A 3-V high-voltage and long-life magnesium-potassium hybrid ion battery
Magnesium-ion batteries are promising candidates for the next-generation energy storage systems. However, their development is restricted by the shortage of advanced insertion-type positive electrodes. Hybrid-ion batteries, which combine the facile alkali metal ions extraction/insertion of the catho...
Saved in:
Published in | Ionics Vol. 30; no. 7; pp. 4055 - 4062 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnesium-ion batteries are promising candidates for the next-generation energy storage systems. However, their development is restricted by the shortage of advanced insertion-type positive electrodes. Hybrid-ion batteries, which combine the facile alkali metal ions extraction/insertion of the cathode with the low-cost and high-safety magnesium metal anode, can harness the individual benefits of both electrodes and achieve satisfactory electrochemical performance. We present a high-performance magnesium-potassium hybrid ion battery utilizing a magnesium-potassium hybrid ion electrolyte, a magnesium metal anode, and a Prussian blue analogue cathode. The battery exhibits a discharge voltage of up to 3.0 V and delivers a reversible specific capacity of 120 mAh/g, resulting in an impressive energy density of 360 Wh/kg (based on the cathode mass only). Moreover, the battery demonstrates exceptional cycling stability, maintaining a capacity retention rate of 96% after 500 charge–discharge cycles at a current density of 50 mA/g. The reaction mechanism and energy storage mechanism of the hybrid ion battery were studied using various electrochemical testing methods and X-ray diffraction analysis. This work may provide new ideas and inspire the effort for the advancement of superior magnesium hybrid ion batteries. |
---|---|
AbstractList | Magnesium-ion batteries are promising candidates for the next-generation energy storage systems. However, their development is restricted by the shortage of advanced insertion-type positive electrodes. Hybrid-ion batteries, which combine the facile alkali metal ions extraction/insertion of the cathode with the low-cost and high-safety magnesium metal anode, can harness the individual benefits of both electrodes and achieve satisfactory electrochemical performance. We present a high-performance magnesium-potassium hybrid ion battery utilizing a magnesium-potassium hybrid ion electrolyte, a magnesium metal anode, and a Prussian blue analogue cathode. The battery exhibits a discharge voltage of up to 3.0 V and delivers a reversible specific capacity of 120 mAh/g, resulting in an impressive energy density of 360 Wh/kg (based on the cathode mass only). Moreover, the battery demonstrates exceptional cycling stability, maintaining a capacity retention rate of 96% after 500 charge–discharge cycles at a current density of 50 mA/g. The reaction mechanism and energy storage mechanism of the hybrid ion battery were studied using various electrochemical testing methods and X-ray diffraction analysis. This work may provide new ideas and inspire the effort for the advancement of superior magnesium hybrid ion batteries. Magnesium-ion batteries are promising candidates for the next-generation energy storage systems. However, their development is restricted by the shortage of advanced insertion-type positive electrodes. Hybrid-ion batteries, which combine the facile alkali metal ions extraction/insertion of the cathode with the low-cost and high-safety magnesium metal anode, can harness the individual benefits of both electrodes and achieve satisfactory electrochemical performance. We present a high-performance magnesium-potassium hybrid ion battery utilizing a magnesium-potassium hybrid ion electrolyte, a magnesium metal anode, and a Prussian blue analogue cathode. The battery exhibits a discharge voltage of up to 3.0 V and delivers a reversible specific capacity of 120 mAh/g, resulting in an impressive energy density of 360 Wh/kg (based on the cathode mass only). Moreover, the battery demonstrates exceptional cycling stability, maintaining a capacity retention rate of 96% after 500 charge–discharge cycles at a current density of 50 mA/g. The reaction mechanism and energy storage mechanism of the hybrid ion battery were studied using various electrochemical testing methods and X-ray diffraction analysis. This work may provide new ideas and inspire the effort for the advancement of superior magnesium hybrid ion batteries. |
Author | Fu, Zhao Sun, Chuan-Fu Deng, Wenzhuo Tan, Jinshuo |
Author_xml | – sequence: 1 givenname: Zhao surname: Fu fullname: Fu, Zhao organization: College of Chemistry, Fuzhou University, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences – sequence: 2 givenname: Jinshuo surname: Tan fullname: Tan, Jinshuo organization: College of Chemistry, Fuzhou University, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences – sequence: 3 givenname: Chuan-Fu surname: Sun fullname: Sun, Chuan-Fu email: cfsun@fjirsm.ac.cn organization: CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences – sequence: 4 givenname: Wenzhuo surname: Deng fullname: Deng, Wenzhuo email: wzdeng@fjirsm.ac.cn organization: CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9HJx27SYylahYIX9RqSbrLdsk1qshX237t1BW-eZg7v8w7zzNAkxOAQuqVwTwHkQ6a0UJQAEwSKQiyIvEBTqkpGQJYwQVNYCEkkCHmFZjnvAcqSMjlF6yXm5APvmnpHvmLbmdphEyrcxlCTtvEOH0wdXG5OB3KMncnnDe96m5oKNzFga7rOpf4aXXrTZnfzO-fo_enxbfVMNq_rl9VyQ7ZMQkcKUThZcWV5xSpKKwXWgxSlFWCUL631rnJUlAbswhvYMsrAAXBnPZdywObobuw9pvh5crnT-3hKYTip-fCqoEopPqTYmNqmmHNyXh9TczCp1xT0WZgehelBmP4RpuUA8RHKQzjULv1V_0N9A4K0bzc |
Cites_doi | 10.1016/j.nanoen.2017.02.012 10.1002/adma.202203783 10.1002/aenm.202300682 10.1039/C5CP00859J 10.1039/C7TA02237A 10.1039/C6CC00986G 10.1002/adma.202106876 10.1039/C6EE00724D 10.1002/adma.201805930 10.1039/C5TA09591C 10.1016/j.nanoen.2018.10.064 10.1038/s41467-017-00431-9 10.1016/j.ensm.2021.11.027 10.1149/1.2434687 10.1016/j.scib.2023.07.027 10.1039/C7TA03392C 10.1039/C6CC03081E 10.1016/j.electacta.2019.134556 10.1021/acsami.1c17433 10.1039/C8CC04433C 10.1039/C4RA03867C 10.1021/jacs.6b12598 10.1002/adfm.201910510 10.1039/C3CC47896C 10.1038/35037553 10.1039/C9NR04280F 10.1039/C9TA00502A 10.1126/science.abg3954 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11581-024-05549-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1862-0760 |
EndPage | 4062 |
ExternalDocumentID | 10_1007_s11581_024_05549_7 |
GrantInformation_xml | – fundername: Science and Technology Projects of Fujian Province grantid: 2021H0042 funderid: http://dx.doi.org/10.13039/100017357 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AACDK AAEOY AAGCJ AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUCO AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~A9 AAYXX AGJZZ CITATION H13 |
ID | FETCH-LOGICAL-c270t-545e7d38b3d2d11d80bf0746b40a8f6bbfede146a0b9fa0c2120e003ebf3778b3 |
IEDL.DBID | U2A |
ISSN | 0947-7047 |
IngestDate | Thu Oct 10 23:00:24 EDT 2024 Thu Sep 12 21:07:18 EDT 2024 Sun Jul 07 01:11:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Cyclic stability Energy density Mg metal anode Prussian blue cathode Hybrid ion batteries |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-545e7d38b3d2d11d80bf0746b40a8f6bbfede146a0b9fa0c2120e003ebf3778b3 |
PQID | 3076418883 |
PQPubID | 2043901 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3076418883 crossref_primary_10_1007_s11581_024_05549_7 springer_journals_10_1007_s11581_024_05549_7 |
PublicationCentury | 2000 |
PublicationDate | 7-2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 7-2024 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | International Journal of Ionics – The Science and Technology of Ionic Motion |
PublicationTitle | Ionics |
PublicationTitleAbbrev | Ionics |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SunXBonnickPDuffortVLiuMRongZPerssonKACederGNazarLFA high capacity thiospinel cathode for Mg batteriesEnergy Environ Sci201697227322771:CAS:528:DC%2BC28XovFWisLs%3D10.1039/C6EE00724D ChengYChoiDHanKSMuellerKTZhangJ-GSprenkleVLLiuJLiGToward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytesChem Commun20165231537953821:CAS:528:DC%2BC28Xjtlektb4%3D10.1039/C6CC00986G HosakaTKubotaKKojimaHKomabaSHighly concentrated electrolyte solutions for 4 V class potassium-ion batteriesChem Commun20185460838783901:CAS:528:DC%2BC1cXht1yiu7zM10.1039/C8CC04433C AurbachDLuZSchechterAGoferYGizbarHTurgemanRCohenYMoshkovichMLeviEPrototype systems for rechargeable magnesium batteriesNature200040768057247271:CAS:528:DC%2BD3cXnsFWlsbk%3D10.1038/3503755311048714 HuXPengJXuFDingMRechargeable Mg2+/Li+, Mg2+/Na+, and Mg2+/K+ hybrid batteries based on layered VS2ACS Appl Mater Interfaces2021134857252572631:CAS:528:DC%2BB3MXisF2it7nM10.1021/acsami.1c1743334844407 XuYXuCAnQWeiQShengJXiongFPeiCMaiLRobust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteriesJ Mater Chem A201752713950139561:CAS:528:DC%2BC2sXos1Sqsrg%3D10.1039/C7TA03392C ChengYStolleyRMHanKSShaoYAreyBWWashtonNMMuellerKTHelmMLSprenkleVLLiuJLiGHighly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2]2+ cation complex in dimethoxyethanePhys Chem Chem Phys2015172013307133141:CAS:528:DC%2BC2MXms1ajtLg%3D10.1039/C5CP00859J25920549 LiMPeiCXiongFTanSYinYTangHHuangDAnQMaiLA high energy density hybrid magnesium–lithium ion battery based on LiV3O8@GO cathodeElectrochim Acta20193201:CAS:528:DC%2BC1MXhsValt73E10.1016/j.electacta.2019.134556 XiaoJZhangXFanHZhaoYSuYLiuHLiXSuYYuanHPanTLinQPanLZhangYStable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyteAdv Mater202234302203783.22037812203783.220378910.1002/adma.202203783 ZhangZXuHCuiZHuPChaiJDuHHeJZhangJZhouXHanPCuiGChenLHigh energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performanceJ Mater Chem A201646227722851:CAS:528:DC%2BC28Xns1Cnsw%3D%3D10.1039/C5TA09591C Bonnick P, Muldoon J (2020) A trip to oz and a peak behind the curtain of magnesium batteries. Adv Funct Mater 30(21):1910510 Li Z, Häcker J, Fichtner M, Zhao‐Karger Z (2023) Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv Energy Mater 13(27):2300682 ZhangYChenDLiXShenJChenZCaoS-ALiTXuFa-MoS3@CNT nanowire cathode for rechargeable Mg batteries: a pseudocapacitive approach for efficient Mg-storageNanoscale2019113416043160511:CAS:528:DC%2BC1MXhsFSrur7N10.1039/C9NR04280F31432853 WuXQiuSLiuYXuYJianZYangJJiXLiuJThe quest for stable potassium-ion battery chemistryAdv Mater202234521068761:CAS:528:DC%2BB3MXislyju7nK10.1002/adma.202106876 RashadMZhangHLiXZhangHFast kinetics of Mg2+/Li+ hybrid ions in a polyanion Li3V2(PO4)3 cathode in a wide temperature rangeJ Mater Chem A2019716996899761:CAS:528:DC%2BC1MXltVeqsLo%3D10.1039/C9TA00502A DuAZhangHZhangZZhaoJCuiZZhaoYDongSWangLZhouXCuiGA crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteriesAdv Mater20193111180593010.1002/adma.201805930 ManYJaumauxPXuYFeiYMoXWangGZhouXResearch development on electrolytes for magnesium-ion batteriesSci Bull (Beijing)20236816181918421:CAS:528:DC%2BB3sXhs1Wgsb7I10.1016/j.scib.2023.07.02737516661 Zhao-KargerZBardajiMEGFuhrOFichtnerMA new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteriesJ Mater Chem A201752210815108201:CAS:528:DC%2BC2sXlslOrtr0%3D10.1039/C7TA02237A XueLLiYGaoHZhouWLüXKaveevivitchaiWManthiramAGoodenoughJBLow-cost high-energy potassium cathodeJ Am Chem Soc20171396216421671:CAS:528:DC%2BC2sXhs1Gjtr8%3D10.1021/jacs.6b1259828125230 DoeREHanRHwangJGmitterAJShterenbergIYooHDPourNAurbachDNovel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteriesChem Commun20145022432451:CAS:528:DC%2BC3sXhvVKjtLnI10.1039/C3CC47896C YooHDLiangYDongHLinJWangHLiuYMaLWuTLiYRuQJingYAnQZhouWGuoJLuJPantelidesSTQianXYaoYFast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteriesNat Commun20178133910.1038/s41467-017-00431-9288356815569106 DongHLiYLiangYLiGSunC-JRenYLuYYaoYA magnesium–sodium hybrid battery with high operating voltageChem Commun20165253826382661:CAS:528:DC%2BC28Xps1Sktro%3D10.1039/C6CC03081E DenisYFietzekCWeydanzWDonoueKInoueTKurokawaHFujitaniSStudy of LiFePO4 by cyclic voltammetryJ Electrochem Soc20071544A25310.1149/1.2434687 HouSJiXGaskellKWangP-FWangLXuJSunRBorodinOWangCSolvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kineticsScience202137465641721781:CAS:528:DC%2BB3MXit1eqsbjJ10.1126/science.abg395434618574 WangPYanXRecent advances in Mg-Li and Mg-Na hybrid batteriesEnergy Storage Mater20224514218110.1016/j.ensm.2021.11.027 Zhao-KargerZMuellerJEZhaoXFuhrOJacobTFichtnerMNovel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteriesRSC Adv201445126924269271:CAS:528:DC%2BC2cXhtVKrt7nL10.1039/C4RA03867C LiYAnQChengYLiangYRenYSunC-JDongHTangZLiGYaoYA high-voltage rechargeable magnesium-sodium hybrid batteryNano Energy2017341881941:CAS:528:DC%2BC2sXjsVGru7Y%3D10.1016/j.nanoen.2017.02.012 XuYCaoWYinYShengJAnQWeiQYangWMaiLNovel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteriesNano Energy2019555265331:CAS:528:DC%2BC1cXit12ls7zI10.1016/j.nanoen.2018.10.064 Y Xu (5549_CR16) 2019; 55 Y Xu (5549_CR7) 2017; 5 Z Zhao-Karger (5549_CR3) 2017; 5 5549_CR17 D Aurbach (5549_CR4) 2000; 407 Y Zhang (5549_CR2) 2019; 11 Y Man (5549_CR25) 2023; 68 J Xiao (5549_CR12) 2022; 34 Y Cheng (5549_CR13) 2015; 17 Z Zhao-Karger (5549_CR20) 2014; 4 5549_CR1 HD Yoo (5549_CR5) 2017; 8 Y Denis (5549_CR27) 2007; 154 S Hou (5549_CR23) 2021; 374 X Hu (5549_CR10) 2021; 13 A Du (5549_CR26) 2019; 31 Y Li (5549_CR11) 2017; 34 X Wu (5549_CR24) 2022; 34 X Sun (5549_CR28) 2016; 9 P Wang (5549_CR9) 2022; 45 L Xue (5549_CR21) 2017; 139 Y Cheng (5549_CR8) 2016; 52 H Dong (5549_CR19) 2016; 52 M Rashad (5549_CR6) 2019; 7 M Li (5549_CR15) 2019; 320 RE Doe (5549_CR22) 2014; 50 Z Zhang (5549_CR14) 2016; 4 T Hosaka (5549_CR18) 2018; 54 |
References_xml | – volume: 34 start-page: 188 year: 2017 ident: 5549_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.012 contributor: fullname: Y Li – volume: 34 start-page: 2203783.2203781 issue: 30 year: 2022 ident: 5549_CR12 publication-title: Adv Mater doi: 10.1002/adma.202203783 contributor: fullname: J Xiao – ident: 5549_CR1 doi: 10.1002/aenm.202300682 – volume: 17 start-page: 13307 issue: 20 year: 2015 ident: 5549_CR13 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP00859J contributor: fullname: Y Cheng – volume: 5 start-page: 10815 issue: 22 year: 2017 ident: 5549_CR3 publication-title: J Mater Chem A doi: 10.1039/C7TA02237A contributor: fullname: Z Zhao-Karger – volume: 52 start-page: 5379 issue: 31 year: 2016 ident: 5549_CR8 publication-title: Chem Commun doi: 10.1039/C6CC00986G contributor: fullname: Y Cheng – volume: 34 start-page: 2106876 issue: 5 year: 2022 ident: 5549_CR24 publication-title: Adv Mater doi: 10.1002/adma.202106876 contributor: fullname: X Wu – volume: 9 start-page: 2273 issue: 7 year: 2016 ident: 5549_CR28 publication-title: Energy Environ Sci doi: 10.1039/C6EE00724D contributor: fullname: X Sun – volume: 31 start-page: 1805930 issue: 11 year: 2019 ident: 5549_CR26 publication-title: Adv Mater doi: 10.1002/adma.201805930 contributor: fullname: A Du – volume: 4 start-page: 2277 issue: 6 year: 2016 ident: 5549_CR14 publication-title: J Mater Chem A doi: 10.1039/C5TA09591C contributor: fullname: Z Zhang – volume: 55 start-page: 526 year: 2019 ident: 5549_CR16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.064 contributor: fullname: Y Xu – volume: 8 start-page: 339 issue: 1 year: 2017 ident: 5549_CR5 publication-title: Nat Commun doi: 10.1038/s41467-017-00431-9 contributor: fullname: HD Yoo – volume: 45 start-page: 142 year: 2022 ident: 5549_CR9 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.11.027 contributor: fullname: P Wang – volume: 154 start-page: A253 issue: 4 year: 2007 ident: 5549_CR27 publication-title: J Electrochem Soc doi: 10.1149/1.2434687 contributor: fullname: Y Denis – volume: 68 start-page: 1819 issue: 16 year: 2023 ident: 5549_CR25 publication-title: Sci Bull (Beijing) doi: 10.1016/j.scib.2023.07.027 contributor: fullname: Y Man – volume: 5 start-page: 13950 issue: 27 year: 2017 ident: 5549_CR7 publication-title: J Mater Chem A doi: 10.1039/C7TA03392C contributor: fullname: Y Xu – volume: 52 start-page: 8263 issue: 53 year: 2016 ident: 5549_CR19 publication-title: Chem Commun doi: 10.1039/C6CC03081E contributor: fullname: H Dong – volume: 320 year: 2019 ident: 5549_CR15 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.134556 contributor: fullname: M Li – volume: 13 start-page: 57252 issue: 48 year: 2021 ident: 5549_CR10 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c17433 contributor: fullname: X Hu – volume: 54 start-page: 8387 issue: 60 year: 2018 ident: 5549_CR18 publication-title: Chem Commun doi: 10.1039/C8CC04433C contributor: fullname: T Hosaka – volume: 4 start-page: 26924 issue: 51 year: 2014 ident: 5549_CR20 publication-title: RSC Adv doi: 10.1039/C4RA03867C contributor: fullname: Z Zhao-Karger – volume: 139 start-page: 2164 issue: 6 year: 2017 ident: 5549_CR21 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12598 contributor: fullname: L Xue – ident: 5549_CR17 doi: 10.1002/adfm.201910510 – volume: 50 start-page: 243 issue: 2 year: 2014 ident: 5549_CR22 publication-title: Chem Commun doi: 10.1039/C3CC47896C contributor: fullname: RE Doe – volume: 407 start-page: 724 issue: 6805 year: 2000 ident: 5549_CR4 publication-title: Nature doi: 10.1038/35037553 contributor: fullname: D Aurbach – volume: 11 start-page: 16043 issue: 34 year: 2019 ident: 5549_CR2 publication-title: Nanoscale doi: 10.1039/C9NR04280F contributor: fullname: Y Zhang – volume: 7 start-page: 9968 issue: 16 year: 2019 ident: 5549_CR6 publication-title: J Mater Chem A doi: 10.1039/C9TA00502A contributor: fullname: M Rashad – volume: 374 start-page: 172 issue: 6564 year: 2021 ident: 5549_CR23 publication-title: Science doi: 10.1126/science.abg3954 contributor: fullname: S Hou |
SSID | ssj0066127 |
Score | 2.3747265 |
Snippet | Magnesium-ion batteries are promising candidates for the next-generation energy storage systems. However, their development is restricted by the shortage of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 4055 |
SubjectTerms | Alkali metals Batteries Cathodes Chemistry Chemistry and Materials Science Condensed Matter Physics Discharge Electrochemical analysis Electrochemistry Electrodes Electrons Energy Storage Insertion Magnesium Optical and Electronic Materials Pigments Potassium Reaction mechanisms Renewable and Green Energy Storage systems |
Title | A 3-V high-voltage and long-life magnesium-potassium hybrid ion battery |
URI | https://link.springer.com/article/10.1007/s11581-024-05549-7 https://www.proquest.com/docview/3076418883 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgHWBBfIpCQR7YwJKT2HEyplU_BKITRWWK7Nguldq0gnTov-ecNopAMDAlUhIP73zvzrHfHUJ3nAluwaGJUFYQFlJJpBEMHM_wzLN-EFsncH4ehcMxe5zwSa3jLg-7VzuSJVHXWjePR7Dy9RmhEAJjIvZRk7tyaDCJx35S0S_Em22f1pgJIigTO6XM72N8j0Z1ivljV7QMNv1jdLTLEnGyNesJ2jP5KTroVs3ZztAgwQF5xa7YMAGCKYAVsMw1ni_zKZnPrMELOQUWm60XZLUsIEOGO_y-cfosDKbAqqyruTlH437vpTsku54IJPMFLQgkPEboIFKB9rXn6Ygq61qGKEZlZEOlrNEG2E9SFVtJM4hM1IDnGmUDIeCzC9TIl7m5RJhabTLBTGiYZiqQMdeU2szj4KI6M14L3VfYpKtt6Yu0LnLskEwBybREMhUt1K7gS3du8JkCgYTMg0V20EIPFaT1479Hu_rf69fo0C-t6n6NtFGj-FibG0gWCnWLmkm_0xm56-DtqXdbTpYvRbm4gg |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD3gx_owoag_etEm3det2JEREBU5guDXt2iIJDCLjwH_v69hCNHrwtqRbD9_b-97rj_c9hO5DxkMLDk24spywiEoiDWfgeCZMPesHiXUFzv1B1B2x13E4LovCVtVt9-pIsmDqXbGbF8aw9PUZoRADE8L30YHTV3eK-SO_VfEvBJxto9aEccIp42WpzO9zfA9Huxzzx7FoEW06x-ioTBNxa2vXE7RnslNUb1fd2c7QcwsH5B07tWECDJMDLWCZaTxbZBMym1qD53ICNDZdz8lykUOKDE_4Y-MKtDDYAqtCWHNzjkadp2G7S8qmCCT1Oc0JZDyG6yBWgfa15-mYKut6hihGZWwjpazRBuhPUpVYSVMITdSA6xplA87hswtUyxaZuUSYWm1SzkxkmGYqkEmoKbWpF4KP6tR4DfRQYSOWW-0LsVM5dkgKQFIUSAreQM0KPlH6wUoAg0TMg1V20ECPFaS74b9nu_rf63eo3h32e6L3Mni7Rod-YWG3T9JEtfxzbW4gc8jVbfGjfAGW07jN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYALO6KsPnADg5M4cXOsgLIUKg6A4BTZsV0qSlpBeoCvZ7KpgOCAuEVKYiUz9pvx8t4A7Ppc-BYHNBXKCsoDJqk0guPAM37sWNcLbUZwvuoEZ7f84t6__8Tiz0-7V1uSBachU2lK0sOhtodj4pvjN3Aa7HLKMB6GVEzCFM-UkWow1Tx9aJ9UaIzhpyjbGnJBBeOiJM783MrX4DTOOL9tkuaxpzUPsvrq4sjJ08EoVQfx-zdBx__81gLMlYkpaRY9aREmTLIEM0dVPbhlOG0Sj96RTN-YIqalCEREJpr0B0mX9nvWkGfZReDsjZ7pcJBiUo5X5PEto4QR9D5RuZTn2wrctk5ujs5oWYaBxq5gKcUcywjtNZSnXe04usGUzaqUKM5kwwZKWaMNAq5kKrSSxRgMmUGwMMp6QuBrq1BLBolZA8KsNrHgJjBcc-XJ0NeM2djxERV0bJw67FX2j4aF2kY01lXOjBOhcaLcOJGow2bloqgcea8RYlbAHZzXe3XYryw-vv17a-t_e3wHpq-PW9Hleae9AbNu7rNsYWYTaunLyGxhqpKq7bI3fgBcoN6t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3-V+high-voltage+and+long-life+magnesium-potassium+hybrid+ion+battery&rft.jtitle=Ionics&rft.au=Zhao%2C+Fu&rft.au=Tan+Jinshuo&rft.au=Chuan-Fu%2C+Sun&rft.au=Deng+Wenzhuo&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=30&rft.issue=7&rft.spage=4055&rft.epage=4062&rft_id=info:doi/10.1007%2Fs11581-024-05549-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon |