Aka-Net: anchor free-based object detection network for surveillance video transmission in the IOT edge computing environment
With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading to increased transmission burden. Existing video pre-processing techniques often focus on reducing the number of frames without considering accuracy and fail to effectively handle both spatial and temporal redundancies simultaneously. To address these issues, an anchor-free key action point network (AKA-Net) is proposed for video pre-processing in the IoT-edge computing environment. The oriented Features from Accelerated Segment Test (FAST) and rotated Binary Robust Independent Elementary Features (BRIEF) (ORB) feature descriptor is employed to remove duplicate frames, leading to more compact and efficient video representation. The AKA-Net's major contributions include its powerful representation capabilities achieved through the bottleneck module in the information-transferring backbone network, which effectively captures multi-scale features. The information-transferring module helps to improve the performance of the object detection algorithm for video pre-processing by fusing the complementary information from different scales. This allows the algorithm to detect objects of different sizes more accurately, making it highly effective for real-time video pre-processing tasks. Then, the key action point selection module that utilizes the self-attention mechanism is introduced to accurately select informative key action points. This enables efficient network transmission with lower bandwidth requirements, while maintaining high accuracy and low latency. It treats every pixel within the feature map as a temporal-spatial point and leverages self-attention to identify and select the most relevant keypoints. Experiments show that the proposed AKA-Net outperforms existing methods in terms of compression ratio of 54.2% and accuracy with a rate of 96.7%. By addressing spatial and temporal redundancies and optimizing key action point selection, AKA-Net offers a significant advancement in video pre-processing for smart surveillance systems, benefiting various IoT applications. |
---|---|
AbstractList | With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth challenges becomes crucial. The majority of successive frames from surveillance cameras contain redundant and irrelevant information, leading to increased transmission burden. Existing video pre-processing techniques often focus on reducing the number of frames without considering accuracy and fail to effectively handle both spatial and temporal redundancies simultaneously. To address these issues, an anchor-free key action point network (AKA-Net) is proposed for video pre-processing in the IoT-edge computing environment. The oriented Features from Accelerated Segment Test (FAST) and rotated Binary Robust Independent Elementary Features (BRIEF) (ORB) feature descriptor is employed to remove duplicate frames, leading to more compact and efficient video representation. The AKA-Net's major contributions include its powerful representation capabilities achieved through the bottleneck module in the information-transferring backbone network, which effectively captures multi-scale features. The information-transferring module helps to improve the performance of the object detection algorithm for video pre-processing by fusing the complementary information from different scales. This allows the algorithm to detect objects of different sizes more accurately, making it highly effective for real-time video pre-processing tasks. Then, the key action point selection module that utilizes the self-attention mechanism is introduced to accurately select informative key action points. This enables efficient network transmission with lower bandwidth requirements, while maintaining high accuracy and low latency. It treats every pixel within the feature map as a temporal-spatial point and leverages self-attention to identify and select the most relevant keypoints. Experiments show that the proposed AKA-Net outperforms existing methods in terms of compression ratio of 54.2% and accuracy with a rate of 96.7%. By addressing spatial and temporal redundancies and optimizing key action point selection, AKA-Net offers a significant advancement in video pre-processing for smart surveillance systems, benefiting various IoT applications. |
ArticleNumber | 56 |
Author | Sambandam Raju, Preethi Arumugam Rajendran, Revathi Mahalingam, Murugan |
Author_xml | – sequence: 1 givenname: Preethi surname: Sambandam Raju fullname: Sambandam Raju, Preethi email: srpreethi31090@gmail.com organization: Department of Electronics and Communication Engineering, SRM Valliammai Engineering College – sequence: 2 givenname: Revathi surname: Arumugam Rajendran fullname: Arumugam Rajendran, Revathi organization: School of Computer Science and Engineering, VIT University – sequence: 3 givenname: Murugan surname: Mahalingam fullname: Mahalingam, Murugan organization: Department of Electronics and Communication Engineering, SRM Valliammai Engineering College |
BookMark | eNp9kE9PAjEQxRuDiYh-AU9NPK-22y1lvRHiHxIiF0y8Nd3tLBTYFtuC8eB3t7hGbx7mzRx-703yzlHPOgsIXVFyQwkRtyFpUWQkT0NzkWf0BPVpwVgmOH_t_d4FPUPnIawJYYzloz76HG9U9gzxDitbr5zHjQfIKhVAY1etoY5YQ0zLOIstxHfnN7hJXNj7A5jtNtkAH4wGh6NXNrQmhCNrLI4rwNP5AoNeAq5du9tHY5cY7MF4Z1uw8QKdNmob4PJnD9DLw_1i8pTN5o_TyXiW1bkgMeOiKpkWJedMVESIEQXQSo2oUrziZSGSsIYOdVOC5oqzsqyboVY14bVqlGADdN3l7rx720OIcu323qaXkhFOSpGzvExU3lG1dyF4aOTOm1b5D0mJPNYsu5plqll-1yxpMrHOFBJsl-D_ov9xfQHLp4Qq |
Cites_doi | 10.1109/ACCESS.2022.3203053 10.1109/ACCESS.2021.3072901 10.1109/TMM.2021.3074239 10.1109/TNNLS.2022.3171553 10.1109/JSEN.2021.3086037 10.1016/j.knosys.2021.107083 10.1016/j.patcog.2022.108868 10.1007/s11036-022-01939-1 10.1109/ACCESS.2022.3199753 10.1109/TII.2021.3116377 10.1016/j.asoc.2021.107236 10.1109/ACCESS.2020.3041025 10.1109/TITS.2020.2984197 10.1109/ACCESS.2021.3062220 10.1016/j.patcog.2022.109071 10.1016/j.sysarc.2020.101934 10.1109/JIOT.2021.3077449 10.1109/TNNLS.2022.3170642 10.1109/TIP.2020.3002345 10.1109/TIP.2022.3148874 10.1109/ACCESS.2021.3054938 10.1016/j.patcog.2021.108146 10.3390/s19092032 10.1007/s11036-020-01723-z 10.1109/TPAMI.2019.2938758 10.1109/TVT.2021.3049805 10.1007/s00521-021-06491-9 10.1109/TITS.2021.3118698 10.36548/jscp.2021.2.001 10.1109/TITS.2020.3015530 10.1007/s11042-022-13773-4 10.1007/978-3-030-58580-8_24 10.1109/ICCV.2019.00667 10.1007/978-981-15-8097-0 10.1109/ICCV.2011.6126544 10.1007/978-3-319-46448-0_2 10.1007/978-3-030-01264-9_45 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-024-01272-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01272_1 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-57b93d795537b07781eedaa81aa5b5947b593f16df9ed5a5399cf6dac05cafa73 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sat Jul 26 00:00:31 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Fri Feb 21 02:41:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bandwidth reduction Anchor free network Internet of Things (IoT) Video transmission Edge computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-57b93d795537b07781eedaa81aa5b5947b593f16df9ed5a5399cf6dac05cafa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3050972329 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3050972329 crossref_primary_10_1007_s10044_024_01272_1 springer_journals_10_1007_s10044_024_01272_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Ma, Tian, Kuang, Xie (CR10) 2021; 224 Zhou, Xu, Liang, Zeng, Yan (CR5) 2021; 8 Dai, Yi, Jiang, Yang, Huang (CR8) 2021; 9 Wisultschew, Mujica, Lanza-Gutierrez, Portilla (CR28) 2021; 9 Su, He, Jiang, Zhang, Zou, Fan (CR11) 2022; 131 Bouaafia, Khemiri, Messaoud, Ben Ahmed, Sayadi (CR31) 2022; 34 CR38 CR15 CR37 Zheng, Liu, Wang, Fan, Dai (CR9) 2021; 9 Chen, Lin, Hu, Hsia, Lian, Jhong (CR27) 2022; 10 CR34 Yan, Woźniak (CR36) 2022; 27 CR32 Huang, Li, Xia, Tao (CR18) 2022; 31 Lin, Tian, Duan, Zhou, Zhao, Cao (CR22) 2022; 34 Zhou, Wang, Liu, Li, Ou, Jin (CR12) 2021; 26 Cheng, Wang, Li, Xie, Lang, Yao, Han (CR7) 2022; 60 Hänel, Schönlieb (CR13) 2021; 22 Fan, Zhu, Chen, Zhang, Tian, Lv, Wang (CR20) 2021; 70 Wan, Ding, Chen (CR35) 2022; 121 Sharma, Sangeetha (CR1) 2021; 3 Zhang, Chan (CR16) 2022; 34 Kong, Sun, Liu, Jiang, Li, Shi (CR17) 2020; 29 Ke, Zhuang, Pu, Wang (CR26) 2020; 22 Sambandam Raju, Mahalingam, Arumugam Rajendran (CR24) 2019; 19 CR3 Qian, Yuan, Yao, Fan, Zhang, Liu, Lu (CR2) 2020; 22 Muchtar, Bahri, Fitria, Cenggoro, Pardamean, Mahendra, Munggaran, Lin (CR4) 2022; 10 Xu, Wu, Zhu, Zhao (CR29) 2021; 104 CR23 Liu, Hasan, Liao (CR6) 2022; 135 Gao, Cheng, Zhao, Zhang, Yang, Torr (CR33) 2019; 43 Ullah, Muhammad, Haq, Khan, Heidari, Baik, de Albuquerque (CR30) 2021; 18 Yang, He, Pei, Zhou, Li, Yuan, Zhang (CR14) 2021; 24 Wang, Wu, Tian, Teng, Chen, Cao (CR19) 2021; 23 Zhou, Wei, Li, Zhao, Zhang, Zhang (CR21) 2020; 8 Liu, Kong, Chen, Xu, Wang (CR25) 2021; 114 1272_CR38 H Su (1272_CR11) 2022; 131 1272_CR15 1272_CR37 R Ke (1272_CR26) 2020; 22 1272_CR34 1272_CR32 Z Dai (1272_CR8) 2021; 9 G Wang (1272_CR19) 2021; 23 W Liu (1272_CR6) 2022; 135 C Wisultschew (1272_CR28) 2021; 9 G Cheng (1272_CR7) 2022; 60 C Lin (1272_CR22) 2022; 34 W Xu (1272_CR29) 2021; 104 P Sambandam Raju (1272_CR24) 2019; 19 ML Hänel (1272_CR13) 2021; 22 K Yang (1272_CR14) 2021; 24 S Fan (1272_CR20) 2021; 70 SH Gao (1272_CR33) 2019; 43 Q Zhang (1272_CR16) 2022; 34 Z Huang (1272_CR18) 2022; 31 YY Chen (1272_CR27) 2022; 10 FU Ullah (1272_CR30) 2021; 18 1272_CR23 K Muchtar (1272_CR4) 2022; 10 L Zhou (1272_CR21) 2020; 8 R Sharma (1272_CR1) 2021; 3 G Yan (1272_CR36) 2022; 27 Z Zheng (1272_CR9) 2021; 9 P Qian (1272_CR2) 2020; 22 X Zhou (1272_CR5) 2021; 8 T Ma (1272_CR10) 2021; 224 T Kong (1272_CR17) 2020; 29 1272_CR3 Q Zhou (1272_CR12) 2021; 26 S Bouaafia (1272_CR31) 2022; 34 Y Liu (1272_CR25) 2021; 114 S Wan (1272_CR35) 2022; 121 |
References_xml | – volume: 10 start-page: 93745 year: 2022 end-page: 93759 ident: CR27 article-title: Distributed real-time object detection based on edge-cloud collaboration for smart video surveillance applications publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3203053 – volume: 9 start-page: 60244 year: 2021 end-page: 60257 ident: CR8 article-title: Cascade centernet: robust object detection for power line surveillance publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072901 – volume: 24 start-page: 1956 year: 2021 end-page: 1967 ident: CR14 article-title: Siam corners: Siamese corner networks for visual tracking publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2021.3074239 – volume: 34 start-page: 10812 issue: 12 year: 2022 end-page: 10822 ident: CR22 article-title: 3D-DFM: anchor-free multimodal 3-D object detection with dynamic fusion module for autonomous driving publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3171553 – volume: 22 start-page: 5278 issue: 6 year: 2021 end-page: 5287 ident: CR13 article-title: Efficient global optimization of non-differentiable symmetric objectives for multi camera placement publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3086037 – ident: CR37 – volume: 224 year: 2021 ident: CR10 article-title: An anchor-free object detector with novel corner matching method publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107083 – volume: 131 year: 2022 ident: CR11 article-title: DSLA: dynamic smooth label assignment for efficient anchor-free object detection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108868 – volume: 27 start-page: 1252 issue: 3 year: 2022 end-page: 1261 ident: CR36 article-title: Accurate key frame extraction algorithm of video action for aerobics online teaching publication-title: Mobile Netw Appl doi: 10.1007/s11036-022-01939-1 – volume: 10 start-page: 89181 year: 2022 end-page: 89196 ident: CR4 article-title: Moving pedestrian localization and detection with guided filtering publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3199753 – volume: 60 start-page: 1 year: 2022 end-page: 11 ident: CR7 article-title: Anchor-free oriented proposal generator for object detection publication-title: IEEE Trans Geosci Remote Sens – volume: 18 start-page: 5359 issue: 8 year: 2021 end-page: 5370 ident: CR30 article-title: AI-assisted edge vision for violence detection in iot-based industrial surveillance networks publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3116377 – volume: 104 start-page: 107236 year: 2021 ident: CR29 article-title: Multi-scale skeleton adaptive weighted GCN for skeleton-based human action recognition in IoT publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107236 – volume: 8 start-page: 223373 year: 2020 end-page: 223384 ident: CR21 article-title: Arbitrary-oriented object detection in remote sensing images based on polar coordinates publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041025 – volume: 22 start-page: 4962 issue: 8 year: 2020 end-page: 4974 ident: CR26 article-title: A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2984197 – volume: 9 start-page: 35718 year: 2021 end-page: 35729 ident: CR28 article-title: 3D-LIDAR based object detection and tracking on the edge of IoT for railway level crossing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062220 – ident: CR23 – volume: 135 start-page: 109071 year: 2022 ident: CR6 article-title: Centre and scale prediction: Anchor-free approach for pedestrian and face detection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.109071 – volume: 114 year: 2021 ident: CR25 article-title: Light-weight AI and IoT collaboration for surveillance video pre-processing publication-title: J Syst Architect doi: 10.1016/j.sysarc.2020.101934 – volume: 8 start-page: 12588 issue: 16 year: 2021 end-page: 12596 ident: CR5 article-title: Deep-learning-enhanced multitarget detection for end–edge–cloud surveillance in smart IoT publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3077449 – volume: 34 start-page: 10653 issue: 12 year: 2022 end-page: 10667 ident: CR16 article-title: Single-frame-based deep view synchronization for unsynchronized multicamera surveillance publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3170642 – volume: 29 start-page: 7389 year: 2020 end-page: 7398 ident: CR17 article-title: Fovea box: beyond anchor-based object detection publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3002345 – volume: 31 start-page: 1895 year: 2022 end-page: 1910 ident: CR18 article-title: A general Gaussian heat map label assignment for arbitrary-oriented object detection publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3148874 – volume: 9 start-page: 21593 year: 2021 end-page: 21603 ident: CR9 article-title: Real-time enumeration of metro passenger volume using anchor-free object detection network on edge devices publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054938 – volume: 121 year: 2022 ident: CR35 article-title: Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108146 – ident: CR3 – ident: CR15 – volume: 19 start-page: 2032 issue: 9 year: 2019 ident: CR24 article-title: Design, implementation and power analysis of pervasive adaptive resourceful smart lighting and alerting devices in developing countries supporting incandescent and led light bulbs publication-title: Sensors doi: 10.3390/s19092032 – ident: CR38 – volume: 26 start-page: 77 issue: 1 year: 2021 end-page: 87 ident: CR12 article-title: RSANet: towards real-time object detection with residual semantic-guided attention feature pyramid network publication-title: Mobile Netw Appl doi: 10.1007/s11036-020-01723-z – ident: CR32 – volume: 43 start-page: 652 issue: 2 year: 2019 end-page: 662 ident: CR33 article-title: Res2net: a new multi-scale backbone architecture publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2938758 – ident: CR34 – volume: 70 start-page: 121 issue: 1 year: 2021 end-page: 132 ident: CR20 article-title: FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3049805 – volume: 34 start-page: 14135 issue: 17 year: 2022 end-page: 14149 ident: CR31 article-title: Deep learning-based video quality enhancement for the new versatile video coding publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06491-9 – volume: 23 start-page: 12953 issue: 8 year: 2021 end-page: 12965 ident: CR19 article-title: CenterNet3D: an anchor free object detector for point cloud publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3118698 – volume: 3 start-page: 55 issue: 02 year: 2021 end-page: 69 ident: CR1 article-title: An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance publication-title: J Soft Comput Paradigm doi: 10.36548/jscp.2021.2.001 – volume: 22 start-page: 1817 issue: 3 year: 2020 end-page: 1826 ident: CR2 article-title: Residual-network-leveraged vehicle-thrown-waste identification in real-time traffic surveillance videos publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3015530 – volume: 60 start-page: 1 year: 2022 ident: 1272_CR7 publication-title: IEEE Trans Geosci Remote Sens – volume: 43 start-page: 652 issue: 2 year: 2019 ident: 1272_CR33 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2938758 – volume: 24 start-page: 1956 year: 2021 ident: 1272_CR14 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2021.3074239 – volume: 104 start-page: 107236 year: 2021 ident: 1272_CR29 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107236 – volume: 10 start-page: 89181 year: 2022 ident: 1272_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3199753 – volume: 8 start-page: 223373 year: 2020 ident: 1272_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041025 – ident: 1272_CR3 doi: 10.1007/s11042-022-13773-4 – volume: 8 start-page: 12588 issue: 16 year: 2021 ident: 1272_CR5 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3077449 – ident: 1272_CR15 doi: 10.1007/978-3-030-58580-8_24 – volume: 121 year: 2022 ident: 1272_CR35 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108146 – volume: 23 start-page: 12953 issue: 8 year: 2021 ident: 1272_CR19 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3118698 – ident: 1272_CR38 doi: 10.1109/ICCV.2019.00667 – volume: 31 start-page: 1895 year: 2022 ident: 1272_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3148874 – volume: 70 start-page: 121 issue: 1 year: 2021 ident: 1272_CR20 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2021.3049805 – volume: 27 start-page: 1252 issue: 3 year: 2022 ident: 1272_CR36 publication-title: Mobile Netw Appl doi: 10.1007/s11036-022-01939-1 – volume: 22 start-page: 4962 issue: 8 year: 2020 ident: 1272_CR26 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2984197 – volume: 10 start-page: 93745 year: 2022 ident: 1272_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3203053 – volume: 22 start-page: 5278 issue: 6 year: 2021 ident: 1272_CR13 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3086037 – volume: 34 start-page: 14135 issue: 17 year: 2022 ident: 1272_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06491-9 – volume: 34 start-page: 10653 issue: 12 year: 2022 ident: 1272_CR16 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3170642 – volume: 29 start-page: 7389 year: 2020 ident: 1272_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3002345 – ident: 1272_CR23 doi: 10.1007/978-981-15-8097-0 – volume: 9 start-page: 35718 year: 2021 ident: 1272_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062220 – volume: 18 start-page: 5359 issue: 8 year: 2021 ident: 1272_CR30 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2021.3116377 – volume: 9 start-page: 21593 year: 2021 ident: 1272_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054938 – volume: 22 start-page: 1817 issue: 3 year: 2020 ident: 1272_CR2 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3015530 – volume: 224 year: 2021 ident: 1272_CR10 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107083 – ident: 1272_CR32 doi: 10.1109/ICCV.2011.6126544 – volume: 3 start-page: 55 issue: 02 year: 2021 ident: 1272_CR1 publication-title: J Soft Comput Paradigm doi: 10.36548/jscp.2021.2.001 – volume: 34 start-page: 10812 issue: 12 year: 2022 ident: 1272_CR22 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3171553 – volume: 26 start-page: 77 issue: 1 year: 2021 ident: 1272_CR12 publication-title: Mobile Netw Appl doi: 10.1007/s11036-020-01723-z – volume: 135 start-page: 109071 year: 2022 ident: 1272_CR6 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.109071 – ident: 1272_CR34 doi: 10.1007/978-3-319-46448-0_2 – volume: 9 start-page: 60244 year: 2021 ident: 1272_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072901 – volume: 19 start-page: 2032 issue: 9 year: 2019 ident: 1272_CR24 publication-title: Sensors doi: 10.3390/s19092032 – ident: 1272_CR37 doi: 10.1007/978-3-030-01264-9_45 – volume: 131 year: 2022 ident: 1272_CR11 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2022.108868 – volume: 114 year: 2021 ident: 1272_CR25 publication-title: J Syst Architect doi: 10.1016/j.sysarc.2020.101934 |
SSID | ssj0033328 |
Score | 2.3555095 |
Snippet | With the growing use of wireless surveillance cameras in (Internet of things) IoT applications the need to address storage capacity and transmission bandwidth... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Accelerated tests Accuracy Algorithms Bandwidths Cameras Compression ratio Computer networks Computer Science Edge computing Feature maps Frames (data processing) Internet of Things Modules Network latency Object recognition Pattern Recognition Representations Storage capacity Surveillance Surveillance systems Theoretical Advances Video transmission |
Title | Aka-Net: anchor free-based object detection network for surveillance video transmission in the IOT edge computing environment |
URI | https://link.springer.com/article/10.1007/s10044-024-01272-1 https://www.proquest.com/docview/3050972329 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu7DwRhRKdQMbWErsOG7YKtRSQJSllcoU2Y4tEFKK2pSN_845TdSCYGDJ4EROlO_s7-58D0IuZISsnMWCdrWQaKCECUUzSNPABUwlJkTO9H7Ix1E8nET3UzGtksIWdbR7fSRZ7tQbyW5BFFHkFOqPSxlFm6cp0Hb3gVwT1qv3X8552VEVFQFOpYjCKlXm9zm-09Fax_xxLFqyzWCP7FRqIvRWuO6TLZsfkN1KZYRqQS5wqO7KUI8dks_em6IjW1wDAvoym4ObW0s9W2Uw097tApktygisHPJVFDig6gqL5fzD-iZEOA349LwZFJ7JUBK8Sw1ec0BtEe6exuCdcGDKV-Pnw0a23BGZDPrjmyGtmixQw2RQUCF1wjOZCIEQBVJ2Q2RNpbqhUkKLJJJ44S6MM5fYTChfyNa4OFMmEEY5JfkxaeSz3J4QMEYYFAnmuNWRcCJhSseGMc2Y1I7rFrms_3X6vqqlka6rJntkUkQmLZFJwxZp13Ck1bpapNyXq5GoBSYtclVDtL7992yn_3v8jGyzUkq8u6VNGsV8ac9R-yh0hzR7t88P_U4pdF-M69OF |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDLDwjSgUuIENLCV2HDdsFaJqoS1LK3WLbMcWCClFbcrGf-ecJmpBMLBkcCInyjv7PZ99d4RcywhZOYsFbWkhcYESJhSXQZoGLmAqMSFypvdDDoZxdxw9TsSkCgqb16fd6y3JcqZeC3YLoogip1C_Xcoornm2UAy0vC2PWbuefznnZUVVFAKcShGFVajM7318p6OVxvyxLVqyTWef7FYyEdpLXA_Ihs0PyV4lGaEakHNsqqsy1G1H5LP9pujQFneAgL5MZ-Bm1lLPVhlMtXe7QGaL8gRWDvnyFDigdIX5YvZhfREi7AZ8eN4UCs9kaAnepQavOaBahN7zCLwTDkz5avx8WIuWOybjzsPovkurIgvUMBkUVEid8EwmQiBEgZStEFlTqVaolNAiiSReuAvjzCU2E8onsjUuzpQJhFFOSX5CNvNpbk8JGCMMmgRz3OpIOJEwpWPDmGZMasd1g9zU_zp9X-bSSFdZkz0yKSKTlsikYYM0azjSalzNU-7T1UhUgUmD3NYQrW7_3dvZ_x6_Itvd0aCf9nvDp3Oyw0qL8a6XJtksZgt7gUqk0Jel4X0BBbzU5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0R53sAGVhM7jhu2Cqh4FoZW6hbZji0QUlq1gY3_zjlN1IJgYMngRE7k75zv89l3R8ipjJCVs1jQthYSFyhhQnEZpGngAqYSEyJnej_kYy--GUR3QzFciOIvT7vXW5KzmAafpSkvWuPMtRYC34Ioosgv1G-dMorrn-XIRwOjRQ9Yp_4Xc87L6qooCjiVIgqrsJnf-_hOTXO9-WOLtGSe7gZZqyQjdGYYb5Ilm2-R9Uo-QjU5p9hUV2io27bJZ-dN0Z4tLgDBfRlNwE2spZ65Mhhp74KBzBblaawc8tmJcEAZC9P3yYf1BYmwG_CheiMoPKuhVXj3GrzmgMoRbp_64B1yYMpX4-fDQuTcDhl0r_uXN7QquEANk0FBhdQJz2QiBMIVSNkOkUGVaodKCS2SSOKFuzDOXGIzoXxSW-PiTJlAGOWU5LukkY9yu0fAGGHQPJjjVkfCiYQpHRvGNGNSO66b5Kwe63Q8y6uRzjMoe2RSRCYtkUnDJjms4UirOTZNuU9dI1ERJk1yXkM0v_13b_v_e_yErDxfddOH2979AVllpcF4L8whaRSTd3uEoqTQx6XdfQFFkNkX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aka-Net%3A+anchor+free-based+object+detection+network+for+surveillance+video+transmission+in+the+IOT+edge+computing+environment&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Sambandam+Raju%2C+Preethi&rft.au=Arumugam+Rajendran%2C+Revathi&rft.au=Mahalingam%2C+Murugan&rft.date=2024-06-01&rft.pub=Springer+London&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-024-01272-1&rft.externalDocID=10_1007_s10044_024_01272_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |