The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles
Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) m...
Saved in:
Published in | Journal of applied electrochemistry Vol. 53; no. 10; pp. 1991 - 1999 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM
− 1
cm
− 2
and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations.
Graphical abstract |
---|---|
AbstractList | Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM− 1 cm− 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations. Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM − 1 cm − 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations. Graphical abstract |
Author | Zhang, Dong Lin, Jun Li, Shuang Zhao, Wenbin Zang, Yue Wang, Jun Xin, Qing |
Author_xml | – sequence: 1 givenname: Jun surname: Lin fullname: Lin, Jun email: junlin@hdu.edu.cn organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University – sequence: 3 givenname: Shuang surname: Li fullname: Li, Shuang organization: Zhejiang Energy Technology Co., Ltd – sequence: 4 givenname: Wenbin surname: Zhao fullname: Zhao, Wenbin organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University – sequence: 5 givenname: Dong surname: Zhang fullname: Zhang, Dong organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University – sequence: 6 givenname: Yue surname: Zang fullname: Zang, Yue organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University – sequence: 7 givenname: Qing surname: Xin fullname: Xin, Qing organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University |
BookMark | eNp9kE1Lw0AURQepYFv9A64GXEffm2SazFKKX1BwU8HdOJm8tCnpTJ1JwPbXm1rBnau3uOfeB2fCRs47Yuwa4RYB8ruIUAAkINIEUIFMDmdsjDIXSVGkxYiNAQQmhcL3CzaJcQMASsyyMftYrolTXZPtuK_5el8F_9VUxBvvIveOd8e8HeLgrelMu49NPJKrtrc-Ejcdj41btcR3reka12-5M87vTOga21K8ZOe1aSNd_d4pe3t8WM6fk8Xr08v8fpFYkUOXZGSlJFIK5UxRWUNG1QwrzDIrKiWkKLEslSpsbnIlMaeyLIgwlYiQI9bplN2cdnfBf_YUO73xfXDDSy0KqUQq80wMlDhRNvgYA9V6F5qtCXuNoI8m9cmkHkzqH5P6MJTSUykOsFtR-Jv-p_UNik15zw |
Cites_doi | 10.1039/D0CC05650B 10.1002/anie.201901384 10.1016/j.elecom.2017.02.009 10.1016/j.aca.2005.05.080 10.1039/C7RA02845H 10.3390/s21237928 10.1016/j.msec.2014.04.013 10.1039/D2NR01098D 10.1016/j.sna.2014.03.033 10.3390/s21144672 10.1016/0013-4686(95)00359-2 10.1039/C7TA00409E 10.1039/D0CS00304B 10.1016/0022-0728(94)03673-Q 10.1016/j.jelechem.2015.07.038 10.1039/c2ra22360k 10.1016/0022-0728(91)85179-S 10.1016/j.bios.2020.112914 10.1021/acs.analchem.7b00729 10.1039/C5AY03181H 10.1021/jacs.5b08628 10.3390/coatings10090810 10.1016/j.aca.2018.05.051 10.1002/anie.202007148 10.1007/s11426-019-9529-x 10.1016/S1452-3981(23)15359-4 10.1016/j.bios.2021.113054 10.1146/annurev-anchem-061318-114902 10.1039/c3ay41680a 10.1021/acs.jpclett.1c01389 10.1016/j.jelechem.2020.114147 10.1021/jp204680p 10.3389/fchem.2021.748957 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10800-023-01905-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-8838 |
EndPage | 1999 |
ExternalDocumentID | 10_1007_s10800_023_01905_z |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY21F050004 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 XOL YLTOR YQT Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-4ec55ee991569ebf04ed61d144c2d9252b1bb998c7a79517ebb8ee135110711f3 |
IEDL.DBID | U2A |
ISSN | 0021-891X |
IngestDate | Fri Jul 25 11:03:23 EDT 2025 Tue Jul 01 00:44:20 EDT 2025 Fri Feb 21 02:43:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Glucose oxidation Pt NPs Single entity electrochemistry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-4ec55ee991569ebf04ed61d144c2d9252b1bb998c7a79517ebb8ee135110711f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2859235742 |
PQPubID | 2043600 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2859235742 crossref_primary_10_1007_s10800_023_01905_z springer_journals_10_1007_s10800_023_01905_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of applied electrochemistry |
PublicationTitleAbbrev | J Appl Electrochem |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | NaikKMAshiCRNandibewoorSTAnodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urineJ Electroanal Chem20157551091141:CAS:528:DC%2BC2MXht12rsbrE10.1016/j.jelechem.2015.07.038 RamaswamyNMukerjeeSInfluence of inner- and outer-sphere Electron transfer mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline MediaJ Phys Chem C201111518015180261:CAS:528:DC%2BC3MXhtVGnu73M10.1021/jp204680p LiuSZengWGuoQLiYMetal oxide-based composite for non-enzymatic glucose sensorsJ Mater Sci: Mater Electron20203116111161361:CAS:528:DC%2BB3cXhs1Oit7%2FK PatriceFTQiuKYingY-LLongY-TSingle nanoparticle ElectrochemistryAnnual Rev. Anal. Chem20191234737010.1146/annurev-anchem-061318-114902 PopovićKDMarkovićNMTripkovićAVAdžićRRStructural effects in electrocatalysis: oxidation of D-glucose on single crystal platinum electrodes in alkaline solutionJ Electroanal Chem Interfacial Electrochem199131318119910.1016/0022-0728(91)85179-S SiPHuangYWangTMaJNanomaterials for electrochemical non-enzymatic glucose biosensorsRSC Adv2013334871:CAS:528:DC%2BC3sXis1Cru7g%3D10.1039/c2ra22360k LinLWengSZhengYLiuXYingSChenFYouDBimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potentialJ Electroanal Chem20208651141471:CAS:528:DC%2BB3cXnsVGntLg%3D10.1016/j.jelechem.2020.114147 WeiMQiaoYZhaoHLiangJLiTLuoYLuSShiXLuWSunXElectrochemical non-enzymatic glucose sensors: recent progress and perspectivesChem. Commun20205614553145691:CAS:528:DC%2BB3cXhvFKmsL7P10.1039/D0CC05650B BedenBLargeaudFKokohKBLamyCFourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction productsElectrochim Acta1996417017091:CAS:528:DyaK28Xhs1WqsL4%3D10.1016/0013-4686(95)00359-2 NaikKMNandibewoorSTElectroanalytical method for the determination of methylparabenSens Actuat A: Phys20142121271321:CAS:528:DC%2BC2cXntl2nur4%3D10.1016/j.sna.2014.03.033 LeeIProbstDKlonoffDSodeKContinuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor researchBiosens Bioelectron20211811130541:CAS:528:DC%2BB3MXns1aqur4%3D10.1016/j.bios.2021.11305433775474 KimSDParkJHAhnHLeeJShinC-HJangW-DKimB-KAhnHSThe discrete single-entity electrochemistry of Pickering emulsionsNANOSCALE202214698169891:CAS:528:DC%2BB38XhtV2qurvI10.1039/D2NR01098D35470845 MazurkówJMKusiorARadeckaMElectrochemical characterization of modified glassy Carbon Electrodes for non-enzymatic glucose sensorsSensors202121792810.3390/s21237928348839318659783 GaoRYingY-LHuY-XLiY-JLongY-TWireless Bipolar Nanopore Electrode for single small molecule detectionAnal Chem201789738273871:CAS:528:DC%2BC2sXhtVKisbjE10.1021/acs.analchem.7b0072928653531 LiuYAustenBJJCornwellTTilburyRDBuntineMAO’MullaneAPArriganDWMCollisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucoseElectrochem Commun20177724271:CAS:528:DC%2BC2sXjtFeju7g%3D10.1016/j.elecom.2017.02.009 HassanMHVyasCGrieveBBartoloPRecent advances in enzymatic and non-enzymatic Electrochemical glucose sensingSensors (Basel)20212146721:CAS:528:DC%2BB3MXitl2gu7zJ10.3390/s2114467234300412 TangHWangHDuJZhaoDCaoMLiYIntrinsic Catalytic Activities from single Enzyme@Metal-Organic frameworks by using a Stochastic Collision Electrochemical techniqueJ Phys Chem Lett202112544354471:CAS:528:DC%2BB3MXht1Srt7bI10.1021/acs.jpclett.1c0138934081461 BardAJFaulknerLRElectrochemcial Methods, Fundamentals and Applications20012New YorkJohn Wiley & Sons OlejnikAKarczewskiJDołęgaASiuzdakKGrochowskaKInsightful analysis of Phenomena arising at the metal polymer interphase of Au-Ti based non-enzymatic glucose sensitive electrodes covered by NafionCoatings2020108101:CAS:528:DC%2BB3cXhslGnsb%2FI10.3390/coatings10090810 TianKPrestgardMTiwariAA review of recent advances in nonenzymatic glucose sensorsMater Sci Eng: C2014411001181:CAS:528:DC%2BC2cXpsl2qtr4%3D10.1016/j.msec.2014.04.013 ChenYWangDLiuYGaoGZhiJRedox activity of single bacteria revealed by electrochemical collision techniqueBiosens Bioelectron20211761129141:CAS:528:DC%2BB3MXkt12rtA%3D%3D10.1016/j.bios.2020.11291433353760 LeiH-WWuBChaC-SKitaHElectrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additivesJ Electroanal Chem199538210311010.1016/0022-0728(94)03673-Q NaikKMAlagurMMNandibewoorSTElectrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrodeAnal Methods2013569471:CAS:528:DC%2BC3sXhvVart7bK10.1039/c3ay41680a IDF (2021) IDF Diabetes Atlas 10th edition. DickJEBardAJRecognizing single collisions of PtCl62– at Femtomolar concentrations on Ultramicroelectrodes by nucleating Electrocatalytic clustersJ. Am. Chem. Soc201513713752137551:CAS:528:DC%2BC2MXhs1Kgt7fF10.1021/jacs.5b0862826469558 Gnana kumarGAmalaGGowthamSMRecent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platformsRSC Adv2017736949369761:CAS:528:DC%2BC2sXht1anu7rP10.1039/C7RA02845H RoehrichBSepunaruLNanoimpacts at active and partially active electrodes: Insights and LimitationsAngewandte Chemie International Edition20205919184191921:CAS:528:DC%2BB3cXhs12ru77N10.1002/anie.20200714832745310 HafezMEMaHMaWLongYTUnveiling the intrinsic Catalytic Activities of single-gold-nanoparticle-based enzyme mimeticsAngew Chem Int Ed Engl201958632763321:CAS:528:DC%2BC1MXmtlOgtLg%3D10.1002/anie.20190138430854788 ToghillKComptonRElectrochemical non-enzymatic glucose sensors: a perspective and an evaluationInt. J. Electrochem. Sci. Int J20105124613011:CAS:528:DC%2BC3cXhtFClu7nN10.1016/S1452-3981(23)15359-4 NaikooGASalimHHassanIUAwanTArshadFPedramMZAhmedWQurashiARecent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for Diabetes Management- A ReviewFront Chem202197489571:CAS:528:DC%2BB3MXislSls77F10.3389/fchem.2021.748957346316708493127 TeymourianHBarfidokhtAWangJElectrochemical glucose sensors in diabetes management: an updated review (2010–2020)Chem Soc Rev202049767177091:CAS:528:DC%2BB3cXhvF2hsL3L10.1039/D0CS00304B33020790 ParkSBooHChungTDElectrochemical non-enzymatic glucose sensorsAnal Chim Acta200655646571:CAS:528:DC%2BD28Xhs1ylsw%3D%3D10.1016/j.aca.2005.05.08017723330 HwangDWLeeSSeoMChungTDRecent advances in electrochemical non-enzymatic glucose sensors - a reviewAnal Chim Acta201810331341:CAS:528:DC%2BC1cXhtVGisL%2FP10.1016/j.aca.2018.05.05130172314 FavaroMValero-VidalCEichhornJTomaFMRossPNYanoJLiuZCrumlinEJElucidating the alkaline oxygen evolution reaction mechanism on platinumJ Mater Chem A2017511634116431:CAS:528:DC%2BC2sXjvFWitrk%3D10.1039/C7TA00409E NiuXHShiLBZhaoHLLanMBAdvanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireviewAnal Methods20168175517641:CAS:528:DC%2BC28Xos1ClsA%3D%3D10.1039/C5AY03181H SunZHafezMEMaWLongY-TRecent advances in nanocollision electrochemistrySci China Chem201962158816001:CAS:528:DC%2BC1MXhvVOlsbjF10.1007/s11426-019-9529-x B Beden (1905_CR30) 1996; 41 FT Patrice (1905_CR18) 2019; 12 S Liu (1905_CR6) 2020; 31 I Lee (1905_CR2) 2021; 181 GA Naikoo (1905_CR13) 2021; 9 Y Liu (1905_CR25) 2017; 77 1905_CR1 ME Hafez (1905_CR26) 2019; 58 MH Hassan (1905_CR4) 2021; 21 KM Naik (1905_CR14) 2013; 5 KM Naik (1905_CR16) 2015; 755 P Si (1905_CR33) 2013; 3 B Roehrich (1905_CR20) 2020; 59 Y Chen (1905_CR22) 2021; 176 KD Popović (1905_CR28) 1991; 313 KM Naik (1905_CR15) 2014; 212 JM Mazurków (1905_CR8) 2021; 21 R Gao (1905_CR23) 2017; 89 G Gnana kumar (1905_CR3) 2017; 7 S Park (1905_CR12) 2006; 556 M Wei (1905_CR5) 2020; 56 H Teymourian (1905_CR11) 2020; 49 XH Niu (1905_CR35) 2016; 8 M Favaro (1905_CR34) 2017; 5 H-W Lei (1905_CR31) 1995; 382 K Toghill (1905_CR36) 2010; 5 N Ramaswamy (1905_CR32) 2011; 115 L Lin (1905_CR9) 2020; 865 K Tian (1905_CR29) 2014; 41 H Tang (1905_CR27) 2021; 12 A Olejnik (1905_CR10) 2020; 10 Z Sun (1905_CR19) 2019; 62 SD Kim (1905_CR21) 2022; 14 JE Dick (1905_CR24) 2015; 137 DW Hwang (1905_CR7) 2018; 1033 AJ Bard (1905_CR17) 2001 |
References_xml | – reference: NaikKMAshiCRNandibewoorSTAnodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urineJ Electroanal Chem20157551091141:CAS:528:DC%2BC2MXht12rsbrE10.1016/j.jelechem.2015.07.038 – reference: BedenBLargeaudFKokohKBLamyCFourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction productsElectrochim Acta1996417017091:CAS:528:DyaK28Xhs1WqsL4%3D10.1016/0013-4686(95)00359-2 – reference: ChenYWangDLiuYGaoGZhiJRedox activity of single bacteria revealed by electrochemical collision techniqueBiosens Bioelectron20211761129141:CAS:528:DC%2BB3MXkt12rtA%3D%3D10.1016/j.bios.2020.11291433353760 – reference: ParkSBooHChungTDElectrochemical non-enzymatic glucose sensorsAnal Chim Acta200655646571:CAS:528:DC%2BD28Xhs1ylsw%3D%3D10.1016/j.aca.2005.05.08017723330 – reference: IDF (2021) IDF Diabetes Atlas 10th edition. – reference: NaikKMNandibewoorSTElectroanalytical method for the determination of methylparabenSens Actuat A: Phys20142121271321:CAS:528:DC%2BC2cXntl2nur4%3D10.1016/j.sna.2014.03.033 – reference: TianKPrestgardMTiwariAA review of recent advances in nonenzymatic glucose sensorsMater Sci Eng: C2014411001181:CAS:528:DC%2BC2cXpsl2qtr4%3D10.1016/j.msec.2014.04.013 – reference: RamaswamyNMukerjeeSInfluence of inner- and outer-sphere Electron transfer mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline MediaJ Phys Chem C201111518015180261:CAS:528:DC%2BC3MXhtVGnu73M10.1021/jp204680p – reference: LiuSZengWGuoQLiYMetal oxide-based composite for non-enzymatic glucose sensorsJ Mater Sci: Mater Electron20203116111161361:CAS:528:DC%2BB3cXhs1Oit7%2FK – reference: LinLWengSZhengYLiuXYingSChenFYouDBimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potentialJ Electroanal Chem20208651141471:CAS:528:DC%2BB3cXnsVGntLg%3D10.1016/j.jelechem.2020.114147 – reference: HafezMEMaHMaWLongYTUnveiling the intrinsic Catalytic Activities of single-gold-nanoparticle-based enzyme mimeticsAngew Chem Int Ed Engl201958632763321:CAS:528:DC%2BC1MXmtlOgtLg%3D10.1002/anie.20190138430854788 – reference: LeeIProbstDKlonoffDSodeKContinuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor researchBiosens Bioelectron20211811130541:CAS:528:DC%2BB3MXns1aqur4%3D10.1016/j.bios.2021.11305433775474 – reference: NaikooGASalimHHassanIUAwanTArshadFPedramMZAhmedWQurashiARecent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for Diabetes Management- A ReviewFront Chem202197489571:CAS:528:DC%2BB3MXislSls77F10.3389/fchem.2021.748957346316708493127 – reference: ToghillKComptonRElectrochemical non-enzymatic glucose sensors: a perspective and an evaluationInt. J. Electrochem. Sci. Int J20105124613011:CAS:528:DC%2BC3cXhtFClu7nN10.1016/S1452-3981(23)15359-4 – reference: TeymourianHBarfidokhtAWangJElectrochemical glucose sensors in diabetes management: an updated review (2010–2020)Chem Soc Rev202049767177091:CAS:528:DC%2BB3cXhvF2hsL3L10.1039/D0CS00304B33020790 – reference: SunZHafezMEMaWLongY-TRecent advances in nanocollision electrochemistrySci China Chem201962158816001:CAS:528:DC%2BC1MXhvVOlsbjF10.1007/s11426-019-9529-x – reference: TangHWangHDuJZhaoDCaoMLiYIntrinsic Catalytic Activities from single Enzyme@Metal-Organic frameworks by using a Stochastic Collision Electrochemical techniqueJ Phys Chem Lett202112544354471:CAS:528:DC%2BB3MXht1Srt7bI10.1021/acs.jpclett.1c0138934081461 – reference: NaikKMAlagurMMNandibewoorSTElectrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrodeAnal Methods2013569471:CAS:528:DC%2BC3sXhvVart7bK10.1039/c3ay41680a – reference: RoehrichBSepunaruLNanoimpacts at active and partially active electrodes: Insights and LimitationsAngewandte Chemie International Edition20205919184191921:CAS:528:DC%2BB3cXhs12ru77N10.1002/anie.20200714832745310 – reference: OlejnikAKarczewskiJDołęgaASiuzdakKGrochowskaKInsightful analysis of Phenomena arising at the metal polymer interphase of Au-Ti based non-enzymatic glucose sensitive electrodes covered by NafionCoatings2020108101:CAS:528:DC%2BB3cXhslGnsb%2FI10.3390/coatings10090810 – reference: Gnana kumarGAmalaGGowthamSMRecent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platformsRSC Adv2017736949369761:CAS:528:DC%2BC2sXht1anu7rP10.1039/C7RA02845H – reference: KimSDParkJHAhnHLeeJShinC-HJangW-DKimB-KAhnHSThe discrete single-entity electrochemistry of Pickering emulsionsNANOSCALE202214698169891:CAS:528:DC%2BB38XhtV2qurvI10.1039/D2NR01098D35470845 – reference: PopovićKDMarkovićNMTripkovićAVAdžićRRStructural effects in electrocatalysis: oxidation of D-glucose on single crystal platinum electrodes in alkaline solutionJ Electroanal Chem Interfacial Electrochem199131318119910.1016/0022-0728(91)85179-S – reference: PatriceFTQiuKYingY-LLongY-TSingle nanoparticle ElectrochemistryAnnual Rev. Anal. Chem20191234737010.1146/annurev-anchem-061318-114902 – reference: SiPHuangYWangTMaJNanomaterials for electrochemical non-enzymatic glucose biosensorsRSC Adv2013334871:CAS:528:DC%2BC3sXis1Cru7g%3D10.1039/c2ra22360k – reference: NiuXHShiLBZhaoHLLanMBAdvanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireviewAnal Methods20168175517641:CAS:528:DC%2BC28Xos1ClsA%3D%3D10.1039/C5AY03181H – reference: MazurkówJMKusiorARadeckaMElectrochemical characterization of modified glassy Carbon Electrodes for non-enzymatic glucose sensorsSensors202121792810.3390/s21237928348839318659783 – reference: WeiMQiaoYZhaoHLiangJLiTLuoYLuSShiXLuWSunXElectrochemical non-enzymatic glucose sensors: recent progress and perspectivesChem. Commun20205614553145691:CAS:528:DC%2BB3cXhvFKmsL7P10.1039/D0CC05650B – reference: HwangDWLeeSSeoMChungTDRecent advances in electrochemical non-enzymatic glucose sensors - a reviewAnal Chim Acta201810331341:CAS:528:DC%2BC1cXhtVGisL%2FP10.1016/j.aca.2018.05.05130172314 – reference: BardAJFaulknerLRElectrochemcial Methods, Fundamentals and Applications20012New YorkJohn Wiley & Sons – reference: GaoRYingY-LHuY-XLiY-JLongY-TWireless Bipolar Nanopore Electrode for single small molecule detectionAnal Chem201789738273871:CAS:528:DC%2BC2sXhtVKisbjE10.1021/acs.analchem.7b0072928653531 – reference: FavaroMValero-VidalCEichhornJTomaFMRossPNYanoJLiuZCrumlinEJElucidating the alkaline oxygen evolution reaction mechanism on platinumJ Mater Chem A2017511634116431:CAS:528:DC%2BC2sXjvFWitrk%3D10.1039/C7TA00409E – reference: DickJEBardAJRecognizing single collisions of PtCl62– at Femtomolar concentrations on Ultramicroelectrodes by nucleating Electrocatalytic clustersJ. Am. Chem. Soc201513713752137551:CAS:528:DC%2BC2MXhs1Kgt7fF10.1021/jacs.5b0862826469558 – reference: LiuYAustenBJJCornwellTTilburyRDBuntineMAO’MullaneAPArriganDWMCollisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucoseElectrochem Commun20177724271:CAS:528:DC%2BC2sXjtFeju7g%3D10.1016/j.elecom.2017.02.009 – reference: HassanMHVyasCGrieveBBartoloPRecent advances in enzymatic and non-enzymatic Electrochemical glucose sensingSensors (Basel)20212146721:CAS:528:DC%2BB3MXitl2gu7zJ10.3390/s2114467234300412 – reference: LeiH-WWuBChaC-SKitaHElectrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additivesJ Electroanal Chem199538210311010.1016/0022-0728(94)03673-Q – volume: 56 start-page: 14553 year: 2020 ident: 1905_CR5 publication-title: Chem. Commun doi: 10.1039/D0CC05650B – volume: 58 start-page: 6327 year: 2019 ident: 1905_CR26 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201901384 – volume: 77 start-page: 24 year: 2017 ident: 1905_CR25 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2017.02.009 – volume: 556 start-page: 46 year: 2006 ident: 1905_CR12 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2005.05.080 – volume: 7 start-page: 36949 year: 2017 ident: 1905_CR3 publication-title: RSC Adv doi: 10.1039/C7RA02845H – volume: 21 start-page: 7928 year: 2021 ident: 1905_CR8 publication-title: Sensors doi: 10.3390/s21237928 – volume: 41 start-page: 100 year: 2014 ident: 1905_CR29 publication-title: Mater Sci Eng: C doi: 10.1016/j.msec.2014.04.013 – volume: 14 start-page: 6981 year: 2022 ident: 1905_CR21 publication-title: NANOSCALE doi: 10.1039/D2NR01098D – volume: 212 start-page: 127 year: 2014 ident: 1905_CR15 publication-title: Sens Actuat A: Phys doi: 10.1016/j.sna.2014.03.033 – volume: 21 start-page: 4672 year: 2021 ident: 1905_CR4 publication-title: Sensors (Basel) doi: 10.3390/s21144672 – volume: 41 start-page: 701 year: 1996 ident: 1905_CR30 publication-title: Electrochim Acta doi: 10.1016/0013-4686(95)00359-2 – volume: 5 start-page: 11634 year: 2017 ident: 1905_CR34 publication-title: J Mater Chem A doi: 10.1039/C7TA00409E – volume: 49 start-page: 7671 year: 2020 ident: 1905_CR11 publication-title: Chem Soc Rev doi: 10.1039/D0CS00304B – volume: 382 start-page: 103 year: 1995 ident: 1905_CR31 publication-title: J Electroanal Chem doi: 10.1016/0022-0728(94)03673-Q – volume: 755 start-page: 109 year: 2015 ident: 1905_CR16 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2015.07.038 – volume: 3 start-page: 3487 year: 2013 ident: 1905_CR33 publication-title: RSC Adv doi: 10.1039/c2ra22360k – volume-title: Electrochemcial Methods, Fundamentals and Applications year: 2001 ident: 1905_CR17 – volume: 313 start-page: 181 year: 1991 ident: 1905_CR28 publication-title: J Electroanal Chem Interfacial Electrochem doi: 10.1016/0022-0728(91)85179-S – volume: 176 start-page: 112914 year: 2021 ident: 1905_CR22 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2020.112914 – volume: 89 start-page: 7382 year: 2017 ident: 1905_CR23 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00729 – ident: 1905_CR1 – volume: 8 start-page: 1755 year: 2016 ident: 1905_CR35 publication-title: Anal Methods doi: 10.1039/C5AY03181H – volume: 137 start-page: 13752 year: 2015 ident: 1905_CR24 publication-title: J. Am. Chem. Soc doi: 10.1021/jacs.5b08628 – volume: 10 start-page: 810 year: 2020 ident: 1905_CR10 publication-title: Coatings doi: 10.3390/coatings10090810 – volume: 1033 start-page: 1 year: 2018 ident: 1905_CR7 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.05.051 – volume: 59 start-page: 19184 year: 2020 ident: 1905_CR20 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.202007148 – volume: 62 start-page: 1588 year: 2019 ident: 1905_CR19 publication-title: Sci China Chem doi: 10.1007/s11426-019-9529-x – volume: 31 start-page: 16111 year: 2020 ident: 1905_CR6 publication-title: J Mater Sci: Mater Electron – volume: 5 start-page: 1246 year: 2010 ident: 1905_CR36 publication-title: Int. J. Electrochem. Sci. Int J doi: 10.1016/S1452-3981(23)15359-4 – volume: 181 start-page: 113054 year: 2021 ident: 1905_CR2 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2021.113054 – volume: 12 start-page: 347 year: 2019 ident: 1905_CR18 publication-title: Annual Rev. Anal. Chem doi: 10.1146/annurev-anchem-061318-114902 – volume: 5 start-page: 6947 year: 2013 ident: 1905_CR14 publication-title: Anal Methods doi: 10.1039/c3ay41680a – volume: 12 start-page: 5443 year: 2021 ident: 1905_CR27 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.1c01389 – volume: 865 start-page: 114147 year: 2020 ident: 1905_CR9 publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2020.114147 – volume: 115 start-page: 18015 year: 2011 ident: 1905_CR32 publication-title: J Phys Chem C doi: 10.1021/jp204680p – volume: 9 start-page: 748957 year: 2021 ident: 1905_CR13 publication-title: Front Chem doi: 10.3389/fchem.2021.748957 |
SSID | ssj0009264 |
Score | 2.3890886 |
Snippet | Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The... Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1991 |
SubjectTerms | Chemisorption Chemistry Chemistry and Materials Science Electrochemistry Glucose Industrial Chemistry/Chemical Engineering Nanoparticles Oxidation Physical Chemistry Platinum Research Article |
Title | The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles |
URI | https://link.springer.com/article/10.1007/s10800-023-01905-z https://www.proquest.com/docview/2859235742 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8MgGP2i20E9GJ0ap9Nw8KYkhZW2HLe5uWj05JJ5qtDSaKLtsnWJ7tcLLU2n0YOnHiAcPqC8B-97H8AFSzySEC6wFzGB3a4vME-IJiuSe5zJQLDY5A7fP3jjiXs7ZVObFLao1O7Vk2Txp15LdgtMFjQ1-h_uMLzahCbT3N0IuSa0V1vtUs96LxMccDK1qTK_j_H9OKox5o9n0eK0Ge3BroWJqFfO6z5sqLQFW4OqOlsLdtaMBA_gWc82KqUZKEvQy2c8zz5eY4XMokJZinLTXla8KS5sjA-J6WkV60jkyFwavCk0M-K4dPmOUpFqQm11c4cwGQ0fB2NsayfgiPpOjl0VMaaURn_M40omjqtij8SaPkU05pRRSaTUVCvyha9Blq-kDJQy5fo0HyQk6R5BI81SdQxIdeNAoyQuKXfchGvKHDlUiG5M9PwyEbThsgphOCstMsLaDNkEPNQBD4uAh6s2dKooh3a7LELjomd8d1zahqsq8nXz36Od_K_7KWybcvGlGK8DjXy-VGcaVOTyHJq9_nV_ZL43T3fD82JNfQFNU8cb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED0VGAoDggKifHqACSLFbpzEA0NVQIW2TK3ULbUTRyBBWpUgaH8PP5RzPlRAMDAwx7Kil3N8z373DuCExy6NqZCWG3JpOQ1PWiKmSFaUcAVXvuSRqR3u3bntgXM75MMKvJe1MJnavbySzP7Un4rdfFMFzYz-R9jcmhdSyo6evSJRe764ucSvesrY9VW_1baKXgJWyDw7tRwdcq41ZkPcFVrFtqMjl0ZIJ0IWCcaZokoh9Qg96WHS4WmlfK1N-zrkR5TGDZx3CVYw-fDN2hmw5sLal7mF1zO1fEGHRWnOz-_8dftb5LTfrmGz3e16A9aLtJQ08zjahIpOalBtld3garD2ybhwC0YYXSSXgpBxTO5n0XT89hBpYoKYjBOSmud5h53sgMj4npiRhUKeyJSYQ4pHTSZGjJe8PJFEJkjgC53eNgz-Bd8dWE7Gid4FohuRj1mZUEzYTiyQooc2k7IRUYwnLv06nJUQBpPckiNYmC8bwAMEPMgAD-Z1OChRDorl-RwY1z7j8-OwOpyXyC8e_z7b3t-GH0O13e91g-7NXWcfVk2r-lwIeADL6fRFH2JCk6qjLJ4IjP47gD8A91IAmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSCwHBAVEoYAPcIKI2I2T-MChAirWigOVegt27AgkSCsIgvar-ETGWVRAcODA2ZYVvYzlGfu9NwA7PPFpQoV0_JhLx2sG0hEJxWJFCV9wFUqurXb4quOfdr3zHu9NwHulhcnZ7tWTZKFpsC5NaXYw0MnBJ-FbaBXRzHKBhMudUUmrvDDDVyzang_PjvEP7zLWPrk5OnXKvgJOzAI3czwTc24MZkbcF0Ylrme0TzWWFjHTgnGmqFJYhsSBDDABCYxSoTG2lR3WSpQmTVx3EqY9qz7GHdRlrbHNL_NL32fqhIL2SpnOz9_89Sgc57ffnmTzk669CAtlikpaRUwtwYRJazB7VHWGq8H8JxPDZbjFSCMFLYT0E3I31E_9t3ttiA1o0k9JZseLbjv5ZZH1QLEzS7Y8kRmxFxYPhgwsMS99eSSpTLGYLzl7K9D9F3xXYSrtp2YNiGnqEDM0oZhwvURguR67TMqmphhbXIZ12KsgjAaFPUc0NmK2gEcIeJQDHo3q0KhQjsqt-hxZBz_r-eOxOuxXyI-Hf19t_W_Tt2Hm-rgdXZ51LjZgznatLziBDZjKnl7MJuY2mdrKw4nA7X_H7wci5wTO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+hydroxide+ions+on+the+electrocatalysis+of+glucose+at+single+platinum+nanoparticles&rft.jtitle=Journal+of+applied+electrochemistry&rft.au=Lin%2C+Jun&rft.au=Wang%2C+Jun&rft.au=Li%2C+Shuang&rft.au=Zhao%2C+Wenbin&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0021-891X&rft.eissn=1572-8838&rft.volume=53&rft.issue=10&rft.spage=1991&rft.epage=1999&rft_id=info:doi/10.1007%2Fs10800-023-01905-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-891X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-891X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-891X&client=summon |