Impact of Hydrated Lime Co-additives on Nitrogen Conservation during Livestock Waste Composting
Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the...
Saved in:
Published in | Waste and biomass valorization Vol. 16; no. 7; pp. 3467 - 3482 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO
2
emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO
2
emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by
Thermobifida
,
Thermobacillus
, and
Saccharomonospora
, all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The
Pseudomonas
population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process. |
---|---|
AbstractList | Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO
2
emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO
2
emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by
Thermobifida
,
Thermobacillus
, and
Saccharomonospora
, all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The
Pseudomonas
population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process. Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO2 emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO2 emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by Thermobifida, Thermobacillus, and Saccharomonospora, all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The Pseudomonas population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process. |
Author | Bang, Donggyu Yun, JinJu Zainudin, Mohd Huzairi Mohd Chung, Woojin Shim, Jeahong Chang, Soon Woong Karmegam, Natchimuthu Ravindran, Balasubramani Jeon, Byong-Hun Dowlath, Mohammed Junaid Hussain |
Author_xml | – sequence: 1 givenname: Donggyu surname: Bang fullname: Bang, Donggyu organization: Department of Environmental Energy Engineering, Graduate School of Kyonggi University – sequence: 2 givenname: Woojin surname: Chung fullname: Chung, Woojin organization: Department of Civil & Energy System Engineering, Kyonggi University – sequence: 3 givenname: JinJu surname: Yun fullname: Yun, JinJu organization: Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration – sequence: 4 givenname: Jeahong surname: Shim fullname: Shim, Jeahong organization: Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration – sequence: 5 givenname: Byong-Hun surname: Jeon fullname: Jeon, Byong-Hun organization: Department of Earth Resources and Environmental Engineering, Hanyang University – sequence: 6 givenname: Mohd Huzairi Mohd surname: Zainudin fullname: Zainudin, Mohd Huzairi Mohd organization: Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia – sequence: 7 givenname: Mohammed Junaid Hussain surname: Dowlath fullname: Dowlath, Mohammed Junaid Hussain organization: Department of Anatomy, SRM Medical College Hospital and Research Centre, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology – sequence: 8 givenname: Balasubramani surname: Ravindran fullname: Ravindran, Balasubramani email: kalamravi@gmail.com organization: Department of Civil & Energy System Engineering, Kyonggi University – sequence: 9 givenname: Natchimuthu surname: Karmegam fullname: Karmegam, Natchimuthu organization: PG and Research Department of Botany, Government Arts College (Autonomous) – sequence: 10 givenname: Soon Woong surname: Chang fullname: Chang, Soon Woong email: swchang@kyonggi.ac.kr organization: Department of Civil & Energy System Engineering, Kyonggi University |
BookMark | eNp9kE1LAzEQhoMoWGv_gKcFz6uTbLIfRylqC0Uvit5CzEdJdTdrkpb235t1RW8OhAkz87yZvGfouHOdRugCwxUGqK4DJiVtciAsnQbqfH-EJriuqpyU7PX4907xKZqFsAEAgnFNimqC-LLthYyZM9nioLyIWmUr2-ps7nKhlI12p0PmuuzBRu_WukuNLmi_E9Gmqtp6260Tkaaik-_ZiwhxgNvehZha5-jEiI-gZz95ip7vbp_mi3z1eL-c36xySSqIOaNEUyENSMWMoNAookSj4Y0aRqDGxDS4qVRBjRRKUipKWeMaU1YyppnSxRRdjrq9d5_btAzfuK3v0pO8IAXguhhiisg4Jb0LwWvDe29b4Q8cAx-85KOXPHnJv73k-wQVIxT64bPa_0n_Q30Bwrt6Hg |
Cites_doi | 10.1016/j.biortech.2017.07.172 10.1016/j.wasman.2016.08.014 10.1016/j.geoderma.2018.04.022 10.1016/j.scitotenv.2023.164239 10.3389/fsufs.2020.00030 10.1128/mSphere.01019-20 10.1016/j.renene.2018.03.006 10.1016/j.chemosphere.2020.128342 10.1016/j.scitotenv.2022.157653 10.1016/j.scitotenv.2019.02.004 10.1016/j.wasman.2017.12.009 10.1016/j.envdev.2015.03.006 10.1016/j.biortech.2016.06.097 10.3390/su15076191 10.1016/j.biortech.2016.05.065 10.1007/978-3-319-08004-8_6 10.37934/ARASET.47.1.199205 10.1016/j.biortech.2019.122730 10.1016/j.scitotenv.2017.08.020 10.1016/j.scitotenv.2022.159177 10.1038/s41612-019-0093-5 10.1039/D2NP00084A 10.1016/j.biortech.2017.08.083 10.1080/10643389.2022.2096983 10.1016/j.chemosphere.2009.10.056 10.1016/j.scitotenv.2019.03.320 10.1016/j.biortech.2013.07.060 10.1016/j.jclepro.2017.06.217 10.1016/J.jenvman.2020.110649 10.1016/B978-0-323-91874-9.00011-5 10.1007/s10668-016-9760-4 10.1201/9781003075561-10 10.1016/B978-0-444-63664-5.00004-6 10.1016/j.biortech.2012.02.099 10.1016/j.wasman.2009.10.019 10.1186/s44147-022-00092-6 10.9734/jamb/2019/v15i130075 10.1016/j.biortech.2021.125749 10.1016/j.biortech.2013.01.138 10.1007/s11104-023-06409-5 10.1016/J.JWPE.2024.105002 10.1080/1065657X.2020.1772906 10.1016/j.biortech.2017.07.050 10.1016/j.biortech.2020.124136 10.1016/j.biortech.2022.127872 10.2478/ceer-2014-0013 10.1016/j.chemosphere.2008.11.058 10.1016/j.jenvman.2016.12.051 10.3389/fmicb.2022.882890 10.1016/J.ETI.2023.103306 10.1016/j.jhazmat.2021.126672 10.3390/su10061698 10.1007/s13165-017-0180-z 10.17221/617/2019-PSE 10.1016/j.biortech.2020.123664 10.1016/j.rser.2016.01.117 10.1016/j.biortech.2023.129336 10.1016/j.biortech.2015.10.093 10.1016/J.PSJ.2024.104277 10.1126/science.aaw4085 10.1016/j.chemosphere.2013.07.002 10.3389/fmicb.2018.01131 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12649-025-02908-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1877-265X |
EndPage | 3482 |
ExternalDocumentID | 10_1007_s12649_025_02908_x |
GrantInformation_xml | – fundername: Cooperative Research Program for Agriculture Science and Technology Development grantid: PJ017039 |
GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 8TC 96X AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATLR AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RIG RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c270t-542e4acf0cd5fa409d2da9e0b4f520812f9197d34fcadc44a6c818145655e5de3 |
IEDL.DBID | U2A |
ISSN | 1877-2641 |
IngestDate | Tue Jul 15 19:50:37 EDT 2025 Wed Jul 16 16:48:12 EDT 2025 Tue Jul 15 01:10:14 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | Nitrogen conservation Composting Chicken manure Hydrated lime Livestock waste |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-542e4acf0cd5fa409d2da9e0b4f520812f9197d34fcadc44a6c818145655e5de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3230183333 |
PQPubID | 2044093 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3230183333 crossref_primary_10_1007_s12649_025_02908_x springer_journals_10_1007_s12649_025_02908_x |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Waste and biomass valorization |
PublicationTitleAbbrev | Waste Biomass Valor |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | L Zhang (2908_CR22) 2023; 32 Y Liu (2908_CR51) 2020; 267 2908_CR64 N Scarlat (2908_CR18) 2015; 15 MD Manogaran (2908_CR2) 2020; 66 2908_CR65 2908_CR60 A de Guardia (2908_CR40) 2010; 30 M Margaritis (2908_CR39) 2018; 73 K Azim (2908_CR57) 2018; 8 2908_CR13 Z-H Li (2908_CR62) 2021; 420 F Yang (2908_CR54) 2013; 93 A Hojjati-Najafabadi (2908_CR8) 2024; 59 M Wang (2908_CR27) 2022; 363 S Wang (2908_CR59) 2024; 497 V Varma (2908_CR34) 2015; 9 Y Li (2908_CR36) 2018; 250 G Kumar (2908_CR61) 2023; 40 MK Awasthi (2908_CR20) 2016; 216 S El-mrini (2908_CR43) 2022; 69 V de Gannes (2908_CR58) 2013; 133 P Abdeshahian (2908_CR4) 2016; 60 2908_CR33 A Jędrczak (2908_CR9) 2014; 13 2908_CR28 L Zhang (2908_CR30) 2023; 889 M Khodadadi (2908_CR7) 2024; 103 2908_CR29 Y Cao (2908_CR46) 2023; 857 M Koyama (2908_CR48) 2019; 670 2908_CR23 S Bracco (2908_CR16) 2018; 10 2908_CR26 C Qi (2908_CR52) 2022; 848 A Kaab (2908_CR14) 2019; 664 SHA Koop (2908_CR1) 2017; 19 X Wang (2908_CR19) 2013; 147 N Scarlat (2908_CR17) 2018; 129 M Gao (2908_CR42) 2010; 78 JK Kim (2908_CR50) 2017; 245 L Zhang (2908_CR25) 2016; 218 Z Xu (2908_CR31) 2021; 341 2908_CR41 P Brassard (2908_CR10) 2018; 327 2908_CR38 R Cáceres (2908_CR56) 2016; 58 J Singh (2908_CR35) 2013; 2 N Hashim (2908_CR6) 2024; 47 AS Kalamdhad (2908_CR37) 2009; 74 N Karmegam (2908_CR44) 2021; 319 J Lee (2908_CR3) 2017; 164 N Tripathi (2908_CR12) 2019; 2 P Shyamsundar (2908_CR15) 2019; 365 FA Azis (2908_CR45) 2023; 15 L Wan (2908_CR53) 2020; 301 2908_CR11 M Xu (2908_CR63) 2023; 384 2908_CR49 R Guo (2908_CR47) 2012 M Kacprzak (2908_CR5) 2023; 53 Z Chen (2908_CR24) 2021; 262 MT Chan (2908_CR55) 2016; 200 M Gondek (2908_CR32) 2020; 28 J Yu (2908_CR21) 2020; 313 |
References_xml | – volume: 250 start-page: 53 year: 2018 ident: 2908_CR36 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2017.07.172 – ident: 2908_CR41 – volume: 58 start-page: 118 year: 2016 ident: 2908_CR56 publication-title: Waste Manag doi: 10.1016/j.wasman.2016.08.014 – volume: 327 start-page: 73 year: 2018 ident: 2908_CR10 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.022 – volume: 889 start-page: 164239 year: 2023 ident: 2908_CR30 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164239 – ident: 2908_CR33 doi: 10.3389/fsufs.2020.00030 – ident: 2908_CR65 doi: 10.1128/mSphere.01019-20 – volume: 129 start-page: 457 year: 2018 ident: 2908_CR17 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.03.006 – volume: 262 start-page: 128342 year: 2021 ident: 2908_CR24 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128342 – volume: 848 start-page: 157653 year: 2022 ident: 2908_CR52 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157653 – volume: 664 start-page: 1005 year: 2019 ident: 2908_CR14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.004 – volume: 73 start-page: 87 year: 2018 ident: 2908_CR39 publication-title: Waste Manag doi: 10.1016/j.wasman.2017.12.009 – volume: 15 start-page: 3 year: 2015 ident: 2908_CR18 publication-title: Environ. Dev. doi: 10.1016/j.envdev.2015.03.006 – volume: 218 start-page: 335 year: 2016 ident: 2908_CR25 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2016.06.097 – volume: 15 start-page: 6191 year: 2023 ident: 2908_CR45 publication-title: Sustainability doi: 10.3390/su15076191 – volume: 2 start-page: 27 year: 2013 ident: 2908_CR35 publication-title: Int. J. Environ. Eng. Res. – volume: 216 start-page: 172 year: 2016 ident: 2908_CR20 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2016.05.065 – ident: 2908_CR60 doi: 10.1007/978-3-319-08004-8_6 – volume: 47 start-page: 199 year: 2024 ident: 2908_CR6 publication-title: J. Adv. Res. Appl. Sci. Eng. Technol. doi: 10.37934/ARASET.47.1.199205 – volume: 301 start-page: 122730 year: 2020 ident: 2908_CR53 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2019.122730 – ident: 2908_CR49 doi: 10.1016/j.scitotenv.2017.08.020 – volume: 857 start-page: 159177 year: 2023 ident: 2908_CR46 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159177 – volume: 2 start-page: 35 year: 2019 ident: 2908_CR12 publication-title: Npj Clim. Atmos. Sci. doi: 10.1038/s41612-019-0093-5 – volume: 40 start-page: 1608 year: 2023 ident: 2908_CR61 publication-title: Nat. Prod. Rep. doi: 10.1039/D2NP00084A – volume: 245 start-page: 365 year: 2017 ident: 2908_CR50 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2017.08.083 – volume: 53 start-page: 914 year: 2023 ident: 2908_CR5 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2022.2096983 – volume: 78 start-page: 614 year: 2010 ident: 2908_CR42 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.10.056 – volume: 670 start-page: 1133 year: 2019 ident: 2908_CR48 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.320 – volume: 147 start-page: 17 year: 2013 ident: 2908_CR19 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2013.07.060 – volume: 164 start-page: 146 year: 2017 ident: 2908_CR3 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.217 – volume: 267 start-page: 110649 year: 2020 ident: 2908_CR51 publication-title: J. Environ. Manage. doi: 10.1016/J.jenvman.2020.110649 – ident: 2908_CR29 doi: 10.1016/B978-0-323-91874-9.00011-5 – volume: 19 start-page: 385 year: 2017 ident: 2908_CR1 publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-016-9760-4 – ident: 2908_CR38 doi: 10.1201/9781003075561-10 – ident: 2908_CR23 doi: 10.1016/B978-0-444-63664-5.00004-6 – year: 2012 ident: 2908_CR47 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2012.02.099 – volume: 30 start-page: 402 year: 2010 ident: 2908_CR40 publication-title: Waste Manag doi: 10.1016/j.wasman.2009.10.019 – volume: 69 start-page: 37 year: 2022 ident: 2908_CR43 publication-title: J. Eng. Appl. Sci. doi: 10.1186/s44147-022-00092-6 – ident: 2908_CR28 doi: 10.9734/jamb/2019/v15i130075 – volume: 341 start-page: 125749 year: 2021 ident: 2908_CR31 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2021.125749 – volume: 133 start-page: 573 year: 2013 ident: 2908_CR58 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2013.01.138 – volume: 497 start-page: 503 year: 2024 ident: 2908_CR59 publication-title: Plant. Soil. doi: 10.1007/s11104-023-06409-5 – volume: 59 start-page: 105002 year: 2024 ident: 2908_CR8 publication-title: J. Water Process. Eng. doi: 10.1016/J.JWPE.2024.105002 – volume: 28 start-page: 59 year: 2020 ident: 2908_CR32 publication-title: Compost Sci. Util. doi: 10.1080/1065657X.2020.1772906 – ident: 2908_CR13 doi: 10.1016/j.biortech.2017.07.050 – volume: 319 start-page: 124136 year: 2021 ident: 2908_CR44 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2020.124136 – volume: 363 start-page: 127872 year: 2022 ident: 2908_CR27 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2022.127872 – volume: 13 start-page: 31 year: 2014 ident: 2908_CR9 publication-title: Civ. Environ. Eng. Rep. doi: 10.2478/ceer-2014-0013 – volume: 74 start-page: 1327 year: 2009 ident: 2908_CR37 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.11.058 – ident: 2908_CR26 doi: 10.1016/j.jenvman.2016.12.051 – ident: 2908_CR64 doi: 10.3389/fmicb.2022.882890 – volume: 32 start-page: 103306 year: 2023 ident: 2908_CR22 publication-title: Environ. Technol. Innov. doi: 10.1016/J.ETI.2023.103306 – volume: 420 start-page: 126672 year: 2021 ident: 2908_CR62 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126672 – volume: 10 start-page: 1698 year: 2018 ident: 2908_CR16 publication-title: Sustainability doi: 10.3390/su10061698 – volume: 8 start-page: 141 year: 2018 ident: 2908_CR57 publication-title: Org. Agric. doi: 10.1007/s13165-017-0180-z – volume: 66 start-page: 81 year: 2020 ident: 2908_CR2 publication-title: Plant. Soil. Environ. doi: 10.17221/617/2019-PSE – volume: 313 start-page: 123664 year: 2020 ident: 2908_CR21 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2020.123664 – volume: 9 start-page: 395 year: 2015 ident: 2908_CR34 publication-title: Int. J. Env Res. – volume: 60 start-page: 714 year: 2016 ident: 2908_CR4 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.01.117 – volume: 384 start-page: 129336 year: 2023 ident: 2908_CR63 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2023.129336 – volume: 200 start-page: 838 year: 2016 ident: 2908_CR55 publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2015.10.093 – volume: 103 start-page: 104277 year: 2024 ident: 2908_CR7 publication-title: Poult. Sci. doi: 10.1016/J.PSJ.2024.104277 – volume: 365 start-page: 536 year: 2019 ident: 2908_CR15 publication-title: Sci. (80-) doi: 10.1126/science.aaw4085 – volume: 93 start-page: 1393 year: 2013 ident: 2908_CR54 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.07.002 – ident: 2908_CR11 doi: 10.3389/fmicb.2018.01131 |
SSID | ssj0002118237 |
Score | 2.3403082 |
Snippet | Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3467 |
SubjectTerms | Agricultural runoff Agricultural wastes Ammonia Animal wastes Bacteria Biodegradation Carbon dioxide Carbon dioxide emissions Cellulolytic bacteria Composting Composts Conservation Emissions Engineering Environment Environmental conditions Environmental Engineering/Biotechnology Industrial Pollution Prevention Lime Livestock Microorganisms Nitrogen Organic matter Original Paper Pollution control Poultry Poultry manure Renewable and Green Energy Retention rRNA Stability Waste Management/Waste Technology |
Title | Impact of Hydrated Lime Co-additives on Nitrogen Conservation during Livestock Waste Composting |
URI | https://link.springer.com/article/10.1007/s12649-025-02908-x https://www.proquest.com/docview/3230183333 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBAPEWhVB7YwFJiO3U8VlVLeXWiokyWE9tSBxLUBAn-Pec0IYBgIGsSR_rucvedfQ-EzkUaO_DLjFgdSsJpIokWgSDGORMLIaUVvt75fjaYzvnNIlrURWFFk-3eHElWlrotdgPfLYkfvxpQGcQEmGMn8rE7aPGcDj93VqjnzFWzzBC-5lO4wrpa5vdlvnuklmb-OBmtHM5kF-3UTBEP16LdQxs220fbX_oHHiB1XdU44tzh6bvxTR8Mvls-WzzKiU8U8qaswHmGZ8tylYOqYD-fs9mGxesSRXjDt9oAu4gfNcgcexORFz4d-hDNJ-OH0ZTUExNISkVQkohTy3XqgtRETkPoZqjR0gYJd4AU-HInQykM4y7VJuVcD1Jw2KFndZGNjGVHaDPLM3uMMLNsECeRAfrAOKVBkhgtmGMypJo557rookFNvawbY6i2BbLHWAHGqsJYvXVRrwFW1T9JoRiEP2BR4Oqiywbs9vbfq5387_FTtEUrefsk2x7aLFev9gyoRJn0UWd49XQ77lca9AGQUMKK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYAB8SkKBTywgaXEdup4rCqqFNpOrehmObEtdSBBbZDg33NOEwoIBrImcaQ75-7ZfvcOoRuRxQ7yMiNWh5JwmkqiRSCIcc7EQkhpha93Hk-6yYw_zKN5XRS2atjuzZFkFak3xW6QuyXx7VcDKoOYAHLcBjAQeyLXjPY-d1aox8yVWGYIX_MUrrCulvl9mO8ZaQMzf5yMVglncID2a6SIe2vXHqItmx-hvS_6gcdIDasaR1w4nLwbL_pg8GjxbHG_IJ4o5EPZChc5nizKZQFTBfv-nM02LF6XKMIbXmoD4iJ-0uBz7ENEsfJ06BM0G9xP-wmpOyaQjIqgJBGnluvMBZmJnIalm6FGSxuk3EUUkj91MpTCMO4ybTLOdTeDhB16VBfZyFh2ilp5kdszhJll3TiNDMAHxikN0tRowRyTIdXMOddGt43V1MtaGENtJJC9jRXYWFU2Vm9t1GkMq-qfZKUYLH8gosDVRneNsTe3_x7t_H-PX6OdZDoeqdFw8niBdmnle0-47aBWuXy1lwAryvSqmkUfw0PD6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MJkYPxp8RRe3BmzZsbUfXI0EJKBIPErk13domHNwIzET_e18HEzR6cNdtXfLe23tf2_d9RehKpLGDusyI1aEknCaSaBEIYpwzsRBSWuH5zo_DVm_E78fReI3FX3a7V1uSC06DV2nKiubUuOaK-AZ1XBJ_FGtAZRATQJGbkI5DH9cj2v5aZaEeP5fCmSF82bdzhUvmzO_DfK9OK8j5Y5e0LD7dPbS7RI24vXDzPtqw2QHaWdMSPESqX_Idce5w78N4AQiDB5NXizs58U1DPq3NcZ7h4aSY5RA22J_VWS3J4gVdEd7wshuQI_GLBv9jny7yuW-NPkKj7t1zp0eWpyeQlIqgIBGnluvUBamJnIZpnKFGSxsk3EUUgAB1MpTCMO5SbVLOdSuF4h16hBfZyFh2jGpZntkThJllrTiJDEAJxikNksRowRyTIdXMOVdH15XV1HQhkqFWcsjexgpsrEobq_c6alSGVcsfZq4YTIUgu8BVRzeVsVe3_x7t9H-PX6Ktp9uuGvSHD2dom5au9723DVQrZm_2HBBGkVyUQfQJT07IJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Hydrated+Lime+Co-additives+on+Nitrogen+Conservation+during+Livestock+Waste+Composting&rft.jtitle=Waste+and+biomass+valorization&rft.au=Bang+Donggyu&rft.au=Chung%2C+Woojin&rft.au=JinJu%2C+Yun&rft.au=Shim+Jeahong&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1877-2641&rft.eissn=1877-265X&rft.volume=16&rft.issue=7&rft.spage=3467&rft.epage=3482&rft_id=info:doi/10.1007%2Fs12649-025-02908-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-2641&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-2641&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-2641&client=summon |