Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect
This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y -direction. The external magnetic f...
Saved in:
Published in | Plasmonics (Norwell, Mass.) Vol. 20; no. 7; pp. 4565 - 4576 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the
y
-direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe
−1
, and an AS value of 1.43 × 10
−3
Oe
−1
, and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration. |
---|---|
AbstractList | This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y-direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe−1, and an AS value of 1.43 × 10−3 Oe−1, and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration. This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y -direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe −1 , and an AS value of 1.43 × 10 −3 Oe −1 , and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration. |
Author | Meng, Fanchao Zhang, Ru Li, Mingliang Li, Zonglin Li, Jianhua Cao, Ying |
Author_xml | – sequence: 1 givenname: Mingliang surname: Li fullname: Li, Mingliang organization: Information Engineering College, Hebei GEO University, Intelligent Sensor Network Engineering Research Center of Hebei Province – sequence: 2 givenname: Ying surname: Cao fullname: Cao, Ying organization: Information Engineering College, Hebei GEO University – sequence: 3 givenname: Jianhua surname: Li fullname: Li, Jianhua email: 149221092@qq.com organization: Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Institute of Geophysics and Geochemical Exploration, Chinese Academy of Geological Sciences – sequence: 4 givenname: Zonglin surname: Li fullname: Li, Zonglin organization: Information Engineering College, Hebei GEO University – sequence: 5 givenname: Ru surname: Zhang fullname: Zhang, Ru organization: Information Engineering College, Hebei GEO University – sequence: 6 givenname: Fanchao surname: Meng fullname: Meng, Fanchao organization: Information Engineering College, Hebei GEO University |
BookMark | eNp9kM1OwzAQhC0EEm3hBThZ4hzwX-zkCFULSEWtKJyN42xKqtYudnro2-MSJDhxWHk9mm-knSE6dd4BQleU3FBC1G2kVMgiI0ykkbTMxAka0DxXGS0lP_2zn6NhjGtChBBSDND73HZm5Z3Z4MWH77xrLR6HQ-ySMG0rCPjZrBx0SZ62sKnxElz0Ad-bCDX2Di_3oTEW8GJj4jb9XyCmNJeUSdOA7S7QWWM2ES5_3hF6m05ex4_ZbP7wNL6bZZYp0mU5E4TUQnBWQ01LVtVKJZw20lCjylIpq44exlXJLCsqWRdSAKtA5jmlho_QdZ-7C_5zD7HTa78P6a6oOeOEFlxRllysd9ngYwzQ6F1otyYcNCX62KTum9SpSf3dpBYJ4j0Uk9mtIPxG_0N9AQuodvs |
Cites_doi | 10.1364/OE.435864 10.1117/1.OE.58.9.096107 10.1016/j.ijleo.2020.165311 10.1109/TPS.2021.3126671 10.3389/fphy.2022.1097841 10.1109/JSEN.2021.3131694 10.1109/ACCESS.2019.2922663 10.1109/TNB.2022.3219104 10.1016/j.yofte.2023.103593 10.1016/j.yofte.2019.102102 10.3390/s18124325 10.1109/JSEN.2022.3222969 10.1109/JSEN.2010.2043429 10.1364/OE.459088 10.1109/JSEN.2018.2863707 10.1016/j.optlastec.2018.03.022 10.1063/1.4904349 10.1002/mop.32573 10.1109/TMAG.2014.2310710 10.1063/1.1531831 10.1016/j.rinp.2020.103240 10.1016/j.sbsr.2022.100534 10.1142/S0217984919503809 10.3390/s21186232 10.1364/AO.409221 10.1063/1.1787165 10.1364/OE.26.009039 10.3390/s20185193 10.1007/s00339-019-3164-x 10.1364/AO.58.000333 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11468-024-02619-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Geology |
EISSN | 1557-1963 |
EndPage | 4576 |
ExternalDocumentID | 10_1007_s11468_024_02619_4 |
GrantInformation_xml | – fundername: the Key Laboratory of Geophysical Electromagnetic Probing Technologies of the Ministry of Natural Resources grantid: KLGEPT202206 – fundername: Key R & D plan project of Hebei Province grantid: 22375415D – fundername: the China Geological Survey Project grantid: DD20230298 – fundername: Chinese Academy of Geological Sciences grantid: JKYZD202325 – fundername: Student Research Programs at Hebei University of Geosciences grantid: KAG202407; KAG202407 |
GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c270t-52400d4432ded192bd77fec1f6a1a79977c7524023792c28b6d864e2be65511a3 |
IEDL.DBID | U2A |
ISSN | 1557-1963 1557-1955 |
IngestDate | Sat Aug 23 13:18:28 EDT 2025 Wed Jul 16 16:38:12 EDT 2025 Tue Jul 15 01:10:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Magnetic field sensor Finite element method Photonic crystal fiber Surface plasmon resonance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-52400d4432ded192bd77fec1f6a1a79977c7524023792c28b6d864e2be65511a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3230183712 |
PQPubID | 2044107 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3230183712 crossref_primary_10_1007_s11468_024_02619_4 springer_journals_10_1007_s11468_024_02619_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Plasmonics (Norwell, Mass.) |
PublicationTitleAbbrev | Plasmonics |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | M Bichurin (2619_CR3) 2021; 21 GP Mishra (2619_CR11) 2021; 63 VS Chaudhary (2619_CR14) 2021; 49 YPJD Ni (2619_CR27) 2003; 10 J Wang (2619_CR8) 2019; 33 MR Islam (2619_CR35) 2020; 221 VS Chaudhary (2619_CR23) 2022; 23 S Tumanski (2619_CR1) 2013; 10 E Podder (2619_CR21) 2021; 43 M De (2619_CR7) 2018; 106 VS Chaudhary (2619_CR24) 2023; 22 Y Zhao (2619_CR28) 2014; 50 N Nallusamy (2619_CR31) 2019; 58 MS Islam (2619_CR34) 2019; 7 MB Hossain (2619_CR20) 2020; 54 S Sharma (2619_CR10) 2020; 33 H Huang (2619_CR9) 2020; 20 P Caputo (2619_CR2) 2004; 85 N Alberto (2619_CR6) 2018; 18 N Li (2619_CR18) 2024; 82 S Qin (2619_CR12) 2021; 29 MM Bilal (2619_CR29) 2019; 58 D Wang (2619_CR15) 2022; 30 MB Hossain (2619_CR16) 2023; 10 EPA Envelope (2619_CR17) 2022; 38 MB Hossain (2619_CR19) 2019; 125 2619_CR26 J Wang (2619_CR32) 2020; 18 MM Bilal (2619_CR30) 2019; 58 C Liu (2619_CR33) 2018; 26 J Li (2619_CR4) 2018; 18 P Ripka (2619_CR5) 2010; 10 GP Mishra (2619_CR13) 2021; 22 GP Mishra (2619_CR22) 2020; 59 S-Y Yang (2619_CR25) 2022; 81 |
References_xml | – volume: 29 start-page: 29492 issue: 18 year: 2021 ident: 2619_CR12 publication-title: Opt Express doi: 10.1364/OE.435864 – volume: 58 start-page: 096107-1 issue: 9 year: 2019 ident: 2619_CR30 publication-title: Opt Eng doi: 10.1117/1.OE.58.9.096107 – volume: 221 start-page: 165311 year: 2020 ident: 2619_CR35 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2020.165311 – volume: 58 start-page: 1 issue: 9 year: 2019 ident: 2619_CR29 publication-title: Opt Eng doi: 10.1117/1.OE.58.9.096107 – volume: 49 start-page: 3803 issue: 12 year: 2021 ident: 2619_CR14 publication-title: IEEE Trans Plasma Sci doi: 10.1109/TPS.2021.3126671 – volume: 10 start-page: 1097841 year: 2023 ident: 2619_CR16 publication-title: Front Phys doi: 10.3389/fphy.2022.1097841 – volume: 22 start-page: 1265 issue: 2 year: 2021 ident: 2619_CR13 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3131694 – volume: 7 start-page: 79085 year: 2019 ident: 2619_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922663 – volume: 43 start-page: 3720 year: 2021 ident: 2619_CR21 publication-title: Mater Today: Proc – volume: 22 start-page: 562 issue: 3 year: 2023 ident: 2619_CR24 publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2022.3219104 – volume: 82 start-page: 103593 year: 2024 ident: 2619_CR18 publication-title: Opt Fiber Technol doi: 10.1016/j.yofte.2023.103593 – volume: 54 start-page: 102102 year: 2020 ident: 2619_CR20 publication-title: Opt Fiber Technol doi: 10.1016/j.yofte.2019.102102 – volume: 18 start-page: 4325 issue: 12 year: 2018 ident: 2619_CR6 publication-title: Sensors doi: 10.3390/s18124325 – volume: 23 start-page: 1012 issue: 2 year: 2022 ident: 2619_CR23 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3222969 – volume: 10 start-page: 1108 issue: 6 year: 2010 ident: 2619_CR5 publication-title: IEEE Sens J doi: 10.1109/JSEN.2010.2043429 – volume: 30 start-page: 29271 issue: 16 year: 2022 ident: 2619_CR15 publication-title: Opt Express doi: 10.1364/OE.459088 – volume: 18 start-page: 8198 issue: 20 year: 2018 ident: 2619_CR4 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2863707 – volume: 106 start-page: 61 year: 2018 ident: 2619_CR7 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.03.022 – ident: 2619_CR26 doi: 10.1063/1.4904349 – volume: 10 start-page: 901 year: 2003 ident: 2619_CR27 publication-title: China Laser – volume: 63 start-page: 24 issue: 1 year: 2021 ident: 2619_CR11 publication-title: Microw Opt Technol Lett doi: 10.1002/mop.32573 – volume: 50 start-page: 1 issue: 8 year: 2014 ident: 2619_CR28 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2014.2310710 – volume: 81 start-page: 4931 issue: 26 year: 2022 ident: 2619_CR25 publication-title: Appl Phys Lett doi: 10.1063/1.1531831 – volume: 18 start-page: 103240 year: 2020 ident: 2619_CR32 publication-title: Results Phys doi: 10.1016/j.rinp.2020.103240 – volume: 38 start-page: 100534 year: 2022 ident: 2619_CR17 publication-title: Sens Bio-Sens Res doi: 10.1016/j.sbsr.2022.100534 – volume: 33 start-page: 1950380 issue: 31 year: 2019 ident: 2619_CR8 publication-title: Mod Phys Lett B doi: 10.1142/S0217984919503809 – volume: 21 start-page: 6232 issue: 18 year: 2021 ident: 2619_CR3 publication-title: Sensors doi: 10.3390/s21186232 – volume: 59 start-page: 10321 issue: 33 year: 2020 ident: 2619_CR22 publication-title: Appl Opt doi: 10.1364/AO.409221 – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 2619_CR1 publication-title: Organ – volume: 85 start-page: 1389 issue: 8 year: 2004 ident: 2619_CR2 publication-title: Appl Phys Lett doi: 10.1063/1.1787165 – volume: 33 start-page: 2122 year: 2020 ident: 2619_CR10 publication-title: Mater Today: Proc – volume: 26 start-page: 9039 issue: 7 year: 2018 ident: 2619_CR33 publication-title: Opt Express doi: 10.1364/OE.26.009039 – volume: 20 start-page: 5193 issue: 18 year: 2020 ident: 2619_CR9 publication-title: Sensors doi: 10.3390/s20185193 – volume: 125 start-page: 861 issue: 12 year: 2019 ident: 2619_CR19 publication-title: Appl Phys A doi: 10.1007/s00339-019-3164-x – volume: 58 start-page: 333 issue: 2 year: 2019 ident: 2619_CR31 publication-title: Appl Opt doi: 10.1364/AO.58.000333 |
SSID | ssj0044464 |
Score | 2.374667 |
Snippet | This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4565 |
SubjectTerms | Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Crystal fibers Fiber optics Finite element method Geology Gold coatings Jupiter Magnetic fields Magnetic fluids Magnetic flux Magnetic resonance Nanotechnology Optical fibers Photonic crystals Production costs Refractivity Sensors Surface plasmon resonance |
Title | Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect |
URI | https://link.springer.com/article/10.1007/s11468-024-02619-4 https://www.proquest.com/docview/3230183712 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oxOjFKGpEkezBmzax2-3XEQlINCgJkuCp7hd6IK0p5eC_d3Zp02j04LHptIfp7sx73Zk3AJexiH3uSe1E0lcOYwvuCMmY48VRrKhRA7HTGsaPwWjG7uf-vGwKW1XV7tWRpI3UdbOb7RLCnOJY3uCwbWj6yN1NIdeM9qr4y5DgsLI95vfnvqegGlf-OAq1GWZ4APslNCS9zbc8hC2dtmC3X01ka8GOLdeUqyN4fZLmNMmYT96zwsjbkn7-iUhvSYamBoSM-Vtq-hPxUi8VmSJbzXJyizlLkSwl03W-4FKTCYJnXIjE_MU30huabOSMj2E2HDz3R045K8GRNLwpkE_iZlSMeVRphahNqDBEc3cRcJeHMaI8GRob6oUxlTQSgYoCpqnQAWIml3sn0EizVJ8CQRIY84UKXC5ipqQfKRVKVwsVeYGS1G3DVeW-5GMjiZHU4sfG2Qk6O7HOTlgbOpWHk3J7rBIPiQ_GktClbbiuvF7f_vttZ_8zP4c9aub12vLaDjSKfK0vEEQUogvN3t3Lw6Br184XDHS_vQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFL1URepGfGJ9zkJXGjCTyWvhQqultbYWasFdOpmZ6KKkkrZI_8cP9c40ISi6cOEyZBjCyZ2553BfAKdhHLrcEcoKhCstxhJuxYIxywmDUFLdDcRMa-h0veaA3T-7zxX4KGphTLZ7EZI0N3VZ7GaqhNCnWEY3WCxPpWyr-TsKtclV6xb_6hmljbunetPKZwlYgvqXU9RbaKySMYdKJZHVxNL3EyXsxOM290NkQcLXa6jjh1TQIPZk4DFFY-Uhp7C5g_suwQqSj0CfnQG9Lu57hoKK5eU4P3_nV5dX8thvoVfj0RobsJ5TUXK9sJ1NqKh0C6r1YgLcFqya9FAx2Ybho9DRK7289zqe6na6pJ7NkVmOSEPnnJAOf0l1PSQ-qpEkfVTH44zcoI-UZJyS_ixLuFCkh2QdDZ_oqIFu9aHIon3yDgz-Bc9dWE7HqdoDgqIz5In0bB6HTAo3kNIXtopl4HhSULsG5wV80duiBUdUNlvWYEcIdmTAjlgNDguEo_w4TiIHhRbeXb5Na3BRoF6-_n23_b8tP4Fq86nzED20uu0DWKN6VrBJ7T2E5Wk2U0dIYKbxsbEfAsP_NthPhGT5cA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gxsfF-Iwo6h70pA12u_Rx8IAg8S0JknAr292tHkghUGL4V_5EZ5c2RKMHDxybbjbNdHbnm8x83wCcBlFQ5Y5Qli-q0mIs5lYkGLOcwA8k1WogZlrD07N722H33Wq3AJ85F8Z0u-clyRmnQas0JWllKOPKnPhmGEMYXyyTQ1gsa6t8UNMPTNrGV3cN_MNnlDZvXuu3VjZXwBLUu0wx90LHlYw5VCqJCCeSnhcrYccut7kXICISnl5DHS-ggvqRK32XKRopF_GFzR3cdwmWmWYf4wnq0Fp-9zNMrlhGzfn9O7-Hvzmm_VGGNdGtuQkbGSwltZkfbUFBJduwVs-nwW3DimkVFeMd6L0IXcnSy1vvg1RL65L6aIoos0-auv-EPPG3RHMj8VH1JWljpjwYkWuMl5IMEtKejGIuFGkhcMdDQHQFQct-KDKTUt6FzkLsuQfFZJCofSCYgAY8lq7No4BJUfWl9IStIuk7rhTULsF5br5wOJPjCOfCy9rYIRo7NMYOWQnKuYXD7GiOQweTLrzHPJuW4CK3-vz137sd_G_5Cay2Gs3w8e754RDWqR4bbLp8y1BMRxN1hFgmjY6N-xDoLdpfvwBrpv2j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Octagonal+Photonic+Crystal+Fiber+Magnetic+Field+Sensor+Based+on+Surface+Plasmon+Resonance+Effect&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Li%2C+Mingliang&rft.au=Cao%2C+Ying&rft.au=Li%2C+Jianhua&rft.au=Li%2C+Zonglin&rft.date=2025-07-01&rft.issn=1557-1963&rft.eissn=1557-1963&rft.volume=20&rft.issue=7&rft.spage=4565&rft.epage=4576&rft_id=info:doi/10.1007%2Fs11468-024-02619-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11468_024_02619_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1963&client=summon |