Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect

This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y -direction. The external magnetic f...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 20; no. 7; pp. 4565 - 4576
Main Authors Li, Mingliang, Cao, Ying, Li, Jianhua, Li, Zonglin, Zhang, Ru, Meng, Fanchao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y -direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe −1 , and an AS value of 1.43 × 10 −3 Oe −1 , and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration.
AbstractList This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y-direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe−1, and an AS value of 1.43 × 10−3 Oe−1, and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration.
This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y -direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe −1 , and an AS value of 1.43 × 10 −3 Oe −1 , and the detection range is 50–200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration.
Author Meng, Fanchao
Zhang, Ru
Li, Mingliang
Li, Zonglin
Li, Jianhua
Cao, Ying
Author_xml – sequence: 1
  givenname: Mingliang
  surname: Li
  fullname: Li, Mingliang
  organization: Information Engineering College, Hebei GEO University, Intelligent Sensor Network Engineering Research Center of Hebei Province
– sequence: 2
  givenname: Ying
  surname: Cao
  fullname: Cao, Ying
  organization: Information Engineering College, Hebei GEO University
– sequence: 3
  givenname: Jianhua
  surname: Li
  fullname: Li, Jianhua
  email: 149221092@qq.com
  organization: Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Institute of Geophysics and Geochemical Exploration, Chinese Academy of Geological Sciences
– sequence: 4
  givenname: Zonglin
  surname: Li
  fullname: Li, Zonglin
  organization: Information Engineering College, Hebei GEO University
– sequence: 5
  givenname: Ru
  surname: Zhang
  fullname: Zhang, Ru
  organization: Information Engineering College, Hebei GEO University
– sequence: 6
  givenname: Fanchao
  surname: Meng
  fullname: Meng, Fanchao
  organization: Information Engineering College, Hebei GEO University
BookMark eNp9kM1OwzAQhC0EEm3hBThZ4hzwX-zkCFULSEWtKJyN42xKqtYudnro2-MSJDhxWHk9mm-knSE6dd4BQleU3FBC1G2kVMgiI0ykkbTMxAka0DxXGS0lP_2zn6NhjGtChBBSDND73HZm5Z3Z4MWH77xrLR6HQ-ySMG0rCPjZrBx0SZ62sKnxElz0Ad-bCDX2Di_3oTEW8GJj4jb9XyCmNJeUSdOA7S7QWWM2ES5_3hF6m05ex4_ZbP7wNL6bZZYp0mU5E4TUQnBWQ01LVtVKJZw20lCjylIpq44exlXJLCsqWRdSAKtA5jmlho_QdZ-7C_5zD7HTa78P6a6oOeOEFlxRllysd9ngYwzQ6F1otyYcNCX62KTum9SpSf3dpBYJ4j0Uk9mtIPxG_0N9AQuodvs
Cites_doi 10.1364/OE.435864
10.1117/1.OE.58.9.096107
10.1016/j.ijleo.2020.165311
10.1109/TPS.2021.3126671
10.3389/fphy.2022.1097841
10.1109/JSEN.2021.3131694
10.1109/ACCESS.2019.2922663
10.1109/TNB.2022.3219104
10.1016/j.yofte.2023.103593
10.1016/j.yofte.2019.102102
10.3390/s18124325
10.1109/JSEN.2022.3222969
10.1109/JSEN.2010.2043429
10.1364/OE.459088
10.1109/JSEN.2018.2863707
10.1016/j.optlastec.2018.03.022
10.1063/1.4904349
10.1002/mop.32573
10.1109/TMAG.2014.2310710
10.1063/1.1531831
10.1016/j.rinp.2020.103240
10.1016/j.sbsr.2022.100534
10.1142/S0217984919503809
10.3390/s21186232
10.1364/AO.409221
10.1063/1.1787165
10.1364/OE.26.009039
10.3390/s20185193
10.1007/s00339-019-3164-x
10.1364/AO.58.000333
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11468-024-02619-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Geology
EISSN 1557-1963
EndPage 4576
ExternalDocumentID 10_1007_s11468_024_02619_4
GrantInformation_xml – fundername: the Key Laboratory of Geophysical Electromagnetic Probing Technologies of the Ministry of Natural Resources
  grantid: KLGEPT202206
– fundername: Key R & D plan project of Hebei Province
  grantid: 22375415D
– fundername: the China Geological Survey Project
  grantid: DD20230298
– fundername: Chinese Academy of Geological Sciences
  grantid: JKYZD202325
– fundername: Student Research Programs at Hebei University of Geosciences
  grantid: KAG202407; KAG202407
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c270t-52400d4432ded192bd77fec1f6a1a79977c7524023792c28b6d864e2be65511a3
IEDL.DBID U2A
ISSN 1557-1963
1557-1955
IngestDate Sat Aug 23 13:18:28 EDT 2025
Wed Jul 16 16:38:12 EDT 2025
Tue Jul 15 01:10:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Magnetic field sensor
Finite element method
Photonic crystal fiber
Surface plasmon resonance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-52400d4432ded192bd77fec1f6a1a79977c7524023792c28b6d864e2be65511a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230183712
PQPubID 2044107
PageCount 12
ParticipantIDs proquest_journals_3230183712
crossref_primary_10_1007_s11468_024_02619_4
springer_journals_10_1007_s11468_024_02619_4
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Plasmonics (Norwell, Mass.)
PublicationTitleAbbrev Plasmonics
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Bichurin (2619_CR3) 2021; 21
GP Mishra (2619_CR11) 2021; 63
VS Chaudhary (2619_CR14) 2021; 49
YPJD Ni (2619_CR27) 2003; 10
J Wang (2619_CR8) 2019; 33
MR Islam (2619_CR35) 2020; 221
VS Chaudhary (2619_CR23) 2022; 23
S Tumanski (2619_CR1) 2013; 10
E Podder (2619_CR21) 2021; 43
M De (2619_CR7) 2018; 106
VS Chaudhary (2619_CR24) 2023; 22
Y Zhao (2619_CR28) 2014; 50
N Nallusamy (2619_CR31) 2019; 58
MS Islam (2619_CR34) 2019; 7
MB Hossain (2619_CR20) 2020; 54
S Sharma (2619_CR10) 2020; 33
H Huang (2619_CR9) 2020; 20
P Caputo (2619_CR2) 2004; 85
N Alberto (2619_CR6) 2018; 18
N Li (2619_CR18) 2024; 82
S Qin (2619_CR12) 2021; 29
MM Bilal (2619_CR29) 2019; 58
D Wang (2619_CR15) 2022; 30
MB Hossain (2619_CR16) 2023; 10
EPA Envelope (2619_CR17) 2022; 38
MB Hossain (2619_CR19) 2019; 125
2619_CR26
J Wang (2619_CR32) 2020; 18
MM Bilal (2619_CR30) 2019; 58
C Liu (2619_CR33) 2018; 26
J Li (2619_CR4) 2018; 18
P Ripka (2619_CR5) 2010; 10
GP Mishra (2619_CR13) 2021; 22
GP Mishra (2619_CR22) 2020; 59
S-Y Yang (2619_CR25) 2022; 81
References_xml – volume: 29
  start-page: 29492
  issue: 18
  year: 2021
  ident: 2619_CR12
  publication-title: Opt Express
  doi: 10.1364/OE.435864
– volume: 58
  start-page: 096107-1
  issue: 9
  year: 2019
  ident: 2619_CR30
  publication-title: Opt Eng
  doi: 10.1117/1.OE.58.9.096107
– volume: 221
  start-page: 165311
  year: 2020
  ident: 2619_CR35
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2020.165311
– volume: 58
  start-page: 1
  issue: 9
  year: 2019
  ident: 2619_CR29
  publication-title: Opt Eng
  doi: 10.1117/1.OE.58.9.096107
– volume: 49
  start-page: 3803
  issue: 12
  year: 2021
  ident: 2619_CR14
  publication-title: IEEE Trans Plasma Sci
  doi: 10.1109/TPS.2021.3126671
– volume: 10
  start-page: 1097841
  year: 2023
  ident: 2619_CR16
  publication-title: Front Phys
  doi: 10.3389/fphy.2022.1097841
– volume: 22
  start-page: 1265
  issue: 2
  year: 2021
  ident: 2619_CR13
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3131694
– volume: 7
  start-page: 79085
  year: 2019
  ident: 2619_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922663
– volume: 43
  start-page: 3720
  year: 2021
  ident: 2619_CR21
  publication-title: Mater Today: Proc
– volume: 22
  start-page: 562
  issue: 3
  year: 2023
  ident: 2619_CR24
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2022.3219104
– volume: 82
  start-page: 103593
  year: 2024
  ident: 2619_CR18
  publication-title: Opt Fiber Technol
  doi: 10.1016/j.yofte.2023.103593
– volume: 54
  start-page: 102102
  year: 2020
  ident: 2619_CR20
  publication-title: Opt Fiber Technol
  doi: 10.1016/j.yofte.2019.102102
– volume: 18
  start-page: 4325
  issue: 12
  year: 2018
  ident: 2619_CR6
  publication-title: Sensors
  doi: 10.3390/s18124325
– volume: 23
  start-page: 1012
  issue: 2
  year: 2022
  ident: 2619_CR23
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3222969
– volume: 10
  start-page: 1108
  issue: 6
  year: 2010
  ident: 2619_CR5
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2010.2043429
– volume: 30
  start-page: 29271
  issue: 16
  year: 2022
  ident: 2619_CR15
  publication-title: Opt Express
  doi: 10.1364/OE.459088
– volume: 18
  start-page: 8198
  issue: 20
  year: 2018
  ident: 2619_CR4
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2863707
– volume: 106
  start-page: 61
  year: 2018
  ident: 2619_CR7
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.03.022
– ident: 2619_CR26
  doi: 10.1063/1.4904349
– volume: 10
  start-page: 901
  year: 2003
  ident: 2619_CR27
  publication-title: China Laser
– volume: 63
  start-page: 24
  issue: 1
  year: 2021
  ident: 2619_CR11
  publication-title: Microw Opt Technol Lett
  doi: 10.1002/mop.32573
– volume: 50
  start-page: 1
  issue: 8
  year: 2014
  ident: 2619_CR28
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2310710
– volume: 81
  start-page: 4931
  issue: 26
  year: 2022
  ident: 2619_CR25
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1531831
– volume: 18
  start-page: 103240
  year: 2020
  ident: 2619_CR32
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103240
– volume: 38
  start-page: 100534
  year: 2022
  ident: 2619_CR17
  publication-title: Sens Bio-Sens Res
  doi: 10.1016/j.sbsr.2022.100534
– volume: 33
  start-page: 1950380
  issue: 31
  year: 2019
  ident: 2619_CR8
  publication-title: Mod Phys Lett B
  doi: 10.1142/S0217984919503809
– volume: 21
  start-page: 6232
  issue: 18
  year: 2021
  ident: 2619_CR3
  publication-title: Sensors
  doi: 10.3390/s21186232
– volume: 59
  start-page: 10321
  issue: 33
  year: 2020
  ident: 2619_CR22
  publication-title: Appl Opt
  doi: 10.1364/AO.409221
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 2619_CR1
  publication-title: Organ
– volume: 85
  start-page: 1389
  issue: 8
  year: 2004
  ident: 2619_CR2
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1787165
– volume: 33
  start-page: 2122
  year: 2020
  ident: 2619_CR10
  publication-title: Mater Today: Proc
– volume: 26
  start-page: 9039
  issue: 7
  year: 2018
  ident: 2619_CR33
  publication-title: Opt Express
  doi: 10.1364/OE.26.009039
– volume: 20
  start-page: 5193
  issue: 18
  year: 2020
  ident: 2619_CR9
  publication-title: Sensors
  doi: 10.3390/s20185193
– volume: 125
  start-page: 861
  issue: 12
  year: 2019
  ident: 2619_CR19
  publication-title: Appl Phys A
  doi: 10.1007/s00339-019-3164-x
– volume: 58
  start-page: 333
  issue: 2
  year: 2019
  ident: 2619_CR31
  publication-title: Appl Opt
  doi: 10.1364/AO.58.000333
SSID ssj0044464
Score 2.374667
Snippet This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4565
SubjectTerms Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Crystal fibers
Fiber optics
Finite element method
Geology
Gold coatings
Jupiter
Magnetic fields
Magnetic fluids
Magnetic flux
Magnetic resonance
Nanotechnology
Optical fibers
Photonic crystals
Production costs
Refractivity
Sensors
Surface plasmon resonance
Title Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect
URI https://link.springer.com/article/10.1007/s11468-024-02619-4
https://www.proquest.com/docview/3230183712
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0oxOjFKGpEkezBmzax2-3XEQlINCgJkuCp7hd6IK0p5eC_d3Zp02j04LHptIfp7sx73Zk3AJexiH3uSe1E0lcOYwvuCMmY48VRrKhRA7HTGsaPwWjG7uf-vGwKW1XV7tWRpI3UdbOb7RLCnOJY3uCwbWj6yN1NIdeM9qr4y5DgsLI95vfnvqegGlf-OAq1GWZ4APslNCS9zbc8hC2dtmC3X01ka8GOLdeUqyN4fZLmNMmYT96zwsjbkn7-iUhvSYamBoSM-Vtq-hPxUi8VmSJbzXJyizlLkSwl03W-4FKTCYJnXIjE_MU30huabOSMj2E2HDz3R045K8GRNLwpkE_iZlSMeVRphahNqDBEc3cRcJeHMaI8GRob6oUxlTQSgYoCpqnQAWIml3sn0EizVJ8CQRIY84UKXC5ipqQfKRVKVwsVeYGS1G3DVeW-5GMjiZHU4sfG2Qk6O7HOTlgbOpWHk3J7rBIPiQ_GktClbbiuvF7f_vttZ_8zP4c9aub12vLaDjSKfK0vEEQUogvN3t3Lw6Br184XDHS_vQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFL1URepGfGJ9zkJXGjCTyWvhQqultbYWasFdOpmZ6KKkkrZI_8cP9c40ISi6cOEyZBjCyZ2553BfAKdhHLrcEcoKhCstxhJuxYIxywmDUFLdDcRMa-h0veaA3T-7zxX4KGphTLZ7EZI0N3VZ7GaqhNCnWEY3WCxPpWyr-TsKtclV6xb_6hmljbunetPKZwlYgvqXU9RbaKySMYdKJZHVxNL3EyXsxOM290NkQcLXa6jjh1TQIPZk4DFFY-Uhp7C5g_suwQqSj0CfnQG9Lu57hoKK5eU4P3_nV5dX8thvoVfj0RobsJ5TUXK9sJ1NqKh0C6r1YgLcFqya9FAx2Ybho9DRK7289zqe6na6pJ7NkVmOSEPnnJAOf0l1PSQ-qpEkfVTH44zcoI-UZJyS_ixLuFCkh2QdDZ_oqIFu9aHIon3yDgz-Bc9dWE7HqdoDgqIz5In0bB6HTAo3kNIXtopl4HhSULsG5wV80duiBUdUNlvWYEcIdmTAjlgNDguEo_w4TiIHhRbeXb5Na3BRoF6-_n23_b8tP4Fq86nzED20uu0DWKN6VrBJ7T2E5Wk2U0dIYKbxsbEfAsP_NthPhGT5cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gxsfF-Iwo6h70pA12u_Rx8IAg8S0JknAr292tHkghUGL4V_5EZ5c2RKMHDxybbjbNdHbnm8x83wCcBlFQ5Y5Qli-q0mIs5lYkGLOcwA8k1WogZlrD07N722H33Wq3AJ85F8Z0u-clyRmnQas0JWllKOPKnPhmGEMYXyyTQ1gsa6t8UNMPTNrGV3cN_MNnlDZvXuu3VjZXwBLUu0wx90LHlYw5VCqJCCeSnhcrYccut7kXICISnl5DHS-ggvqRK32XKRopF_GFzR3cdwmWmWYf4wnq0Fp-9zNMrlhGzfn9O7-Hvzmm_VGGNdGtuQkbGSwltZkfbUFBJduwVs-nwW3DimkVFeMd6L0IXcnSy1vvg1RL65L6aIoos0-auv-EPPG3RHMj8VH1JWljpjwYkWuMl5IMEtKejGIuFGkhcMdDQHQFQct-KDKTUt6FzkLsuQfFZJCofSCYgAY8lq7No4BJUfWl9IStIuk7rhTULsF5br5wOJPjCOfCy9rYIRo7NMYOWQnKuYXD7GiOQweTLrzHPJuW4CK3-vz137sd_G_5Cay2Gs3w8e754RDWqR4bbLp8y1BMRxN1hFgmjY6N-xDoLdpfvwBrpv2j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Octagonal+Photonic+Crystal+Fiber+Magnetic+Field+Sensor+Based+on+Surface+Plasmon+Resonance+Effect&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Li%2C+Mingliang&rft.au=Cao%2C+Ying&rft.au=Li%2C+Jianhua&rft.au=Li%2C+Zonglin&rft.date=2025-07-01&rft.issn=1557-1963&rft.eissn=1557-1963&rft.volume=20&rft.issue=7&rft.spage=4565&rft.epage=4576&rft_id=info:doi/10.1007%2Fs11468-024-02619-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11468_024_02619_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1963&client=summon