The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles

Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) m...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied electrochemistry Vol. 53; no. 10; pp. 1991 - 1999
Main Authors Lin, Jun, Wang, Jun, Li, Shuang, Zhao, Wenbin, Zhang, Dong, Zang, Yue, Xin, Qing
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM − 1  cm − 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations. Graphical abstract
AbstractList Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM− 1 cm− 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations.
Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The active chemisorption model was found to be valid only at potentials below − 0.6 V, while the incipient hydrous oxide/adatom mediator (IHOAM) model was confirmed for potentials above − 0.6 V. In both cases, hydrous ions significantly improved glucose oxidation by freeing up active sites on the Pt NPs. The potential for glucose sensing at − 0.4 V, where continuous glucose oxidation took place, was assessed. Although the linearity was limited (0.1–0.6 mM), the high sensitivity of 423.056 µA mM − 1  cm − 2 and limit of detection (LOD) of 25.63 µM demonstrated promising prospects for glucose sensing at − 0.4 V, particularly for samples with low glucose concentrations. Graphical abstract
Author Zhang, Dong
Lin, Jun
Li, Shuang
Zhao, Wenbin
Zang, Yue
Wang, Jun
Xin, Qing
Author_xml – sequence: 1
  givenname: Jun
  surname: Lin
  fullname: Lin, Jun
  email: junlin@hdu.edu.cn
  organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University
– sequence: 3
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: Zhejiang Energy Technology Co., Ltd
– sequence: 4
  givenname: Wenbin
  surname: Zhao
  fullname: Zhao, Wenbin
  organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University
– sequence: 5
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University
– sequence: 6
  givenname: Yue
  surname: Zang
  fullname: Zang, Yue
  organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University
– sequence: 7
  givenname: Qing
  surname: Xin
  fullname: Xin, Qing
  organization: Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University
BookMark eNp9kE1Lw0AURQepYFv9A64GXEffm2SazFKKX1BwU8HdOJm8tCnpTJ1JwPbXm1rBnau3uOfeB2fCRs47Yuwa4RYB8ruIUAAkINIEUIFMDmdsjDIXSVGkxYiNAQQmhcL3CzaJcQMASsyyMftYrolTXZPtuK_5el8F_9VUxBvvIveOd8e8HeLgrelMu49NPJKrtrc-Ejcdj41btcR3reka12-5M87vTOga21K8ZOe1aSNd_d4pe3t8WM6fk8Xr08v8fpFYkUOXZGSlJFIK5UxRWUNG1QwrzDIrKiWkKLEslSpsbnIlMaeyLIgwlYiQI9bplN2cdnfBf_YUO73xfXDDSy0KqUQq80wMlDhRNvgYA9V6F5qtCXuNoI8m9cmkHkzqH5P6MJTSUykOsFtR-Jv-p_UNik15zw
Cites_doi 10.1039/D0CC05650B
10.1002/anie.201901384
10.1016/j.elecom.2017.02.009
10.1016/j.aca.2005.05.080
10.1039/C7RA02845H
10.3390/s21237928
10.1016/j.msec.2014.04.013
10.1039/D2NR01098D
10.1016/j.sna.2014.03.033
10.3390/s21144672
10.1016/0013-4686(95)00359-2
10.1039/C7TA00409E
10.1039/D0CS00304B
10.1016/0022-0728(94)03673-Q
10.1016/j.jelechem.2015.07.038
10.1039/c2ra22360k
10.1016/0022-0728(91)85179-S
10.1016/j.bios.2020.112914
10.1021/acs.analchem.7b00729
10.1039/C5AY03181H
10.1021/jacs.5b08628
10.3390/coatings10090810
10.1016/j.aca.2018.05.051
10.1002/anie.202007148
10.1007/s11426-019-9529-x
10.1016/S1452-3981(23)15359-4
10.1016/j.bios.2021.113054
10.1146/annurev-anchem-061318-114902
10.1039/c3ay41680a
10.1021/acs.jpclett.1c01389
10.1016/j.jelechem.2020.114147
10.1021/jp204680p
10.3389/fchem.2021.748957
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10800-023-01905-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-8838
EndPage 1999
ExternalDocumentID 10_1007_s10800_023_01905_z
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY21F050004
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
XOL
YLTOR
YQT
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-4ec55ee991569ebf04ed61d144c2d9252b1bb998c7a79517ebb8ee135110711f3
IEDL.DBID U2A
ISSN 0021-891X
IngestDate Fri Jul 25 11:03:23 EDT 2025
Tue Jul 01 00:44:20 EDT 2025
Fri Feb 21 02:43:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Glucose oxidation
Pt NPs
Single entity electrochemistry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-4ec55ee991569ebf04ed61d144c2d9252b1bb998c7a79517ebb8ee135110711f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2859235742
PQPubID 2043600
PageCount 9
ParticipantIDs proquest_journals_2859235742
crossref_primary_10_1007_s10800_023_01905_z
springer_journals_10_1007_s10800_023_01905_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied electrochemistry
PublicationTitleAbbrev J Appl Electrochem
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References NaikKMAshiCRNandibewoorSTAnodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urineJ Electroanal Chem20157551091141:CAS:528:DC%2BC2MXht12rsbrE10.1016/j.jelechem.2015.07.038
RamaswamyNMukerjeeSInfluence of inner- and outer-sphere Electron transfer mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline MediaJ Phys Chem C201111518015180261:CAS:528:DC%2BC3MXhtVGnu73M10.1021/jp204680p
LiuSZengWGuoQLiYMetal oxide-based composite for non-enzymatic glucose sensorsJ Mater Sci: Mater Electron20203116111161361:CAS:528:DC%2BB3cXhs1Oit7%2FK
PatriceFTQiuKYingY-LLongY-TSingle nanoparticle ElectrochemistryAnnual Rev. Anal. Chem20191234737010.1146/annurev-anchem-061318-114902
PopovićKDMarkovićNMTripkovićAVAdžićRRStructural effects in electrocatalysis: oxidation of D-glucose on single crystal platinum electrodes in alkaline solutionJ Electroanal Chem Interfacial Electrochem199131318119910.1016/0022-0728(91)85179-S
SiPHuangYWangTMaJNanomaterials for electrochemical non-enzymatic glucose biosensorsRSC Adv2013334871:CAS:528:DC%2BC3sXis1Cru7g%3D10.1039/c2ra22360k
LinLWengSZhengYLiuXYingSChenFYouDBimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potentialJ Electroanal Chem20208651141471:CAS:528:DC%2BB3cXnsVGntLg%3D10.1016/j.jelechem.2020.114147
WeiMQiaoYZhaoHLiangJLiTLuoYLuSShiXLuWSunXElectrochemical non-enzymatic glucose sensors: recent progress and perspectivesChem. Commun20205614553145691:CAS:528:DC%2BB3cXhvFKmsL7P10.1039/D0CC05650B
BedenBLargeaudFKokohKBLamyCFourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction productsElectrochim Acta1996417017091:CAS:528:DyaK28Xhs1WqsL4%3D10.1016/0013-4686(95)00359-2
NaikKMNandibewoorSTElectroanalytical method for the determination of methylparabenSens Actuat A: Phys20142121271321:CAS:528:DC%2BC2cXntl2nur4%3D10.1016/j.sna.2014.03.033
LeeIProbstDKlonoffDSodeKContinuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor researchBiosens Bioelectron20211811130541:CAS:528:DC%2BB3MXns1aqur4%3D10.1016/j.bios.2021.11305433775474
KimSDParkJHAhnHLeeJShinC-HJangW-DKimB-KAhnHSThe discrete single-entity electrochemistry of Pickering emulsionsNANOSCALE202214698169891:CAS:528:DC%2BB38XhtV2qurvI10.1039/D2NR01098D35470845
MazurkówJMKusiorARadeckaMElectrochemical characterization of modified glassy Carbon Electrodes for non-enzymatic glucose sensorsSensors202121792810.3390/s21237928348839318659783
GaoRYingY-LHuY-XLiY-JLongY-TWireless Bipolar Nanopore Electrode for single small molecule detectionAnal Chem201789738273871:CAS:528:DC%2BC2sXhtVKisbjE10.1021/acs.analchem.7b0072928653531
LiuYAustenBJJCornwellTTilburyRDBuntineMAO’MullaneAPArriganDWMCollisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucoseElectrochem Commun20177724271:CAS:528:DC%2BC2sXjtFeju7g%3D10.1016/j.elecom.2017.02.009
HassanMHVyasCGrieveBBartoloPRecent advances in enzymatic and non-enzymatic Electrochemical glucose sensingSensors (Basel)20212146721:CAS:528:DC%2BB3MXitl2gu7zJ10.3390/s2114467234300412
TangHWangHDuJZhaoDCaoMLiYIntrinsic Catalytic Activities from single Enzyme@Metal-Organic frameworks by using a Stochastic Collision Electrochemical techniqueJ Phys Chem Lett202112544354471:CAS:528:DC%2BB3MXht1Srt7bI10.1021/acs.jpclett.1c0138934081461
BardAJFaulknerLRElectrochemcial Methods, Fundamentals and Applications20012New YorkJohn Wiley & Sons
OlejnikAKarczewskiJDołęgaASiuzdakKGrochowskaKInsightful analysis of Phenomena arising at the metal polymer interphase of Au-Ti based non-enzymatic glucose sensitive electrodes covered by NafionCoatings2020108101:CAS:528:DC%2BB3cXhslGnsb%2FI10.3390/coatings10090810
TianKPrestgardMTiwariAA review of recent advances in nonenzymatic glucose sensorsMater Sci Eng: C2014411001181:CAS:528:DC%2BC2cXpsl2qtr4%3D10.1016/j.msec.2014.04.013
ChenYWangDLiuYGaoGZhiJRedox activity of single bacteria revealed by electrochemical collision techniqueBiosens Bioelectron20211761129141:CAS:528:DC%2BB3MXkt12rtA%3D%3D10.1016/j.bios.2020.11291433353760
LeiH-WWuBChaC-SKitaHElectrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additivesJ Electroanal Chem199538210311010.1016/0022-0728(94)03673-Q
NaikKMAlagurMMNandibewoorSTElectrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrodeAnal Methods2013569471:CAS:528:DC%2BC3sXhvVart7bK10.1039/c3ay41680a
IDF (2021) IDF Diabetes Atlas 10th edition.
DickJEBardAJRecognizing single collisions of PtCl62– at Femtomolar concentrations on Ultramicroelectrodes by nucleating Electrocatalytic clustersJ. Am. Chem. Soc201513713752137551:CAS:528:DC%2BC2MXhs1Kgt7fF10.1021/jacs.5b0862826469558
Gnana kumarGAmalaGGowthamSMRecent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platformsRSC Adv2017736949369761:CAS:528:DC%2BC2sXht1anu7rP10.1039/C7RA02845H
RoehrichBSepunaruLNanoimpacts at active and partially active electrodes: Insights and LimitationsAngewandte Chemie International Edition20205919184191921:CAS:528:DC%2BB3cXhs12ru77N10.1002/anie.20200714832745310
HafezMEMaHMaWLongYTUnveiling the intrinsic Catalytic Activities of single-gold-nanoparticle-based enzyme mimeticsAngew Chem Int Ed Engl201958632763321:CAS:528:DC%2BC1MXmtlOgtLg%3D10.1002/anie.20190138430854788
ToghillKComptonRElectrochemical non-enzymatic glucose sensors: a perspective and an evaluationInt. J. Electrochem. Sci. Int J20105124613011:CAS:528:DC%2BC3cXhtFClu7nN10.1016/S1452-3981(23)15359-4
NaikooGASalimHHassanIUAwanTArshadFPedramMZAhmedWQurashiARecent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for Diabetes Management- A ReviewFront Chem202197489571:CAS:528:DC%2BB3MXislSls77F10.3389/fchem.2021.748957346316708493127
TeymourianHBarfidokhtAWangJElectrochemical glucose sensors in diabetes management: an updated review (2010–2020)Chem Soc Rev202049767177091:CAS:528:DC%2BB3cXhvF2hsL3L10.1039/D0CS00304B33020790
ParkSBooHChungTDElectrochemical non-enzymatic glucose sensorsAnal Chim Acta200655646571:CAS:528:DC%2BD28Xhs1ylsw%3D%3D10.1016/j.aca.2005.05.08017723330
HwangDWLeeSSeoMChungTDRecent advances in electrochemical non-enzymatic glucose sensors - a reviewAnal Chim Acta201810331341:CAS:528:DC%2BC1cXhtVGisL%2FP10.1016/j.aca.2018.05.05130172314
FavaroMValero-VidalCEichhornJTomaFMRossPNYanoJLiuZCrumlinEJElucidating the alkaline oxygen evolution reaction mechanism on platinumJ Mater Chem A2017511634116431:CAS:528:DC%2BC2sXjvFWitrk%3D10.1039/C7TA00409E
NiuXHShiLBZhaoHLLanMBAdvanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireviewAnal Methods20168175517641:CAS:528:DC%2BC28Xos1ClsA%3D%3D10.1039/C5AY03181H
SunZHafezMEMaWLongY-TRecent advances in nanocollision electrochemistrySci China Chem201962158816001:CAS:528:DC%2BC1MXhvVOlsbjF10.1007/s11426-019-9529-x
B Beden (1905_CR30) 1996; 41
FT Patrice (1905_CR18) 2019; 12
S Liu (1905_CR6) 2020; 31
I Lee (1905_CR2) 2021; 181
GA Naikoo (1905_CR13) 2021; 9
Y Liu (1905_CR25) 2017; 77
1905_CR1
ME Hafez (1905_CR26) 2019; 58
MH Hassan (1905_CR4) 2021; 21
KM Naik (1905_CR14) 2013; 5
KM Naik (1905_CR16) 2015; 755
P Si (1905_CR33) 2013; 3
B Roehrich (1905_CR20) 2020; 59
Y Chen (1905_CR22) 2021; 176
KD Popović (1905_CR28) 1991; 313
KM Naik (1905_CR15) 2014; 212
JM Mazurków (1905_CR8) 2021; 21
R Gao (1905_CR23) 2017; 89
G Gnana kumar (1905_CR3) 2017; 7
S Park (1905_CR12) 2006; 556
M Wei (1905_CR5) 2020; 56
H Teymourian (1905_CR11) 2020; 49
XH Niu (1905_CR35) 2016; 8
M Favaro (1905_CR34) 2017; 5
H-W Lei (1905_CR31) 1995; 382
K Toghill (1905_CR36) 2010; 5
N Ramaswamy (1905_CR32) 2011; 115
L Lin (1905_CR9) 2020; 865
K Tian (1905_CR29) 2014; 41
H Tang (1905_CR27) 2021; 12
A Olejnik (1905_CR10) 2020; 10
Z Sun (1905_CR19) 2019; 62
SD Kim (1905_CR21) 2022; 14
JE Dick (1905_CR24) 2015; 137
DW Hwang (1905_CR7) 2018; 1033
AJ Bard (1905_CR17) 2001
References_xml – reference: NaikKMAshiCRNandibewoorSTAnodic voltammetric behavior of hydroxyurea and its electroanalytical determination in pharmaceutical dosage form and urineJ Electroanal Chem20157551091141:CAS:528:DC%2BC2MXht12rsbrE10.1016/j.jelechem.2015.07.038
– reference: BedenBLargeaudFKokohKBLamyCFourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction productsElectrochim Acta1996417017091:CAS:528:DyaK28Xhs1WqsL4%3D10.1016/0013-4686(95)00359-2
– reference: ChenYWangDLiuYGaoGZhiJRedox activity of single bacteria revealed by electrochemical collision techniqueBiosens Bioelectron20211761129141:CAS:528:DC%2BB3MXkt12rtA%3D%3D10.1016/j.bios.2020.11291433353760
– reference: ParkSBooHChungTDElectrochemical non-enzymatic glucose sensorsAnal Chim Acta200655646571:CAS:528:DC%2BD28Xhs1ylsw%3D%3D10.1016/j.aca.2005.05.08017723330
– reference: IDF (2021) IDF Diabetes Atlas 10th edition.
– reference: NaikKMNandibewoorSTElectroanalytical method for the determination of methylparabenSens Actuat A: Phys20142121271321:CAS:528:DC%2BC2cXntl2nur4%3D10.1016/j.sna.2014.03.033
– reference: TianKPrestgardMTiwariAA review of recent advances in nonenzymatic glucose sensorsMater Sci Eng: C2014411001181:CAS:528:DC%2BC2cXpsl2qtr4%3D10.1016/j.msec.2014.04.013
– reference: RamaswamyNMukerjeeSInfluence of inner- and outer-sphere Electron transfer mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline MediaJ Phys Chem C201111518015180261:CAS:528:DC%2BC3MXhtVGnu73M10.1021/jp204680p
– reference: LiuSZengWGuoQLiYMetal oxide-based composite for non-enzymatic glucose sensorsJ Mater Sci: Mater Electron20203116111161361:CAS:528:DC%2BB3cXhs1Oit7%2FK
– reference: LinLWengSZhengYLiuXYingSChenFYouDBimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potentialJ Electroanal Chem20208651141471:CAS:528:DC%2BB3cXnsVGntLg%3D10.1016/j.jelechem.2020.114147
– reference: HafezMEMaHMaWLongYTUnveiling the intrinsic Catalytic Activities of single-gold-nanoparticle-based enzyme mimeticsAngew Chem Int Ed Engl201958632763321:CAS:528:DC%2BC1MXmtlOgtLg%3D10.1002/anie.20190138430854788
– reference: LeeIProbstDKlonoffDSodeKContinuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor researchBiosens Bioelectron20211811130541:CAS:528:DC%2BB3MXns1aqur4%3D10.1016/j.bios.2021.11305433775474
– reference: NaikooGASalimHHassanIUAwanTArshadFPedramMZAhmedWQurashiARecent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for Diabetes Management- A ReviewFront Chem202197489571:CAS:528:DC%2BB3MXislSls77F10.3389/fchem.2021.748957346316708493127
– reference: ToghillKComptonRElectrochemical non-enzymatic glucose sensors: a perspective and an evaluationInt. J. Electrochem. Sci. Int J20105124613011:CAS:528:DC%2BC3cXhtFClu7nN10.1016/S1452-3981(23)15359-4
– reference: TeymourianHBarfidokhtAWangJElectrochemical glucose sensors in diabetes management: an updated review (2010–2020)Chem Soc Rev202049767177091:CAS:528:DC%2BB3cXhvF2hsL3L10.1039/D0CS00304B33020790
– reference: SunZHafezMEMaWLongY-TRecent advances in nanocollision electrochemistrySci China Chem201962158816001:CAS:528:DC%2BC1MXhvVOlsbjF10.1007/s11426-019-9529-x
– reference: TangHWangHDuJZhaoDCaoMLiYIntrinsic Catalytic Activities from single Enzyme@Metal-Organic frameworks by using a Stochastic Collision Electrochemical techniqueJ Phys Chem Lett202112544354471:CAS:528:DC%2BB3MXht1Srt7bI10.1021/acs.jpclett.1c0138934081461
– reference: NaikKMAlagurMMNandibewoorSTElectrochemical response of hydroxyurea by different voltammetric techniques at carbon paste electrodeAnal Methods2013569471:CAS:528:DC%2BC3sXhvVart7bK10.1039/c3ay41680a
– reference: RoehrichBSepunaruLNanoimpacts at active and partially active electrodes: Insights and LimitationsAngewandte Chemie International Edition20205919184191921:CAS:528:DC%2BB3cXhs12ru77N10.1002/anie.20200714832745310
– reference: OlejnikAKarczewskiJDołęgaASiuzdakKGrochowskaKInsightful analysis of Phenomena arising at the metal polymer interphase of Au-Ti based non-enzymatic glucose sensitive electrodes covered by NafionCoatings2020108101:CAS:528:DC%2BB3cXhslGnsb%2FI10.3390/coatings10090810
– reference: Gnana kumarGAmalaGGowthamSMRecent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platformsRSC Adv2017736949369761:CAS:528:DC%2BC2sXht1anu7rP10.1039/C7RA02845H
– reference: KimSDParkJHAhnHLeeJShinC-HJangW-DKimB-KAhnHSThe discrete single-entity electrochemistry of Pickering emulsionsNANOSCALE202214698169891:CAS:528:DC%2BB38XhtV2qurvI10.1039/D2NR01098D35470845
– reference: PopovićKDMarkovićNMTripkovićAVAdžićRRStructural effects in electrocatalysis: oxidation of D-glucose on single crystal platinum electrodes in alkaline solutionJ Electroanal Chem Interfacial Electrochem199131318119910.1016/0022-0728(91)85179-S
– reference: PatriceFTQiuKYingY-LLongY-TSingle nanoparticle ElectrochemistryAnnual Rev. Anal. Chem20191234737010.1146/annurev-anchem-061318-114902
– reference: SiPHuangYWangTMaJNanomaterials for electrochemical non-enzymatic glucose biosensorsRSC Adv2013334871:CAS:528:DC%2BC3sXis1Cru7g%3D10.1039/c2ra22360k
– reference: NiuXHShiLBZhaoHLLanMBAdvanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: a minireviewAnal Methods20168175517641:CAS:528:DC%2BC28Xos1ClsA%3D%3D10.1039/C5AY03181H
– reference: MazurkówJMKusiorARadeckaMElectrochemical characterization of modified glassy Carbon Electrodes for non-enzymatic glucose sensorsSensors202121792810.3390/s21237928348839318659783
– reference: WeiMQiaoYZhaoHLiangJLiTLuoYLuSShiXLuWSunXElectrochemical non-enzymatic glucose sensors: recent progress and perspectivesChem. Commun20205614553145691:CAS:528:DC%2BB3cXhvFKmsL7P10.1039/D0CC05650B
– reference: HwangDWLeeSSeoMChungTDRecent advances in electrochemical non-enzymatic glucose sensors - a reviewAnal Chim Acta201810331341:CAS:528:DC%2BC1cXhtVGisL%2FP10.1016/j.aca.2018.05.05130172314
– reference: BardAJFaulknerLRElectrochemcial Methods, Fundamentals and Applications20012New YorkJohn Wiley & Sons
– reference: GaoRYingY-LHuY-XLiY-JLongY-TWireless Bipolar Nanopore Electrode for single small molecule detectionAnal Chem201789738273871:CAS:528:DC%2BC2sXhtVKisbjE10.1021/acs.analchem.7b0072928653531
– reference: FavaroMValero-VidalCEichhornJTomaFMRossPNYanoJLiuZCrumlinEJElucidating the alkaline oxygen evolution reaction mechanism on platinumJ Mater Chem A2017511634116431:CAS:528:DC%2BC2sXjvFWitrk%3D10.1039/C7TA00409E
– reference: DickJEBardAJRecognizing single collisions of PtCl62– at Femtomolar concentrations on Ultramicroelectrodes by nucleating Electrocatalytic clustersJ. Am. Chem. Soc201513713752137551:CAS:528:DC%2BC2MXhs1Kgt7fF10.1021/jacs.5b0862826469558
– reference: LiuYAustenBJJCornwellTTilburyRDBuntineMAO’MullaneAPArriganDWMCollisional electrochemistry of laser-ablated gold nanoparticles by electrocatalytic oxidation of glucoseElectrochem Commun20177724271:CAS:528:DC%2BC2sXjtFeju7g%3D10.1016/j.elecom.2017.02.009
– reference: HassanMHVyasCGrieveBBartoloPRecent advances in enzymatic and non-enzymatic Electrochemical glucose sensingSensors (Basel)20212146721:CAS:528:DC%2BB3MXitl2gu7zJ10.3390/s2114467234300412
– reference: LeiH-WWuBChaC-SKitaHElectrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additivesJ Electroanal Chem199538210311010.1016/0022-0728(94)03673-Q
– volume: 56
  start-page: 14553
  year: 2020
  ident: 1905_CR5
  publication-title: Chem. Commun
  doi: 10.1039/D0CC05650B
– volume: 58
  start-page: 6327
  year: 2019
  ident: 1905_CR26
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201901384
– volume: 77
  start-page: 24
  year: 2017
  ident: 1905_CR25
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2017.02.009
– volume: 556
  start-page: 46
  year: 2006
  ident: 1905_CR12
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2005.05.080
– volume: 7
  start-page: 36949
  year: 2017
  ident: 1905_CR3
  publication-title: RSC Adv
  doi: 10.1039/C7RA02845H
– volume: 21
  start-page: 7928
  year: 2021
  ident: 1905_CR8
  publication-title: Sensors
  doi: 10.3390/s21237928
– volume: 41
  start-page: 100
  year: 2014
  ident: 1905_CR29
  publication-title: Mater Sci Eng: C
  doi: 10.1016/j.msec.2014.04.013
– volume: 14
  start-page: 6981
  year: 2022
  ident: 1905_CR21
  publication-title: NANOSCALE
  doi: 10.1039/D2NR01098D
– volume: 212
  start-page: 127
  year: 2014
  ident: 1905_CR15
  publication-title: Sens Actuat A: Phys
  doi: 10.1016/j.sna.2014.03.033
– volume: 21
  start-page: 4672
  year: 2021
  ident: 1905_CR4
  publication-title: Sensors (Basel)
  doi: 10.3390/s21144672
– volume: 41
  start-page: 701
  year: 1996
  ident: 1905_CR30
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(95)00359-2
– volume: 5
  start-page: 11634
  year: 2017
  ident: 1905_CR34
  publication-title: J Mater Chem A
  doi: 10.1039/C7TA00409E
– volume: 49
  start-page: 7671
  year: 2020
  ident: 1905_CR11
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00304B
– volume: 382
  start-page: 103
  year: 1995
  ident: 1905_CR31
  publication-title: J Electroanal Chem
  doi: 10.1016/0022-0728(94)03673-Q
– volume: 755
  start-page: 109
  year: 2015
  ident: 1905_CR16
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2015.07.038
– volume: 3
  start-page: 3487
  year: 2013
  ident: 1905_CR33
  publication-title: RSC Adv
  doi: 10.1039/c2ra22360k
– volume-title: Electrochemcial Methods, Fundamentals and Applications
  year: 2001
  ident: 1905_CR17
– volume: 313
  start-page: 181
  year: 1991
  ident: 1905_CR28
  publication-title: J Electroanal Chem Interfacial Electrochem
  doi: 10.1016/0022-0728(91)85179-S
– volume: 176
  start-page: 112914
  year: 2021
  ident: 1905_CR22
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2020.112914
– volume: 89
  start-page: 7382
  year: 2017
  ident: 1905_CR23
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b00729
– ident: 1905_CR1
– volume: 8
  start-page: 1755
  year: 2016
  ident: 1905_CR35
  publication-title: Anal Methods
  doi: 10.1039/C5AY03181H
– volume: 137
  start-page: 13752
  year: 2015
  ident: 1905_CR24
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.5b08628
– volume: 10
  start-page: 810
  year: 2020
  ident: 1905_CR10
  publication-title: Coatings
  doi: 10.3390/coatings10090810
– volume: 1033
  start-page: 1
  year: 2018
  ident: 1905_CR7
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.05.051
– volume: 59
  start-page: 19184
  year: 2020
  ident: 1905_CR20
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.202007148
– volume: 62
  start-page: 1588
  year: 2019
  ident: 1905_CR19
  publication-title: Sci China Chem
  doi: 10.1007/s11426-019-9529-x
– volume: 31
  start-page: 16111
  year: 2020
  ident: 1905_CR6
  publication-title: J Mater Sci: Mater Electron
– volume: 5
  start-page: 1246
  year: 2010
  ident: 1905_CR36
  publication-title: Int. J. Electrochem. Sci. Int J
  doi: 10.1016/S1452-3981(23)15359-4
– volume: 181
  start-page: 113054
  year: 2021
  ident: 1905_CR2
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2021.113054
– volume: 12
  start-page: 347
  year: 2019
  ident: 1905_CR18
  publication-title: Annual Rev. Anal. Chem
  doi: 10.1146/annurev-anchem-061318-114902
– volume: 5
  start-page: 6947
  year: 2013
  ident: 1905_CR14
  publication-title: Anal Methods
  doi: 10.1039/c3ay41680a
– volume: 12
  start-page: 5443
  year: 2021
  ident: 1905_CR27
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.1c01389
– volume: 865
  start-page: 114147
  year: 2020
  ident: 1905_CR9
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2020.114147
– volume: 115
  start-page: 18015
  year: 2011
  ident: 1905_CR32
  publication-title: J Phys Chem C
  doi: 10.1021/jp204680p
– volume: 9
  start-page: 748957
  year: 2021
  ident: 1905_CR13
  publication-title: Front Chem
  doi: 10.3389/fchem.2021.748957
SSID ssj0009264
Score 2.3890886
Snippet Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The...
Glucose oxidation on platinum nanoparticles (Pt NPs) at varying potentials (from − 0.7 V to 0.2 V) was investigated using single entity electrochemistry. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1991
SubjectTerms Chemisorption
Chemistry
Chemistry and Materials Science
Electrochemistry
Glucose
Industrial Chemistry/Chemical Engineering
Nanoparticles
Oxidation
Physical Chemistry
Platinum
Research Article
Title The effect of hydroxide ions on the electrocatalysis of glucose at single platinum nanoparticles
URI https://link.springer.com/article/10.1007/s10800-023-01905-z
https://www.proquest.com/docview/2859235742
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8MgGP2i20E9GJ0ap9Nw8KYkhZW2HLe5uWj05JJ5qtDSaKLtsnWJ7tcLLU2n0YOnHiAcPqC8B-97H8AFSzySEC6wFzGB3a4vME-IJiuSe5zJQLDY5A7fP3jjiXs7ZVObFLao1O7Vk2Txp15LdgtMFjQ1-h_uMLzahCbT3N0IuSa0V1vtUs96LxMccDK1qTK_j_H9OKox5o9n0eK0Ge3BroWJqFfO6z5sqLQFW4OqOlsLdtaMBA_gWc82KqUZKEvQy2c8zz5eY4XMokJZinLTXla8KS5sjA-J6WkV60jkyFwavCk0M-K4dPmOUpFqQm11c4cwGQ0fB2NsayfgiPpOjl0VMaaURn_M40omjqtij8SaPkU05pRRSaTUVCvyha9Blq-kDJQy5fo0HyQk6R5BI81SdQxIdeNAoyQuKXfchGvKHDlUiG5M9PwyEbThsgphOCstMsLaDNkEPNQBD4uAh6s2dKooh3a7LELjomd8d1zahqsq8nXz36Od_K_7KWybcvGlGK8DjXy-VGcaVOTyHJq9_nV_ZL43T3fD82JNfQFNU8cb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED0VGAoDggKifHqACSLFbpzEA0NVQIW2TK3ULbUTRyBBWpUgaH8PP5RzPlRAMDAwx7Kil3N8z373DuCExy6NqZCWG3JpOQ1PWiKmSFaUcAVXvuSRqR3u3bntgXM75MMKvJe1MJnavbySzP7Un4rdfFMFzYz-R9jcmhdSyo6evSJRe764ucSvesrY9VW_1baKXgJWyDw7tRwdcq41ZkPcFVrFtqMjl0ZIJ0IWCcaZokoh9Qg96WHS4WmlfK1N-zrkR5TGDZx3CVYw-fDN2hmw5sLal7mF1zO1fEGHRWnOz-_8dftb5LTfrmGz3e16A9aLtJQ08zjahIpOalBtld3garD2ybhwC0YYXSSXgpBxTO5n0XT89hBpYoKYjBOSmud5h53sgMj4npiRhUKeyJSYQ4pHTSZGjJe8PJFEJkjgC53eNgz-Bd8dWE7Gid4FohuRj1mZUEzYTiyQooc2k7IRUYwnLv06nJUQBpPckiNYmC8bwAMEPMgAD-Z1OChRDorl-RwY1z7j8-OwOpyXyC8e_z7b3t-GH0O13e91g-7NXWcfVk2r-lwIeADL6fRFH2JCk6qjLJ4IjP47gD8A91IAmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSCwHBAVEoYAPcIKI2I2T-MChAirWigOVegt27AgkSCsIgvar-ETGWVRAcODA2ZYVvYzlGfu9NwA7PPFpQoV0_JhLx2sG0hEJxWJFCV9wFUqurXb4quOfdr3zHu9NwHulhcnZ7tWTZKFpsC5NaXYw0MnBJ-FbaBXRzHKBhMudUUmrvDDDVyzang_PjvEP7zLWPrk5OnXKvgJOzAI3czwTc24MZkbcF0Ylrme0TzWWFjHTgnGmqFJYhsSBDDABCYxSoTG2lR3WSpQmTVx3EqY9qz7GHdRlrbHNL_NL32fqhIL2SpnOz9_89Sgc57ffnmTzk669CAtlikpaRUwtwYRJazB7VHWGq8H8JxPDZbjFSCMFLYT0E3I31E_9t3ttiA1o0k9JZseLbjv5ZZH1QLEzS7Y8kRmxFxYPhgwsMS99eSSpTLGYLzl7K9D9F3xXYSrtp2YNiGnqEDM0oZhwvURguR67TMqmphhbXIZ12KsgjAaFPUc0NmK2gEcIeJQDHo3q0KhQjsqt-hxZBz_r-eOxOuxXyI-Hf19t_W_Tt2Hm-rgdXZ51LjZgznatLziBDZjKnl7MJuY2mdrKw4nA7X_H7wci5wTO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+hydroxide+ions+on+the+electrocatalysis+of+glucose+at+single+platinum+nanoparticles&rft.jtitle=Journal+of+applied+electrochemistry&rft.au=Lin%2C+Jun&rft.au=Wang%2C+Jun&rft.au=Li%2C+Shuang&rft.au=Zhao%2C+Wenbin&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0021-891X&rft.eissn=1572-8838&rft.volume=53&rft.issue=10&rft.spage=1991&rft.epage=1999&rft_id=info:doi/10.1007%2Fs10800-023-01905-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-891X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-891X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-891X&client=summon