Impact of Hydrated Lime Co-additives on Nitrogen Conservation during Livestock Waste Composting

Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the...

Full description

Saved in:
Bibliographic Details
Published inWaste and biomass valorization Vol. 16; no. 7; pp. 3467 - 3482
Main Authors Bang, Donggyu, Chung, Woojin, Yun, JinJu, Shim, Jeahong, Jeon, Byong-Hun, Zainudin, Mohd Huzairi Mohd, Dowlath, Mohammed Junaid Hussain, Ravindran, Balasubramani, Karmegam, Natchimuthu, Chang, Soon Woong
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO 2 emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO 2 emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by Thermobifida , Thermobacillus , and Saccharomonospora , all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The Pseudomonas population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process.
AbstractList Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO 2 emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO 2 emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by Thermobifida , Thermobacillus , and Saccharomonospora , all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The Pseudomonas population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process.
Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to the composting mixture to increase the pH, speed-up the decomposition process, and lower the release of toxic gases like ammonia. However, the specific effects of lime on nitrogen dynamics, particularly ammoniacal nitrogen and nitrate nitrogen levels, as well as CO2 emissions, remain areas of active investigation. This study investigates the influence of hydrated lime on nitrogen conservation when added to poultry manure and agricultural waste. To evaluate the level of nitrogen retention and overall compost stability, poultry waste and agricultural waste were co-composted with and without hydrated lime amendment under controlled environmental conditions. The results showed that, in comparison to the control, the lime-treated compost had higher nitrate nitrogen levels (1800 mg/kg) and lower ammoniacal nitrogen levels (100 mg/kg), indicating improved nitrogen retention. Furthermore, CO2 emissions in the compost treated with hydrated lime were higher in the early phases, however substantially dropped as the compost matured, indicating a faster stabilization process. The findings of 16 S rRNA sequencing showed that lime-treated composting was dominated by Thermobifida, Thermobacillus, and Saccharomonospora, all of which were known as cellulolytic bacteria and involved in organic matter degradation. Also, significant bacterial shifts were observed during the thermophilic phase. The Pseudomonas population, which is often associated with the denitrification process, was lower than the control, thus, promoting nitrogen retention. The results imply that lime amendment improves composting stability and quality by increasing nitrogen content while reducing organic matter. This work advances the understanding and knowledge on the influence of lime in composting by providing useful insights into the microbial community that can be used for improving the process.
Author Bang, Donggyu
Yun, JinJu
Zainudin, Mohd Huzairi Mohd
Chung, Woojin
Shim, Jeahong
Chang, Soon Woong
Karmegam, Natchimuthu
Ravindran, Balasubramani
Jeon, Byong-Hun
Dowlath, Mohammed Junaid Hussain
Author_xml – sequence: 1
  givenname: Donggyu
  surname: Bang
  fullname: Bang, Donggyu
  organization: Department of Environmental Energy Engineering, Graduate School of Kyonggi University
– sequence: 2
  givenname: Woojin
  surname: Chung
  fullname: Chung, Woojin
  organization: Department of Civil & Energy System Engineering, Kyonggi University
– sequence: 3
  givenname: JinJu
  surname: Yun
  fullname: Yun, JinJu
  organization: Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration
– sequence: 4
  givenname: Jeahong
  surname: Shim
  fullname: Shim, Jeahong
  organization: Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration
– sequence: 5
  givenname: Byong-Hun
  surname: Jeon
  fullname: Jeon, Byong-Hun
  organization: Department of Earth Resources and Environmental Engineering, Hanyang University
– sequence: 6
  givenname: Mohd Huzairi Mohd
  surname: Zainudin
  fullname: Zainudin, Mohd Huzairi Mohd
  organization: Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia
– sequence: 7
  givenname: Mohammed Junaid Hussain
  surname: Dowlath
  fullname: Dowlath, Mohammed Junaid Hussain
  organization: Department of Anatomy, SRM Medical College Hospital and Research Centre, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology
– sequence: 8
  givenname: Balasubramani
  surname: Ravindran
  fullname: Ravindran, Balasubramani
  email: kalamravi@gmail.com
  organization: Department of Civil & Energy System Engineering, Kyonggi University
– sequence: 9
  givenname: Natchimuthu
  surname: Karmegam
  fullname: Karmegam, Natchimuthu
  organization: PG and Research Department of Botany, Government Arts College (Autonomous)
– sequence: 10
  givenname: Soon Woong
  surname: Chang
  fullname: Chang, Soon Woong
  email: swchang@kyonggi.ac.kr
  organization: Department of Civil & Energy System Engineering, Kyonggi University
BookMark eNp9kE1LAzEQhoMoWGv_gKcFz6uTbLIfRylqC0Uvit5CzEdJdTdrkpb235t1RW8OhAkz87yZvGfouHOdRugCwxUGqK4DJiVtciAsnQbqfH-EJriuqpyU7PX4907xKZqFsAEAgnFNimqC-LLthYyZM9nioLyIWmUr2-ps7nKhlI12p0PmuuzBRu_WukuNLmi_E9Gmqtp6260Tkaaik-_ZiwhxgNvehZha5-jEiI-gZz95ip7vbp_mi3z1eL-c36xySSqIOaNEUyENSMWMoNAookSj4Y0aRqDGxDS4qVRBjRRKUipKWeMaU1YyppnSxRRdjrq9d5_btAzfuK3v0pO8IAXguhhiisg4Jb0LwWvDe29b4Q8cAx-85KOXPHnJv73k-wQVIxT64bPa_0n_Q30Bwrt6Hg
Cites_doi 10.1016/j.biortech.2017.07.172
10.1016/j.wasman.2016.08.014
10.1016/j.geoderma.2018.04.022
10.1016/j.scitotenv.2023.164239
10.3389/fsufs.2020.00030
10.1128/mSphere.01019-20
10.1016/j.renene.2018.03.006
10.1016/j.chemosphere.2020.128342
10.1016/j.scitotenv.2022.157653
10.1016/j.scitotenv.2019.02.004
10.1016/j.wasman.2017.12.009
10.1016/j.envdev.2015.03.006
10.1016/j.biortech.2016.06.097
10.3390/su15076191
10.1016/j.biortech.2016.05.065
10.1007/978-3-319-08004-8_6
10.37934/ARASET.47.1.199205
10.1016/j.biortech.2019.122730
10.1016/j.scitotenv.2017.08.020
10.1016/j.scitotenv.2022.159177
10.1038/s41612-019-0093-5
10.1039/D2NP00084A
10.1016/j.biortech.2017.08.083
10.1080/10643389.2022.2096983
10.1016/j.chemosphere.2009.10.056
10.1016/j.scitotenv.2019.03.320
10.1016/j.biortech.2013.07.060
10.1016/j.jclepro.2017.06.217
10.1016/J.jenvman.2020.110649
10.1016/B978-0-323-91874-9.00011-5
10.1007/s10668-016-9760-4
10.1201/9781003075561-10
10.1016/B978-0-444-63664-5.00004-6
10.1016/j.biortech.2012.02.099
10.1016/j.wasman.2009.10.019
10.1186/s44147-022-00092-6
10.9734/jamb/2019/v15i130075
10.1016/j.biortech.2021.125749
10.1016/j.biortech.2013.01.138
10.1007/s11104-023-06409-5
10.1016/J.JWPE.2024.105002
10.1080/1065657X.2020.1772906
10.1016/j.biortech.2017.07.050
10.1016/j.biortech.2020.124136
10.1016/j.biortech.2022.127872
10.2478/ceer-2014-0013
10.1016/j.chemosphere.2008.11.058
10.1016/j.jenvman.2016.12.051
10.3389/fmicb.2022.882890
10.1016/J.ETI.2023.103306
10.1016/j.jhazmat.2021.126672
10.3390/su10061698
10.1007/s13165-017-0180-z
10.17221/617/2019-PSE
10.1016/j.biortech.2020.123664
10.1016/j.rser.2016.01.117
10.1016/j.biortech.2023.129336
10.1016/j.biortech.2015.10.093
10.1016/J.PSJ.2024.104277
10.1126/science.aaw4085
10.1016/j.chemosphere.2013.07.002
10.3389/fmicb.2018.01131
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s12649-025-02908-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-265X
EndPage 3482
ExternalDocumentID 10_1007_s12649_025_02908_x
GrantInformation_xml – fundername: Cooperative Research Program for Agriculture Science and Technology Development
  grantid: PJ017039
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
8TC
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c270t-542e4acf0cd5fa409d2da9e0b4f520812f9197d34fcadc44a6c818145655e5de3
IEDL.DBID U2A
ISSN 1877-2641
IngestDate Tue Jul 15 19:50:37 EDT 2025
Wed Jul 16 16:48:12 EDT 2025
Tue Jul 15 01:10:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords Nitrogen conservation
Composting
Chicken manure
Hydrated lime
Livestock waste
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-542e4acf0cd5fa409d2da9e0b4f520812f9197d34fcadc44a6c818145655e5de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230183333
PQPubID 2044093
PageCount 16
ParticipantIDs proquest_journals_3230183333
crossref_primary_10_1007_s12649_025_02908_x
springer_journals_10_1007_s12649_025_02908_x
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Waste and biomass valorization
PublicationTitleAbbrev Waste Biomass Valor
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References L Zhang (2908_CR22) 2023; 32
Y Liu (2908_CR51) 2020; 267
2908_CR64
N Scarlat (2908_CR18) 2015; 15
MD Manogaran (2908_CR2) 2020; 66
2908_CR65
2908_CR60
A de Guardia (2908_CR40) 2010; 30
M Margaritis (2908_CR39) 2018; 73
K Azim (2908_CR57) 2018; 8
2908_CR13
Z-H Li (2908_CR62) 2021; 420
F Yang (2908_CR54) 2013; 93
A Hojjati-Najafabadi (2908_CR8) 2024; 59
M Wang (2908_CR27) 2022; 363
S Wang (2908_CR59) 2024; 497
V Varma (2908_CR34) 2015; 9
Y Li (2908_CR36) 2018; 250
G Kumar (2908_CR61) 2023; 40
MK Awasthi (2908_CR20) 2016; 216
S El-mrini (2908_CR43) 2022; 69
V de Gannes (2908_CR58) 2013; 133
P Abdeshahian (2908_CR4) 2016; 60
2908_CR33
A Jędrczak (2908_CR9) 2014; 13
2908_CR28
L Zhang (2908_CR30) 2023; 889
M Khodadadi (2908_CR7) 2024; 103
2908_CR29
Y Cao (2908_CR46) 2023; 857
M Koyama (2908_CR48) 2019; 670
2908_CR23
S Bracco (2908_CR16) 2018; 10
2908_CR26
C Qi (2908_CR52) 2022; 848
A Kaab (2908_CR14) 2019; 664
SHA Koop (2908_CR1) 2017; 19
X Wang (2908_CR19) 2013; 147
N Scarlat (2908_CR17) 2018; 129
M Gao (2908_CR42) 2010; 78
JK Kim (2908_CR50) 2017; 245
L Zhang (2908_CR25) 2016; 218
Z Xu (2908_CR31) 2021; 341
2908_CR41
P Brassard (2908_CR10) 2018; 327
2908_CR38
R Cáceres (2908_CR56) 2016; 58
J Singh (2908_CR35) 2013; 2
N Hashim (2908_CR6) 2024; 47
AS Kalamdhad (2908_CR37) 2009; 74
N Karmegam (2908_CR44) 2021; 319
J Lee (2908_CR3) 2017; 164
N Tripathi (2908_CR12) 2019; 2
P Shyamsundar (2908_CR15) 2019; 365
FA Azis (2908_CR45) 2023; 15
L Wan (2908_CR53) 2020; 301
2908_CR11
M Xu (2908_CR63) 2023; 384
2908_CR49
R Guo (2908_CR47) 2012
M Kacprzak (2908_CR5) 2023; 53
Z Chen (2908_CR24) 2021; 262
MT Chan (2908_CR55) 2016; 200
M Gondek (2908_CR32) 2020; 28
J Yu (2908_CR21) 2020; 313
References_xml – volume: 250
  start-page: 53
  year: 2018
  ident: 2908_CR36
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2017.07.172
– ident: 2908_CR41
– volume: 58
  start-page: 118
  year: 2016
  ident: 2908_CR56
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.08.014
– volume: 327
  start-page: 73
  year: 2018
  ident: 2908_CR10
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.022
– volume: 889
  start-page: 164239
  year: 2023
  ident: 2908_CR30
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164239
– ident: 2908_CR33
  doi: 10.3389/fsufs.2020.00030
– ident: 2908_CR65
  doi: 10.1128/mSphere.01019-20
– volume: 129
  start-page: 457
  year: 2018
  ident: 2908_CR17
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.03.006
– volume: 262
  start-page: 128342
  year: 2021
  ident: 2908_CR24
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128342
– volume: 848
  start-page: 157653
  year: 2022
  ident: 2908_CR52
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.157653
– volume: 664
  start-page: 1005
  year: 2019
  ident: 2908_CR14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.004
– volume: 73
  start-page: 87
  year: 2018
  ident: 2908_CR39
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2017.12.009
– volume: 15
  start-page: 3
  year: 2015
  ident: 2908_CR18
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2015.03.006
– volume: 218
  start-page: 335
  year: 2016
  ident: 2908_CR25
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2016.06.097
– volume: 15
  start-page: 6191
  year: 2023
  ident: 2908_CR45
  publication-title: Sustainability
  doi: 10.3390/su15076191
– volume: 2
  start-page: 27
  year: 2013
  ident: 2908_CR35
  publication-title: Int. J. Environ. Eng. Res.
– volume: 216
  start-page: 172
  year: 2016
  ident: 2908_CR20
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2016.05.065
– ident: 2908_CR60
  doi: 10.1007/978-3-319-08004-8_6
– volume: 47
  start-page: 199
  year: 2024
  ident: 2908_CR6
  publication-title: J. Adv. Res. Appl. Sci. Eng. Technol.
  doi: 10.37934/ARASET.47.1.199205
– volume: 301
  start-page: 122730
  year: 2020
  ident: 2908_CR53
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2019.122730
– ident: 2908_CR49
  doi: 10.1016/j.scitotenv.2017.08.020
– volume: 857
  start-page: 159177
  year: 2023
  ident: 2908_CR46
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159177
– volume: 2
  start-page: 35
  year: 2019
  ident: 2908_CR12
  publication-title: Npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-019-0093-5
– volume: 40
  start-page: 1608
  year: 2023
  ident: 2908_CR61
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/D2NP00084A
– volume: 245
  start-page: 365
  year: 2017
  ident: 2908_CR50
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2017.08.083
– volume: 53
  start-page: 914
  year: 2023
  ident: 2908_CR5
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2022.2096983
– volume: 78
  start-page: 614
  year: 2010
  ident: 2908_CR42
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.10.056
– volume: 670
  start-page: 1133
  year: 2019
  ident: 2908_CR48
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.320
– volume: 147
  start-page: 17
  year: 2013
  ident: 2908_CR19
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2013.07.060
– volume: 164
  start-page: 146
  year: 2017
  ident: 2908_CR3
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.06.217
– volume: 267
  start-page: 110649
  year: 2020
  ident: 2908_CR51
  publication-title: J. Environ. Manage.
  doi: 10.1016/J.jenvman.2020.110649
– ident: 2908_CR29
  doi: 10.1016/B978-0-323-91874-9.00011-5
– volume: 19
  start-page: 385
  year: 2017
  ident: 2908_CR1
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-016-9760-4
– ident: 2908_CR38
  doi: 10.1201/9781003075561-10
– ident: 2908_CR23
  doi: 10.1016/B978-0-444-63664-5.00004-6
– year: 2012
  ident: 2908_CR47
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2012.02.099
– volume: 30
  start-page: 402
  year: 2010
  ident: 2908_CR40
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2009.10.019
– volume: 69
  start-page: 37
  year: 2022
  ident: 2908_CR43
  publication-title: J. Eng. Appl. Sci.
  doi: 10.1186/s44147-022-00092-6
– ident: 2908_CR28
  doi: 10.9734/jamb/2019/v15i130075
– volume: 341
  start-page: 125749
  year: 2021
  ident: 2908_CR31
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2021.125749
– volume: 133
  start-page: 573
  year: 2013
  ident: 2908_CR58
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2013.01.138
– volume: 497
  start-page: 503
  year: 2024
  ident: 2908_CR59
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-023-06409-5
– volume: 59
  start-page: 105002
  year: 2024
  ident: 2908_CR8
  publication-title: J. Water Process. Eng.
  doi: 10.1016/J.JWPE.2024.105002
– volume: 28
  start-page: 59
  year: 2020
  ident: 2908_CR32
  publication-title: Compost Sci. Util.
  doi: 10.1080/1065657X.2020.1772906
– ident: 2908_CR13
  doi: 10.1016/j.biortech.2017.07.050
– volume: 319
  start-page: 124136
  year: 2021
  ident: 2908_CR44
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2020.124136
– volume: 363
  start-page: 127872
  year: 2022
  ident: 2908_CR27
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2022.127872
– volume: 13
  start-page: 31
  year: 2014
  ident: 2908_CR9
  publication-title: Civ. Environ. Eng. Rep.
  doi: 10.2478/ceer-2014-0013
– volume: 74
  start-page: 1327
  year: 2009
  ident: 2908_CR37
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.11.058
– ident: 2908_CR26
  doi: 10.1016/j.jenvman.2016.12.051
– ident: 2908_CR64
  doi: 10.3389/fmicb.2022.882890
– volume: 32
  start-page: 103306
  year: 2023
  ident: 2908_CR22
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/J.ETI.2023.103306
– volume: 420
  start-page: 126672
  year: 2021
  ident: 2908_CR62
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126672
– volume: 10
  start-page: 1698
  year: 2018
  ident: 2908_CR16
  publication-title: Sustainability
  doi: 10.3390/su10061698
– volume: 8
  start-page: 141
  year: 2018
  ident: 2908_CR57
  publication-title: Org. Agric.
  doi: 10.1007/s13165-017-0180-z
– volume: 66
  start-page: 81
  year: 2020
  ident: 2908_CR2
  publication-title: Plant. Soil. Environ.
  doi: 10.17221/617/2019-PSE
– volume: 313
  start-page: 123664
  year: 2020
  ident: 2908_CR21
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2020.123664
– volume: 9
  start-page: 395
  year: 2015
  ident: 2908_CR34
  publication-title: Int. J. Env Res.
– volume: 60
  start-page: 714
  year: 2016
  ident: 2908_CR4
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.117
– volume: 384
  start-page: 129336
  year: 2023
  ident: 2908_CR63
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2023.129336
– volume: 200
  start-page: 838
  year: 2016
  ident: 2908_CR55
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2015.10.093
– volume: 103
  start-page: 104277
  year: 2024
  ident: 2908_CR7
  publication-title: Poult. Sci.
  doi: 10.1016/J.PSJ.2024.104277
– volume: 365
  start-page: 536
  year: 2019
  ident: 2908_CR15
  publication-title: Sci. (80-)
  doi: 10.1126/science.aaw4085
– volume: 93
  start-page: 1393
  year: 2013
  ident: 2908_CR54
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.07.002
– ident: 2908_CR11
  doi: 10.3389/fmicb.2018.01131
SSID ssj0002118237
Score 2.3403082
Snippet Nitrogen loss during the composting process is a great challenge that can lead to environmental pollution and reduce compost quality. Lime is often added to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3467
SubjectTerms Agricultural runoff
Agricultural wastes
Ammonia
Animal wastes
Bacteria
Biodegradation
Carbon dioxide
Carbon dioxide emissions
Cellulolytic bacteria
Composting
Composts
Conservation
Emissions
Engineering
Environment
Environmental conditions
Environmental Engineering/Biotechnology
Industrial Pollution Prevention
Lime
Livestock
Microorganisms
Nitrogen
Organic matter
Original Paper
Pollution control
Poultry
Poultry manure
Renewable and Green Energy
Retention
rRNA
Stability
Waste Management/Waste Technology
Title Impact of Hydrated Lime Co-additives on Nitrogen Conservation during Livestock Waste Composting
URI https://link.springer.com/article/10.1007/s12649-025-02908-x
https://www.proquest.com/docview/3230183333
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBAPEWhVB7YwFJiO3U8VlVLeXWiokyWE9tSBxLUBAn-Pec0IYBgIGsSR_rucvedfQ-EzkUaO_DLjFgdSsJpIokWgSDGORMLIaUVvt75fjaYzvnNIlrURWFFk-3eHElWlrotdgPfLYkfvxpQGcQEmGMn8rE7aPGcDj93VqjnzFWzzBC-5lO4wrpa5vdlvnuklmb-OBmtHM5kF-3UTBEP16LdQxs220fbX_oHHiB1XdU44tzh6bvxTR8Mvls-WzzKiU8U8qaswHmGZ8tylYOqYD-fs9mGxesSRXjDt9oAu4gfNcgcexORFz4d-hDNJ-OH0ZTUExNISkVQkohTy3XqgtRETkPoZqjR0gYJd4AU-HInQykM4y7VJuVcD1Jw2KFndZGNjGVHaDPLM3uMMLNsECeRAfrAOKVBkhgtmGMypJo557rookFNvawbY6i2BbLHWAHGqsJYvXVRrwFW1T9JoRiEP2BR4Oqiywbs9vbfq5387_FTtEUrefsk2x7aLFev9gyoRJn0UWd49XQ77lca9AGQUMKK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYAB8SkKBTywgaXEdup4rCqqFNpOrehmObEtdSBBbZDg33NOEwoIBrImcaQ75-7ZfvcOoRuRxQ7yMiNWh5JwmkqiRSCIcc7EQkhpha93Hk-6yYw_zKN5XRS2atjuzZFkFak3xW6QuyXx7VcDKoOYAHLcBjAQeyLXjPY-d1aox8yVWGYIX_MUrrCulvl9mO8ZaQMzf5yMVglncID2a6SIe2vXHqItmx-hvS_6gcdIDasaR1w4nLwbL_pg8GjxbHG_IJ4o5EPZChc5nizKZQFTBfv-nM02LF6XKMIbXmoD4iJ-0uBz7ENEsfJ06BM0G9xP-wmpOyaQjIqgJBGnluvMBZmJnIalm6FGSxuk3EUUkj91MpTCMO4ybTLOdTeDhB16VBfZyFh2ilp5kdszhJll3TiNDMAHxikN0tRowRyTIdXMOddGt43V1MtaGENtJJC9jRXYWFU2Vm9t1GkMq-qfZKUYLH8gosDVRneNsTe3_x7t_H-PX6OdZDoeqdFw8niBdmnle0-47aBWuXy1lwAryvSqmkUfw0PD6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MJkYPxp8RRe3BmzZsbUfXI0EJKBIPErk13domHNwIzET_e18HEzR6cNdtXfLe23tf2_d9RehKpLGDusyI1aEknCaSaBEIYpwzsRBSWuH5zo_DVm_E78fReI3FX3a7V1uSC06DV2nKiubUuOaK-AZ1XBJ_FGtAZRATQJGbkI5DH9cj2v5aZaEeP5fCmSF82bdzhUvmzO_DfK9OK8j5Y5e0LD7dPbS7RI24vXDzPtqw2QHaWdMSPESqX_Idce5w78N4AQiDB5NXizs58U1DPq3NcZ7h4aSY5RA22J_VWS3J4gVdEd7wshuQI_GLBv9jny7yuW-NPkKj7t1zp0eWpyeQlIqgIBGnluvUBamJnIZpnKFGSxsk3EUUgAB1MpTCMO5SbVLOdSuF4h16hBfZyFh2jGpZntkThJllrTiJDEAJxikNksRowRyTIdXMOVdH15XV1HQhkqFWcsjexgpsrEobq_c6alSGVcsfZq4YTIUgu8BVRzeVsVe3_x7t9H-PX6Ktp9uuGvSHD2dom5au9723DVQrZm_2HBBGkVyUQfQJT07IJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Hydrated+Lime+Co-additives+on+Nitrogen+Conservation+during+Livestock+Waste+Composting&rft.jtitle=Waste+and+biomass+valorization&rft.au=Bang+Donggyu&rft.au=Chung%2C+Woojin&rft.au=JinJu%2C+Yun&rft.au=Shim+Jeahong&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1877-2641&rft.eissn=1877-265X&rft.volume=16&rft.issue=7&rft.spage=3467&rft.epage=3482&rft_id=info:doi/10.1007%2Fs12649-025-02908-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-2641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-2641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-2641&client=summon