS.2017.8053078 10.1007/978-3-319-24837-0_2 10.1109/DESEC.2017.8073845 10.1016/j.iot.2023.100700 10.1145/1278480.1278484 10.1109/ICIOT.2018.00014 10.1145/1866307.1866335 10.1109/ICCAD.2008.4681648 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-023-08643-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 12303 |
ExternalDocumentID | 10_1007_s13369_023_08643_6 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c270t-58dd4446b28ef593b39d438dbe756fe262f402cab4acf372130dd5e98f65837b3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 08:59:23 EDT 2025 Tue Jul 01 01:34:35 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning IoT security Feed-forward Arbiter PUF Arbiter PUF Neural networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-58dd4446b28ef593b39d438dbe756fe262f402cab4acf372130dd5e98f65837b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9863-4551 |
PQID | 3100251555 |
PQPubID | 2044268 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3100251555 crossref_primary_10_1007_s13369_023_08643_6 springer_journals_10_1007_s13369_023_08643_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Ruhrmair (CR19) 2013; 8 Sahoo, Mukhopadhyay, Chakraborty, Nguyen (CR20) 2017; 67 CR18 CR17 CR16 CR13 Kumar, Burleson (CR28) 2015 CR12 CR33 CR10 CR32 Gassend, Lim, Clarke, Van Dijk, Devadas (CR26) 2004; 16 CR31 CR30 Servati, Safkhani (CR8) 2023; 90 Alyami, Alharbi, Azzedin (CR6) 2022; 22 Herder, Yu, Koushanfar, Devadas (CR14) 2014; 102 CR2 Tieleman, Hinton (CR34) 2012; 4 CR4 CR5 Jain, Hong, Pankanti (CR3) 2000; 43 Miorandi, Sicari, De Pellegrini, Chlamtac (CR1) 2012; 10 CR7 CR29 Chatterjee, Chakraborty, Kapoor, Mukhopadhyay (CR15) 2016; 15 CR25 Lim (CR27) 2005; 13 CR24 CR23 Genkin, Pachmanov, Pipman, Shamir, Tromer (CR36) 2016; 59 CR22 Genkin, Shamir, Tromer (CR35) 2014 CR21 Pappu, Recht, Taylor, Gershenfeld (CR11) 2002; 297 Yu (CR9) 2016; 2 U Ruhrmair (8643_CR19) 2013; 8 M-DM Yu (8643_CR9) 2016; 2 B Gassend (8643_CR26) 2004; 16 8643_CR18 T Tieleman (8643_CR34) 2012; 4 8643_CR17 8643_CR16 8643_CR33 8643_CR10 8643_CR32 8643_CR13 8643_CR12 8643_CR31 D Miorandi (8643_CR1) 2012; 10 R Kumar (8643_CR28) 2015 8643_CR30 A Jain (8643_CR3) 2000; 43 S Alyami (8643_CR6) 2022; 22 D Genkin (8643_CR35) 2014 8643_CR29 U Chatterjee (8643_CR15) 2016; 15 8643_CR2 8643_CR25 8643_CR4 D Lim (8643_CR27) 2005; 13 8643_CR22 8643_CR5 8643_CR21 8643_CR24 8643_CR7 R Pappu (8643_CR11) 2002; 297 DP Sahoo (8643_CR20) 2017; 67 8643_CR23 D Genkin (8643_CR36) 2016; 59 MR Servati (8643_CR8) 2023; 90 C Herder (8643_CR14) 2014; 102 |
References_xml | – volume: 4 start-page: 26 issue: 2 year: 2012 end-page: 31 ident: CR34 article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Netw. Mach. Learn. – ident: CR22 – ident: CR18 – start-page: 53 year: 2015 end-page: 67 ident: CR28 publication-title: Side-Channel Assisted Modeling Attacks on Feed-forward Arbiter Pufs Using Silicon Data – volume: 2 start-page: 146 issue: 3 year: 2016 end-page: 159 ident: CR9 article-title: A lockdown technique to prevent machine learning on pufs for lightweight authentication publication-title: IEEE Trans. Multi-Scale Comput. Syst. doi: 10.1109/TMSCS.2016.2553027 – volume: 8 start-page: 1876 issue: 11 year: 2013 end-page: 1891 ident: CR19 article-title: Puf modeling attacks on simulated and silicon data publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2013.2279798 – volume: 22 start-page: 9825 issue: 24 year: 2022 ident: CR6 article-title: Fragmentation attacks and countermeasures on 6lowpan internet of things networks: survey and simulation publication-title: Sensors doi: 10.3390/s22249825 – volume: 297 start-page: 2026 issue: 5589 year: 2002 end-page: 2030 ident: CR11 article-title: Physical one-way functions publication-title: Science doi: 10.1126/science.1074376 – volume: 67 start-page: 403 issue: 3 year: 2017 end-page: 417 ident: CR20 article-title: A multiplexer-based arbiter puf composition with enhanced reliability and security publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2017.2749226 – ident: CR4 – ident: CR2 – ident: CR16 – volume: 43 start-page: 90 issue: 2 year: 2000 end-page: 98 ident: CR3 article-title: Biometric identification publication-title: Commun. ACM doi: 10.1145/328236.328110 – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 59 start-page: 70 issue: 6 year: 2016 end-page: 79 ident: CR36 article-title: Physical key extraction attacks on pcs publication-title: Commun. ACM doi: 10.1145/2851486 – volume: 16 start-page: 1077 issue: 11 year: 2004 end-page: 1098 ident: CR26 article-title: Identification and authentication of integrated circuits publication-title: Concurrency Comput.: Pract. Exp. doi: 10.1002/cpe.805 – ident: CR29 – ident: CR25 – ident: CR23 – start-page: 444 year: 2014 end-page: 461 ident: CR35 publication-title: RSA Key Extraction via Low-bandwidth Acoustic Cryptanalysis – ident: CR21 – volume: 15 start-page: 10 issue: 1 year: 2016 ident: CR15 article-title: Theory and application of delay constraints in arbiter puf publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/2815621 – volume: 10 start-page: 1497 issue: 7 year: 2012 end-page: 1516 ident: CR1 article-title: Internet of things: vision, applications and research challenges publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2012.02.016 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR32 – volume: 102 start-page: 1126 issue: 8 year: 2014 end-page: 1141 ident: CR14 article-title: Physical unclonable functions and applications: a tutorial publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2320516 – ident: CR5 – ident: CR7 – volume: 13 start-page: 1200 issue: 10 year: 2005 end-page: 1205 ident: CR27 article-title: Extracting secret keys from integrated circuits publication-title: IEEE Trans. Very Large Scale Integr. VLSI Syst. doi: 10.1109/TVLSI.2005.859470 – ident: CR24 – volume: 90 start-page: 101753 year: 2023 ident: CR8 article-title: Eccbas: an ECC based authentication scheme for healthcare IoT systems publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2023.101753 – ident: 8643_CR30 doi: 10.1145/3557742 – volume: 90 start-page: 101753 year: 2023 ident: 8643_CR8 publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2023.101753 – ident: 8643_CR13 doi: 10.1145/586110.586132 – ident: 8643_CR22 doi: 10.1109/EuroSPW.2019.00036 – start-page: 444 volume-title: RSA Key Extraction via Low-bandwidth Acoustic Cryptanalysis year: 2014 ident: 8643_CR35 – volume: 16 start-page: 1077 issue: 11 year: 2004 ident: 8643_CR26 publication-title: Concurrency Comput.: Pract. Exp. doi: 10.1002/cpe.805 – volume: 67 start-page: 403 issue: 3 year: 2017 ident: 8643_CR20 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2017.2749226 – volume: 10 start-page: 1497 issue: 7 year: 2012 ident: 8643_CR1 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2012.02.016 – ident: 8643_CR12 doi: 10.1145/586110.586132 – start-page: 53 volume-title: Side-Channel Assisted Modeling Attacks on Feed-forward Arbiter Pufs Using Silicon Data year: 2015 ident: 8643_CR28 – ident: 8643_CR33 – ident: 8643_CR31 – ident: 8643_CR4 – ident: 8643_CR2 doi: 10.4018/978-1-60566-725-6 – ident: 8643_CR21 doi: 10.46586/tches.v2019.i4.243-290 – ident: 8643_CR17 doi: 10.1109/WIFS.2012.6412622 – ident: 8643_CR29 doi: 10.1109/MWSCAS.2017.8053078 – volume: 22 start-page: 9825 issue: 24 year: 2022 ident: 8643_CR6 publication-title: Sensors doi: 10.3390/s22249825 – volume: 102 start-page: 1126 issue: 8 year: 2014 ident: 8643_CR14 publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2320516 – volume: 4 start-page: 26 issue: 2 year: 2012 ident: 8643_CR34 publication-title: COURSERA: Neural Netw. Mach. Learn. – volume: 2 start-page: 146 issue: 3 year: 2016 ident: 8643_CR9 publication-title: IEEE Trans. Multi-Scale Comput. Syst. doi: 10.1109/TMSCS.2016.2553027 – volume: 59 start-page: 70 issue: 6 year: 2016 ident: 8643_CR36 publication-title: Commun. ACM doi: 10.1145/2851486 – ident: 8643_CR18 doi: 10.1007/978-3-319-24837-0_2 – volume: 15 start-page: 10 issue: 1 year: 2016 ident: 8643_CR15 publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/2815621 – ident: 8643_CR25 doi: 10.1109/DESEC.2017.8073845 – ident: 8643_CR7 doi: 10.1016/j.iot.2023.100700 – ident: 8643_CR24 doi: 10.1145/1278480.1278484 – volume: 13 start-page: 1200 issue: 10 year: 2005 ident: 8643_CR27 publication-title: IEEE Trans. Very Large Scale Integr. VLSI Syst. doi: 10.1109/TVLSI.2005.859470 – ident: 8643_CR10 doi: 10.1109/ICIOT.2018.00014 – volume: 297 start-page: 2026 issue: 5589 year: 2002 ident: 8643_CR11 publication-title: Science doi: 10.1126/science.1074376 – volume: 43 start-page: 90 issue: 2 year: 2000 ident: 8643_CR3 publication-title: Commun. ACM doi: 10.1145/328236.328110 – ident: 8643_CR16 doi: 10.1145/1866307.1866335 – ident: 8643_CR32 – ident: 8643_CR23 doi: 10.1109/ICCAD.2008.4681648 – volume: 8 start-page: 1876 issue: 11 year: 2013 ident: 8643_CR19 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2013.2279798 – ident: 8643_CR5 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.327257 |
Snippet | Authentication is critical for Internet-of-Things. The traditional approach of using cryptographic keys is subject to invasive attacks. Being unclonable even... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12291 |
SubjectTerms | Cybersecurity Deep learning Engineering Humanities and Social Sciences Integrated circuits Internet of Things Machine learning Malware multidisciplinary Neural networks Research Article-Computer Engineering and Computer Science Science |
Title | A Deep Learning Method for the Security Vulnerability Study of Feed-Forward Physical Unclonable Functions |
URI | https://link.springer.com/article/10.1007/s13369-023-08643-6 https://www.proquest.com/docview/3100251555 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMESrUHbsGRvbt-HR1Uq0JteiBB4WR5H6YtIana5AB_jL_H7MNepxQEXKxoHW2cmc-zs7PzzSD0RnIhY5WxINb5OEzFYcCziAWiCUVU00RIpfnOp9PkeM7eL-LFYPCjl7W03fCx-H4nr-R_tApjoFfNkv0HzXaTwgB8Bv3CFTQM17_ScQHmQl21NVI_j05NO-guc_CD6003-rhd6uLSJg_2m0kdNOfqJaxcQbm-1omzpgmOUdh8JZZry6gqYdHzAb1LD6xCT9YSnywFsrMSOhLfq3I41o9hQDYxdtff6bC2_FKb84oLsDDnOpIOPnCtHOtKf-FGOUJ8cf61lqMzH-3eunD3p20_fEFYl5-1G77Uudn6xKSj1xhrrBlWWWiZ0WNlxsDCwqaX2D4vrQm3VU8dVPOePY4Isc3A3OIO67QpqfDryhE6JjWlCTwgoQHs9RgN7ijTPT2ryvnJSTU7WszuoX0C-xPDMl9EPrgHTrfp7GVdgiTKTKpD938ce8tyOG__4q6H5Lc9t07qjQM0e4QeOlXjwsLwMRqo1RP0oKfPp-iiwBqQuAUktoDEAA8MGsYtIPEOILEBJF43uA9I3AISe0DiDpDP0Lw8mr07Dlwvj0CQNNwEcSYlYyzhJFNNnFNOc8loJrlK46RRJCENC4moOatFQ1MCrpUEI5JnDbjINOX0OdpbrVfqBcIqE5TJtOENbPVlqsvyAyYprQURYZLLIRq18quubMmWyhfn1tKuQNqVkXaVDNFBK-LKvdo3lT71Irr5UTxEb1ux-9u_n-3ln2d7he77d-AA7W2ut-o1OLUbfoj2i3IymR4aIP0EbBqiHQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Method+for+the+Security+Vulnerability+Study+of+Feed-Forward+Physical+Unclonable+Functions&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Alkatheiri+Mohammed+Saeed&rft.au=Aseeri%2C+Ahmad+O&rft.au=Zhuang%2C+Yu&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=49&rft.issue=9&rft.spage=12291&rft.epage=12303&rft_id=info:doi/10.1007%2Fs13369-023-08643-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |