Aka-Net: anchor free-based object detection network for surveillance video transmission in the IOT edge computing environment

With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 2
Main Authors Sambandam Raju, Preethi, Arumugam Rajendran, Revathi, Mahalingam, Murugan
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading to increased transmission burden. Existing video pre-processing techniques often focus on reducing the number of frames without considering accuracy and fail to effectively handle both spatial and temporal redundancies simultaneously. To address these issues, an anchor-free key action point network (AKA-Net) is proposed for video pre-processing in the IoT-edge computing environment. The oriented Features from Accelerated Segment Test (FAST) and rotated Binary Robust Independent Elementary Features (BRIEF) (ORB) feature descriptor is employed to remove duplicate frames, leading to more compact and efficient video representation. The AKA-Net's major contributions include its powerful representation capabilities achieved through the bottleneck module in the information-transferring backbone network, which effectively captures multi-scale features. The information-transferring module helps to improve the performance of the object detection algorithm for video pre-processing by fusing the complementary information from different scales. This allows the algorithm to detect objects of different sizes more accurately, making it highly effective for real-time video pre-processing tasks. Then, the key action point selection module that utilizes the self-attention mechanism is introduced to accurately select informative key action points. This enables efficient network transmission with lower bandwidth requirements, while maintaining high accuracy and low latency. It treats every pixel within the feature map as a temporal-spatial point and leverages self-attention to identify and select the most relevant keypoints. Experiments show that the proposed AKA-Net outperforms existing methods in terms of compression ratio of 54.2% and accuracy with a rate of 96.7%. By addressing spatial and temporal redundancies and optimizing key action point selection, AKA-Net offers a significant advancement in video pre-processing for smart surveillance systems, benefiting various IoT applications.
AbstractList With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading to increased transmission burden. Existing video pre-processing techniques often focus on reducing the number of frames without considering accuracy and fail to effectively handle both spatial and temporal redundancies simultaneously. To address these issues, an anchor-free key action point network (AKA-Net) is proposed for video pre-processing in the IoT-edge computing environment. The oriented Features from Accelerated Segment Test (FAST) and rotated Binary Robust Independent Elementary Features (BRIEF) (ORB) feature descriptor is employed to remove duplicate frames, leading to more compact and efficient video representation. The AKA-Net's major contributions include its powerful representation capabilities achieved through the bottleneck module in the information-transferring backbone network, which effectively captures multi-scale features. The information-transferring module helps to improve the performance of the object detection algorithm for video pre-processing by fusing the complementary information from different scales. This allows the algorithm to detect objects of different sizes more accurately, making it highly effective for real-time video pre-processing tasks. Then, the key action point selection module that utilizes the self-attention mechanism is introduced to accurately select informative key action points. This enables efficient network transmission with lower bandwidth requirements, while maintaining high accuracy and low latency. It treats every pixel within the feature map as a temporal-spatial point and leverages self-attention to identify and select the most relevant keypoints. Experiments show that the proposed AKA-Net outperforms existing methods in terms of compression ratio of 54.2% and accuracy with a rate of 96.7%. By addressing spatial and temporal redundancies and optimizing key action point selection, AKA-Net offers a significant advancement in video pre-processing for smart surveillance systems, benefiting various IoT applications.
ArticleNumber 56
Author Sambandam Raju, Preethi
Arumugam Rajendran, Revathi
Mahalingam, Murugan
Author_xml – sequence: 1
  givenname: Preethi
  surname: Sambandam Raju
  fullname: Sambandam Raju, Preethi
  email: srpreethi31090@gmail.com
  organization: Department of Electronics and Communication Engineering, SRM Valliammai Engineering College
– sequence: 2
  givenname: Revathi
  surname: Arumugam Rajendran
  fullname: Arumugam Rajendran, Revathi
  organization: School of Computer Science and Engineering, VIT University
– sequence: 3
  givenname: Murugan
  surname: Mahalingam
  fullname: Mahalingam, Murugan
  organization: Department of Electronics and Communication Engineering, SRM Valliammai Engineering College
BookMark eNp9kE9PAjEQxRuDiYh-AU9NPK-22y1lvRHiHxIiF0y8Nd3tLBTYFtuC8eB3t7hGbx7mzRx-703yzlHPOgsIXVFyQwkRtyFpUWQkT0NzkWf0BPVpwVgmOH_t_d4FPUPnIawJYYzloz76HG9U9gzxDitbr5zHjQfIKhVAY1etoY5YQ0zLOIstxHfnN7hJXNj7A5jtNtkAH4wGh6NXNrQmhCNrLI4rwNP5AoNeAq5du9tHY5cY7MF4Z1uw8QKdNmob4PJnD9DLw_1i8pTN5o_TyXiW1bkgMeOiKpkWJedMVESIEQXQSo2oUrziZSGSsIYOdVOC5oqzsqyboVY14bVqlGADdN3l7rx720OIcu323qaXkhFOSpGzvExU3lG1dyF4aOTOm1b5D0mJPNYsu5plqll-1yxpMrHOFBJsl-D_ov9xfQHLp4Qq
Cites_doi 10.1109/ACCESS.2022.3203053
10.1109/ACCESS.2021.3072901
10.1109/TMM.2021.3074239
10.1109/TNNLS.2022.3171553
10.1109/JSEN.2021.3086037
10.1016/j.knosys.2021.107083
10.1016/j.patcog.2022.108868
10.1007/s11036-022-01939-1
10.1109/ACCESS.2022.3199753
10.1109/TII.2021.3116377
10.1016/j.asoc.2021.107236
10.1109/ACCESS.2020.3041025
10.1109/TITS.2020.2984197
10.1109/ACCESS.2021.3062220
10.1016/j.patcog.2022.109071
10.1016/j.sysarc.2020.101934
10.1109/JIOT.2021.3077449
10.1109/TNNLS.2022.3170642
10.1109/TIP.2020.3002345
10.1109/TIP.2022.3148874
10.1109/ACCESS.2021.3054938
10.1016/j.patcog.2021.108146
10.3390/s19092032
10.1007/s11036-020-01723-z
10.1109/TPAMI.2019.2938758
10.1109/TVT.2021.3049805
10.1007/s00521-021-06491-9
10.1109/TITS.2021.3118698
10.36548/jscp.2021.2.001
10.1109/TITS.2020.3015530
10.1007/s11042-022-13773-4
10.1007/978-3-030-58580-8_24
10.1109/ICCV.2019.00667
10.1007/978-981-15-8097-0
10.1109/ICCV.2011.6126544
10.1007/978-3-319-46448-0_2
10.1007/978-3-030-01264-9_45
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10044-024-01272-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_024_01272_1
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-57b93d795537b07781eedaa81aa5b5947b593f16df9ed5a5399cf6dac05cafa73
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Sat Jul 26 00:00:31 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Fri Feb 21 02:41:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bandwidth reduction
Anchor free network
Internet of Things (IoT)
Video transmission
Edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-57b93d795537b07781eedaa81aa5b5947b593f16df9ed5a5399cf6dac05cafa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3050972329
PQPubID 2043691
ParticipantIDs proquest_journals_3050972329
crossref_primary_10_1007_s10044_024_01272_1
springer_journals_10_1007_s10044_024_01272_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ma, Tian, Kuang, Xie (CR10) 2021; 224
Zhou, Xu, Liang, Zeng, Yan (CR5) 2021; 8
Dai, Yi, Jiang, Yang, Huang (CR8) 2021; 9
Wisultschew, Mujica, Lanza-Gutierrez, Portilla (CR28) 2021; 9
Su, He, Jiang, Zhang, Zou, Fan (CR11) 2022; 131
Bouaafia, Khemiri, Messaoud, Ben Ahmed, Sayadi (CR31) 2022; 34
CR38
CR15
CR37
Zheng, Liu, Wang, Fan, Dai (CR9) 2021; 9
Chen, Lin, Hu, Hsia, Lian, Jhong (CR27) 2022; 10
CR34
Yan, Woźniak (CR36) 2022; 27
CR32
Huang, Li, Xia, Tao (CR18) 2022; 31
Lin, Tian, Duan, Zhou, Zhao, Cao (CR22) 2022; 34
Zhou, Wang, Liu, Li, Ou, Jin (CR12) 2021; 26
Cheng, Wang, Li, Xie, Lang, Yao, Han (CR7) 2022; 60
Hänel, Schönlieb (CR13) 2021; 22
Fan, Zhu, Chen, Zhang, Tian, Lv, Wang (CR20) 2021; 70
Wan, Ding, Chen (CR35) 2022; 121
Sharma, Sangeetha (CR1) 2021; 3
Zhang, Chan (CR16) 2022; 34
Kong, Sun, Liu, Jiang, Li, Shi (CR17) 2020; 29
Ke, Zhuang, Pu, Wang (CR26) 2020; 22
Sambandam Raju, Mahalingam, Arumugam Rajendran (CR24) 2019; 19
CR3
Qian, Yuan, Yao, Fan, Zhang, Liu, Lu (CR2) 2020; 22
Muchtar, Bahri, Fitria, Cenggoro, Pardamean, Mahendra, Munggaran, Lin (CR4) 2022; 10
Xu, Wu, Zhu, Zhao (CR29) 2021; 104
CR23
Liu, Hasan, Liao (CR6) 2022; 135
Gao, Cheng, Zhao, Zhang, Yang, Torr (CR33) 2019; 43
Ullah, Muhammad, Haq, Khan, Heidari, Baik, de Albuquerque (CR30) 2021; 18
Yang, He, Pei, Zhou, Li, Yuan, Zhang (CR14) 2021; 24
Wang, Wu, Tian, Teng, Chen, Cao (CR19) 2021; 23
Zhou, Wei, Li, Zhao, Zhang, Zhang (CR21) 2020; 8
Liu, Kong, Chen, Xu, Wang (CR25) 2021; 114
1272_CR38
H Su (1272_CR11) 2022; 131
1272_CR15
1272_CR37
R Ke (1272_CR26) 2020; 22
1272_CR34
1272_CR32
Z Dai (1272_CR8) 2021; 9
G Wang (1272_CR19) 2021; 23
W Liu (1272_CR6) 2022; 135
C Wisultschew (1272_CR28) 2021; 9
G Cheng (1272_CR7) 2022; 60
C Lin (1272_CR22) 2022; 34
W Xu (1272_CR29) 2021; 104
P Sambandam Raju (1272_CR24) 2019; 19
ML Hänel (1272_CR13) 2021; 22
K Yang (1272_CR14) 2021; 24
S Fan (1272_CR20) 2021; 70
SH Gao (1272_CR33) 2019; 43
Q Zhang (1272_CR16) 2022; 34
Z Huang (1272_CR18) 2022; 31
YY Chen (1272_CR27) 2022; 10
FU Ullah (1272_CR30) 2021; 18
1272_CR23
K Muchtar (1272_CR4) 2022; 10
L Zhou (1272_CR21) 2020; 8
R Sharma (1272_CR1) 2021; 3
G Yan (1272_CR36) 2022; 27
Z Zheng (1272_CR9) 2021; 9
P Qian (1272_CR2) 2020; 22
X Zhou (1272_CR5) 2021; 8
T Ma (1272_CR10) 2021; 224
T Kong (1272_CR17) 2020; 29
1272_CR3
Q Zhou (1272_CR12) 2021; 26
S Bouaafia (1272_CR31) 2022; 34
Y Liu (1272_CR25) 2021; 114
S Wan (1272_CR35) 2022; 121
References_xml – volume: 10
  start-page: 93745
  year: 2022
  end-page: 93759
  ident: CR27
  article-title: Distributed real-time object detection based on edge-cloud collaboration for smart video surveillance applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3203053
– volume: 9
  start-page: 60244
  year: 2021
  end-page: 60257
  ident: CR8
  article-title: Cascade centernet: robust object detection for power line surveillance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072901
– volume: 24
  start-page: 1956
  year: 2021
  end-page: 1967
  ident: CR14
  article-title: Siam corners: Siamese corner networks for visual tracking
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2021.3074239
– volume: 34
  start-page: 10812
  issue: 12
  year: 2022
  end-page: 10822
  ident: CR22
  article-title: 3D-DFM: anchor-free multimodal 3-D object detection with dynamic fusion module for autonomous driving
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3171553
– volume: 22
  start-page: 5278
  issue: 6
  year: 2021
  end-page: 5287
  ident: CR13
  article-title: Efficient global optimization of non-differentiable symmetric objectives for multi camera placement
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3086037
– ident: CR37
– volume: 224
  year: 2021
  ident: CR10
  article-title: An anchor-free object detector with novel corner matching method
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107083
– volume: 131
  year: 2022
  ident: CR11
  article-title: DSLA: dynamic smooth label assignment for efficient anchor-free object detection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.108868
– volume: 27
  start-page: 1252
  issue: 3
  year: 2022
  end-page: 1261
  ident: CR36
  article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-022-01939-1
– volume: 10
  start-page: 89181
  year: 2022
  end-page: 89196
  ident: CR4
  article-title: Moving pedestrian localization and detection with guided filtering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3199753
– volume: 60
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR7
  article-title: Anchor-free oriented proposal generator for object detection
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 18
  start-page: 5359
  issue: 8
  year: 2021
  end-page: 5370
  ident: CR30
  article-title: AI-assisted edge vision for violence detection in iot-based industrial surveillance networks
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3116377
– volume: 104
  start-page: 107236
  year: 2021
  ident: CR29
  article-title: Multi-scale skeleton adaptive weighted GCN for skeleton-based human action recognition in IoT
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107236
– volume: 8
  start-page: 223373
  year: 2020
  end-page: 223384
  ident: CR21
  article-title: Arbitrary-oriented object detection in remote sensing images based on polar coordinates
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041025
– volume: 22
  start-page: 4962
  issue: 8
  year: 2020
  end-page: 4974
  ident: CR26
  article-title: A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2984197
– volume: 9
  start-page: 35718
  year: 2021
  end-page: 35729
  ident: CR28
  article-title: 3D-LIDAR based object detection and tracking on the edge of IoT for railway level crossing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062220
– ident: CR23
– volume: 135
  start-page: 109071
  year: 2022
  ident: CR6
  article-title: Centre and scale prediction: Anchor-free approach for pedestrian and face detection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.109071
– volume: 114
  year: 2021
  ident: CR25
  article-title: Light-weight AI and IoT collaboration for surveillance video pre-processing
  publication-title: J Syst Architect
  doi: 10.1016/j.sysarc.2020.101934
– volume: 8
  start-page: 12588
  issue: 16
  year: 2021
  end-page: 12596
  ident: CR5
  article-title: Deep-learning-enhanced multitarget detection for end–edge–cloud surveillance in smart IoT
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3077449
– volume: 34
  start-page: 10653
  issue: 12
  year: 2022
  end-page: 10667
  ident: CR16
  article-title: Single-frame-based deep view synchronization for unsynchronized multicamera surveillance
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3170642
– volume: 29
  start-page: 7389
  year: 2020
  end-page: 7398
  ident: CR17
  article-title: Fovea box: beyond anchor-based object detection
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3002345
– volume: 31
  start-page: 1895
  year: 2022
  end-page: 1910
  ident: CR18
  article-title: A general Gaussian heat map label assignment for arbitrary-oriented object detection
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3148874
– volume: 9
  start-page: 21593
  year: 2021
  end-page: 21603
  ident: CR9
  article-title: Real-time enumeration of metro passenger volume using anchor-free object detection network on edge devices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054938
– volume: 121
  year: 2022
  ident: CR35
  article-title: Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108146
– ident: CR3
– ident: CR15
– volume: 19
  start-page: 2032
  issue: 9
  year: 2019
  ident: CR24
  article-title: Design, implementation and power analysis of pervasive adaptive resourceful smart lighting and alerting devices in developing countries supporting incandescent and led light bulbs
  publication-title: Sensors
  doi: 10.3390/s19092032
– ident: CR38
– volume: 26
  start-page: 77
  issue: 1
  year: 2021
  end-page: 87
  ident: CR12
  article-title: RSANet: towards real-time object detection with residual semantic-guided attention feature pyramid network
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-020-01723-z
– ident: CR32
– volume: 43
  start-page: 652
  issue: 2
  year: 2019
  end-page: 662
  ident: CR33
  article-title: Res2net: a new multi-scale backbone architecture
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2938758
– ident: CR34
– volume: 70
  start-page: 121
  issue: 1
  year: 2021
  end-page: 132
  ident: CR20
  article-title: FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3049805
– volume: 34
  start-page: 14135
  issue: 17
  year: 2022
  end-page: 14149
  ident: CR31
  article-title: Deep learning-based video quality enhancement for the new versatile video coding
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06491-9
– volume: 23
  start-page: 12953
  issue: 8
  year: 2021
  end-page: 12965
  ident: CR19
  article-title: CenterNet3D: an anchor free object detector for point cloud
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3118698
– volume: 3
  start-page: 55
  issue: 02
  year: 2021
  end-page: 69
  ident: CR1
  article-title: An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance
  publication-title: J Soft Comput Paradigm
  doi: 10.36548/jscp.2021.2.001
– volume: 22
  start-page: 1817
  issue: 3
  year: 2020
  end-page: 1826
  ident: CR2
  article-title: Residual-network-leveraged vehicle-thrown-waste identification in real-time traffic surveillance videos
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3015530
– volume: 60
  start-page: 1
  year: 2022
  ident: 1272_CR7
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 43
  start-page: 652
  issue: 2
  year: 2019
  ident: 1272_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2938758
– volume: 24
  start-page: 1956
  year: 2021
  ident: 1272_CR14
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2021.3074239
– volume: 104
  start-page: 107236
  year: 2021
  ident: 1272_CR29
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107236
– volume: 10
  start-page: 89181
  year: 2022
  ident: 1272_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3199753
– volume: 8
  start-page: 223373
  year: 2020
  ident: 1272_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041025
– ident: 1272_CR3
  doi: 10.1007/s11042-022-13773-4
– volume: 8
  start-page: 12588
  issue: 16
  year: 2021
  ident: 1272_CR5
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3077449
– ident: 1272_CR15
  doi: 10.1007/978-3-030-58580-8_24
– volume: 121
  year: 2022
  ident: 1272_CR35
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108146
– volume: 23
  start-page: 12953
  issue: 8
  year: 2021
  ident: 1272_CR19
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3118698
– ident: 1272_CR38
  doi: 10.1109/ICCV.2019.00667
– volume: 31
  start-page: 1895
  year: 2022
  ident: 1272_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3148874
– volume: 70
  start-page: 121
  issue: 1
  year: 2021
  ident: 1272_CR20
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2021.3049805
– volume: 27
  start-page: 1252
  issue: 3
  year: 2022
  ident: 1272_CR36
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-022-01939-1
– volume: 22
  start-page: 4962
  issue: 8
  year: 2020
  ident: 1272_CR26
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2984197
– volume: 10
  start-page: 93745
  year: 2022
  ident: 1272_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3203053
– volume: 22
  start-page: 5278
  issue: 6
  year: 2021
  ident: 1272_CR13
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3086037
– volume: 34
  start-page: 14135
  issue: 17
  year: 2022
  ident: 1272_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06491-9
– volume: 34
  start-page: 10653
  issue: 12
  year: 2022
  ident: 1272_CR16
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3170642
– volume: 29
  start-page: 7389
  year: 2020
  ident: 1272_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3002345
– ident: 1272_CR23
  doi: 10.1007/978-981-15-8097-0
– volume: 9
  start-page: 35718
  year: 2021
  ident: 1272_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062220
– volume: 18
  start-page: 5359
  issue: 8
  year: 2021
  ident: 1272_CR30
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2021.3116377
– volume: 9
  start-page: 21593
  year: 2021
  ident: 1272_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054938
– volume: 22
  start-page: 1817
  issue: 3
  year: 2020
  ident: 1272_CR2
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3015530
– volume: 224
  year: 2021
  ident: 1272_CR10
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107083
– ident: 1272_CR32
  doi: 10.1109/ICCV.2011.6126544
– volume: 3
  start-page: 55
  issue: 02
  year: 2021
  ident: 1272_CR1
  publication-title: J Soft Comput Paradigm
  doi: 10.36548/jscp.2021.2.001
– volume: 34
  start-page: 10812
  issue: 12
  year: 2022
  ident: 1272_CR22
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3171553
– volume: 26
  start-page: 77
  issue: 1
  year: 2021
  ident: 1272_CR12
  publication-title: Mobile Netw Appl
  doi: 10.1007/s11036-020-01723-z
– volume: 135
  start-page: 109071
  year: 2022
  ident: 1272_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.109071
– ident: 1272_CR34
  doi: 10.1007/978-3-319-46448-0_2
– volume: 9
  start-page: 60244
  year: 2021
  ident: 1272_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072901
– volume: 19
  start-page: 2032
  issue: 9
  year: 2019
  ident: 1272_CR24
  publication-title: Sensors
  doi: 10.3390/s19092032
– ident: 1272_CR37
  doi: 10.1007/978-3-030-01264-9_45
– volume: 131
  year: 2022
  ident: 1272_CR11
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2022.108868
– volume: 114
  year: 2021
  ident: 1272_CR25
  publication-title: J Syst Architect
  doi: 10.1016/j.sysarc.2020.101934
SSID ssj0033328
Score 2.3555095
Snippet With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accelerated tests
Accuracy
Algorithms
Bandwidths
Cameras
Compression ratio
Computer networks
Computer Science
Edge computing
Feature maps
Frames (data processing)
Internet of Things
Modules
Network latency
Object recognition
Pattern Recognition
Representations
Storage capacity
Surveillance
Surveillance systems
Theoretical Advances
Video transmission
Title Aka-Net: anchor free-based object detection network for surveillance video transmission in the IOT edge computing environment
URI https://link.springer.com/article/10.1007/s10044-024-01272-1
https://www.proquest.com/docview/3050972329
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu7DwRhRKdQMbWErsOG7YKtRSQJSllcoU2Y4tEFKK2pSN_845TdSCYGDJ4EROlO_s7-58D0IuZISsnMWCdrWQaKCECUUzSNPABUwlJkTO9H7Ix1E8nET3UzGtksIWdbR7fSRZ7tQbyW5BFFHkFOqPSxlFm6cp0Hb3gVwT1qv3X8552VEVFQFOpYjCKlXm9zm-09Fax_xxLFqyzWCP7FRqIvRWuO6TLZsfkN1KZYRqQS5wqO7KUI8dks_em6IjW1wDAvoym4ObW0s9W2Uw097tApktygisHPJVFDig6gqL5fzD-iZEOA349LwZFJ7JUBK8Sw1ec0BtEe6exuCdcGDKV-Pnw0a23BGZDPrjmyGtmixQw2RQUCF1wjOZCIEQBVJ2Q2RNpbqhUkKLJJJ44S6MM5fYTChfyNa4OFMmEEY5JfkxaeSz3J4QMEYYFAnmuNWRcCJhSseGMc2Y1I7rFrms_3X6vqqlka6rJntkUkQmLZFJwxZp13Ck1bpapNyXq5GoBSYtclVDtL7992yn_3v8jGyzUkq8u6VNGsV8ac9R-yh0hzR7t88P_U4pdF-M69OF
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDLDwjSgUuIENLCV2HDdsFaJqoS1LK3WLbMcWCClFbcrGf-ecJmpBMLBkcCInyjv7PZ99d4RcywhZOYsFbWkhcYESJhSXQZoGLmAqMSFypvdDDoZxdxw9TsSkCgqb16fd6y3JcqZeC3YLoogip1C_Xcoornm2UAy0vC2PWbuefznnZUVVFAKcShGFVajM7318p6OVxvyxLVqyTWef7FYyEdpLXA_Ihs0PyV4lGaEakHNsqqsy1G1H5LP9pujQFneAgL5MZ-Bm1lLPVhlMtXe7QGaL8gRWDvnyFDigdIX5YvZhfREi7AZ8eN4UCs9kaAnepQavOaBahN7zCLwTDkz5avx8WIuWOybjzsPovkurIgvUMBkUVEid8EwmQiBEgZStEFlTqVaolNAiiSReuAvjzCU2E8onsjUuzpQJhFFOSX5CNvNpbk8JGCMMmgRz3OpIOJEwpWPDmGZMasd1g9zU_zp9X-bSSFdZkz0yKSKTlsikYYM0azjSalzNU-7T1UhUgUmD3NYQrW7_3dvZ_x6_Itvd0aCf9nvDp3Oyw0qL8a6XJtksZgt7gUqk0Jel4X0BBbzU5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0R53sAGVhM7jhu2Cqh4FoZW6hbZji0QUlq1gY3_zjlN1IJgYMngRE7k75zv89l3R8ipjJCVs1jQthYSFyhhQnEZpGngAqYSEyJnej_kYy--GUR3QzFciOIvT7vXW5KzmAafpSkvWuPMtRYC34Ioosgv1G-dMorrn-XIRwOjRQ9Yp_4Xc87L6qooCjiVIgqrsJnf-_hOTXO9-WOLtGSe7gZZqyQjdGYYb5Ilm2-R9Uo-QjU5p9hUV2io27bJZ-dN0Z4tLgDBfRlNwE2spZ65Mhhp74KBzBblaawc8tmJcEAZC9P3yYf1BYmwG_CheiMoPKuhVXj3GrzmgMoRbp_64B1yYMpX4-fDQuTcDhl0r_uXN7QquEANk0FBhdQJz2QiBMIVSNkOkUGVaodKCS2SSOKFuzDOXGIzoXxSW-PiTJlAGOWU5LukkY9yu0fAGGHQPJjjVkfCiYQpHRvGNGNSO66b5Kwe63Q8y6uRzjMoe2RSRCYtkUnDJjms4UirOTZNuU9dI1ERJk1yXkM0v_13b_v_e_yErDxfddOH2979AVllpcF4L8whaRSTd3uEoqTQx6XdfQFFkNkX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aka-Net%3A+anchor+free-based+object+detection+network+for+surveillance+video+transmission+in+the+IOT+edge+computing+environment&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Sambandam+Raju%2C+Preethi&rft.au=Arumugam+Rajendran%2C+Revathi&rft.au=Mahalingam%2C+Murugan&rft.date=2024-06-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01272-1&rft.externalDocID=10_1007_s10044_024_01272_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon