Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process

In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), supe...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 421; p. 127380
Main Authors Dang, Jiaqiang, Zhang, Heng, An, Qinglong, Lian, Guohui, Li, Yugang, Wang, Haowei, Chen, Ming
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2021.127380

Cover

Abstract In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes. •Excellent surface integrity and wear resistance of 300M steel were obtained by USRP.•USRP could generate a smooth surface with Ra of 7 nm under high processing passes.•Martensite phase transformation was observed on the surface layer with increasing processing passes.•Variation of surface integrity by USRP becomes saturated with increasing processing passes.
AbstractList In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes.
In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes. •Excellent surface integrity and wear resistance of 300M steel were obtained by USRP.•USRP could generate a smooth surface with Ra of 7 nm under high processing passes.•Martensite phase transformation was observed on the surface layer with increasing processing passes.•Variation of surface integrity by USRP becomes saturated with increasing processing passes.
ArticleNumber 127380
Author Dang, Jiaqiang
Chen, Ming
An, Qinglong
Lian, Guohui
Li, Yugang
Wang, Haowei
Zhang, Heng
Author_xml – sequence: 1
  givenname: Jiaqiang
  surname: Dang
  fullname: Dang, Jiaqiang
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Qinglong
  surname: An
  fullname: An, Qinglong
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Guohui
  surname: Lian
  fullname: Lian, Guohui
  organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 5
  givenname: Yugang
  surname: Li
  fullname: Li, Yugang
  email: yugang.li@sjtu.edu.cn
  organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 6
  givenname: Haowei
  surname: Wang
  fullname: Wang, Haowei
  organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 7
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNqFkE1LAzEQhoNUsFX_ggQ8b002u5td8KAUv6DiQT2HJDtbs6xJTbIV_70prRcvPQ0M87wz88zQxDoLCF1QMqeEVlf9PIy-007GeU5yOqc5ZzU5QlNa8yZjrOATNCV5ybO64fkJmoXQE0Iob4opkq-JlRqwsRFW3sQfLG2Lv0F6rOBDbozz2HWYEfKMQwQYcBhVDzpCi6PD4xC9DM4ajcM-ybthMHaF195pCOEMHXdyCHC-r6fo_f7ubfGYLV8enha3y0znnMSskEy1quKcNqogrCIldKqmqkm9RjesZTLdXFJQtNK1VKpiLS9yLstS101J2Cm63OWmvV8jhCh6N3qbVor0OytpmddFmqp2U9q7EDx0Yu3Np_Q_ghKx1Sl68adTbHWKnc4EXv8DtYkyGmeTADMcxm92OCQFGwNeBG3AamiNTzJF68yhiF_X5pgd
CitedBy_id crossref_primary_10_1080_02670844_2023_2218208
crossref_primary_10_1007_s12008_021_00770_4
crossref_primary_10_1016_j_jmatprotec_2024_118473
crossref_primary_10_1142_S0219686724500239
crossref_primary_10_1590_1980_5373_mr_2022_0606
crossref_primary_10_1177_14644207241290918
crossref_primary_10_1088_2051_672X_adb5a4
crossref_primary_10_1007_s10010_024_00758_y
crossref_primary_10_1016_j_jmapro_2023_11_032
crossref_primary_10_1016_j_jmrt_2024_10_130
crossref_primary_10_1007_s11665_024_09606_0
crossref_primary_10_1002_adem_202401100
crossref_primary_10_1016_j_jmatprotec_2023_117942
crossref_primary_10_1007_s00170_023_10917_0
crossref_primary_10_1016_j_jmapro_2023_04_045
crossref_primary_10_1007_s11465_023_0769_8
crossref_primary_10_3390_jmmp8050192
crossref_primary_10_1016_j_surfcoat_2023_129371
crossref_primary_10_1149_2162_8777_ad384c
crossref_primary_10_1016_j_jmrt_2024_11_261
crossref_primary_10_1177_09544054241310329
crossref_primary_10_1016_j_matchar_2024_114127
crossref_primary_10_3390_ma18020438
crossref_primary_10_1016_j_surfcoat_2021_127566
crossref_primary_10_1007_s40544_022_0685_7
crossref_primary_10_1177_09544062231161965
crossref_primary_10_1002_mawe_202200083
crossref_primary_10_1016_j_surfcoat_2024_131591
crossref_primary_10_3390_ma15207380
crossref_primary_10_1016_j_ijfatigue_2023_107803
crossref_primary_10_1016_j_matchemphys_2024_129092
crossref_primary_10_1016_j_surfcoat_2023_130167
crossref_primary_10_1016_j_triboint_2024_110494
crossref_primary_10_1007_s10853_023_09305_6
crossref_primary_10_3390_lubricants12060208
crossref_primary_10_1016_j_ijfatigue_2023_107561
crossref_primary_10_1038_s41598_023_34203_x
crossref_primary_10_1007_s00170_024_14365_2
crossref_primary_10_3390_ma17051161
crossref_primary_10_1007_s11665_023_09130_7
crossref_primary_10_1016_j_tws_2023_111086
crossref_primary_10_1007_s00170_023_12147_w
crossref_primary_10_1016_j_jallcom_2025_179167
crossref_primary_10_1002_crat_202300057
crossref_primary_10_1016_j_ceramint_2023_06_125
crossref_primary_10_1007_s12541_024_01194_2
crossref_primary_10_1016_j_ijfatigue_2022_107339
crossref_primary_10_1007_s11665_024_10469_8
crossref_primary_10_3390_met13101674
crossref_primary_10_1115_1_4067006
crossref_primary_10_1177_14644207231190491
crossref_primary_10_1016_j_jmrt_2023_07_217
crossref_primary_10_1016_j_surfcoat_2022_129033
crossref_primary_10_1016_j_surfcoat_2024_131445
crossref_primary_10_1002_pc_29696
crossref_primary_10_1007_s11665_023_08788_3
crossref_primary_10_1007_s11837_023_05776_9
crossref_primary_10_1016_j_surfcoat_2024_130518
crossref_primary_10_3390_coatings13030499
crossref_primary_10_1016_j_engfailanal_2023_107333
crossref_primary_10_1177_09544062241232236
crossref_primary_10_1016_j_msea_2024_147708
crossref_primary_10_1016_j_tafmec_2024_104707
crossref_primary_10_3390_app112210986
crossref_primary_10_1016_j_jmrt_2024_05_055
crossref_primary_10_1007_s00170_023_10960_x
crossref_primary_10_1111_ffe_14218
crossref_primary_10_1016_j_surfcoat_2023_129881
crossref_primary_10_1051_meca_2023004
crossref_primary_10_1016_j_mtcomm_2023_107699
crossref_primary_10_1088_2631_7990_ac9e27
crossref_primary_10_1007_s11666_023_01544_y
crossref_primary_10_1007_s00170_022_10270_8
crossref_primary_10_1016_j_jmapro_2024_03_017
crossref_primary_10_1016_j_jmrt_2024_05_091
crossref_primary_10_1155_2024_4083427
Cites_doi 10.1016/j.surfcoat.2019.04.080
10.1016/j.msea.2014.06.114
10.1016/j.matchemphys.2011.05.068
10.1016/j.actamat.2014.06.044
10.1016/j.surfcoat.2017.04.052
10.1016/j.msea.2019.03.011
10.1126/science.1159610
10.1016/j.jmatprotec.2020.116806
10.1016/j.matdes.2013.08.104
10.1016/j.msea.2014.01.096
10.1016/j.ijfatigue.2018.02.022
10.1016/j.msea.2020.139375
10.1016/j.matchar.2019.109881
10.1016/j.actamat.2010.10.032
10.1016/j.ijfatigue.2008.10.004
10.1016/j.jmatprotec.2020.116767
10.1016/j.surfcoat.2017.08.067
10.1016/j.msea.2006.08.066
10.1016/j.ijfatigue.2019.105380
10.1016/j.msea.2012.05.052
10.1016/j.surfcoat.2020.126196
10.1243/09544054JEM299
10.1016/j.surfcoat.2020.125994
10.1016/j.jmapro.2020.11.001
10.1007/s00170-016-8659-4
10.1016/j.surfcoat.2017.10.080
10.1016/j.ijfatigue.2018.11.017
10.1016/j.msea.2015.06.072
10.1016/j.ijfatigue.2015.08.007
10.1016/S0167-577X(02)00838-8
10.1016/j.jmatprotec.2021.117068
10.1007/s10853-008-3021-3
10.1016/j.ijfatigue.2017.04.016
10.1016/j.msea.2013.04.021
10.1016/j.apsusc.2016.07.120
10.1016/j.surfcoat.2012.06.046
10.1016/j.matdes.2012.07.026
10.1016/j.actamat.2011.03.005
10.1016/j.msea.2016.08.065
10.1016/j.jallcom.2016.05.295
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2021.127380
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2021_127380
S0257897221005545
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
7QQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c270t-4a3bdb67719b403605efb81b9b679c93d3a00151eb16c8abb63d7427a55c89503
IEDL.DBID AIKHN
ISSN 0257-8972
IngestDate Fri Jul 25 02:14:54 EDT 2025
Tue Jul 01 03:07:59 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:42:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface integrity
300M steel
Ultrasonic surface rolling process
Wear resistance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-4a3bdb67719b403605efb81b9b679c93d3a00151eb16c8abb63d7427a55c89503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2573515284
PQPubID 2045394
ParticipantIDs proquest_journals_2573515284
crossref_primary_10_1016_j_surfcoat_2021_127380
crossref_citationtrail_10_1016_j_surfcoat_2021_127380
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_127380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Lian, Geng, Song, Chen, Wang (bb0170) 2021; 293
Sweeney, O’Brien, Dunne, McHugh, Leen (bb0030) 2014; 78
Tekeli (bb0070) 2002; 57
Zhang, Hu, Su, Zhou, Liu, Yang, Qi (bb0105) 2017; 321
Li, Hsu, Szpunar, Utsunomiya, Sakai (bb0135) 2008; 43
Chen, Ruan, Wang, Chan, Wang, Li, Lu (bb0195) 2011; 59
Liu, Li, Liu (bb0165) 2016; 685
Liu, Liu, Zhang, He, Ma, Wu (bb0090) 2020; 399
Lu, Sun, Li, Xiong (bb0095) 2016; 87
Chen, Ruan, Zhang, Liu, Lu (bb0185) 2011; 129
Fan, Fu (bb0190) 2012; 552
Sun, Fabijanic, Barr, Liu, Walker, Matthews, Orchowski, Easton, Brandt (bb0015) 2018; 333
Lu, Lu, Suresh (bb0160) 2009; 324
Kattoura, Mannava, Qian, Vasudevan (bb0035) 2017; 102
Dekhtyar, Mordyuk, Savvakin, Bondarchuk, Moiseeva, Khripta (bb0055) 2015; 641
Long, Liang, Jiang, Liang, Yang, Yi (bb0140) 2016; 676
Dang, Zhang, An, Ming, Chen (bb0005) 2021; 61
Yang, Zhou, Ling (bb0045) 2013; 43
Ye, Telang, Gill, Suslov, Idell, Zweiacker, Wiezorek, Zhou, Qian, Mannava, Vasudevan (bb0150) 2014; 613
Zhao, Liu, Zhang, Zhou, Zhang, Zhang, Ye (bb0110) 2019; 121
Li, Qu, Pan, Li (bb0085) 2016; 389
Ajaja, Jomaa, Bocher, Chromik, Brochu (bb0010) 2020; 131
Bertini, Santus (bb0050) 2015; 81
Gill, Telang, Mannava, Qian, Pyoun, Soyama, Vasudevan (bb0155) 2013; 576
Majzoobi, Abbasi (bb0065) 2017; 328
Li, Zhang, Fang, Zhang, Liu (bb0115) 2019; 156
Zhao, Liu, Zhang, Zhang, Liu, Ma, Zhang, Dong, Ye (bb0125) 2020; 397
Amanov, Cho, Kim, Pyun (bb0175) 2012; 207
Ye, Suslov, Kim, Stach, Cheng (bb0025) 2011; 59
Xu, Dunleavey, Antar, Hood, Soo, Kucukturk, Hyde, Clare (bb0060) 2018; 111
Zhang, Liu (bb0075) 2009; 31
Liu, Zhao, Wang (bb0080) 2014; 600
Aggarwal, Khan, Agrawal (bb0020) 2006; 220
Xu, Zhang, Liu, He, Zhao (bb0145) 2019; 752
Liu, Liu, Zhang, He, Xu, Ao, Ma, Liu (bb0100) 2019; 370
Ganesh, Sundar, Kumar, Kaul, Ranganathan, Hedaoo, Raghavendra, Kumar, Tiwari, Nagpure, Bindra, Kukreja, Oak (bb0040) 2014; 54
Baek, Kim, Park, Ham, Lee (bb0130) 2020; 785
Zhao, Liu, Chiang, Qin, Zhang, Zhang, Liu, Ren, Zhang, Doll, Vasudevan, Dong, Ye (bb0120) 2020; 285
Suh, Song, Suh, Pyoun (bb0180) 2007; 443
Tong, Liu, Jiao, Zhou, Yang, Ren (bb0200) 2020; 285
Zhao (10.1016/j.surfcoat.2021.127380_bb0125) 2020; 397
Baek (10.1016/j.surfcoat.2021.127380_bb0130) 2020; 785
Chen (10.1016/j.surfcoat.2021.127380_bb0185) 2011; 129
Ganesh (10.1016/j.surfcoat.2021.127380_bb0040) 2014; 54
Zhao (10.1016/j.surfcoat.2021.127380_bb0120) 2020; 285
Amanov (10.1016/j.surfcoat.2021.127380_bb0175) 2012; 207
Tekeli (10.1016/j.surfcoat.2021.127380_bb0070) 2002; 57
Chen (10.1016/j.surfcoat.2021.127380_bb0195) 2011; 59
Gill (10.1016/j.surfcoat.2021.127380_bb0155) 2013; 576
Ajaja (10.1016/j.surfcoat.2021.127380_bb0010) 2020; 131
Fan (10.1016/j.surfcoat.2021.127380_bb0190) 2012; 552
Liu (10.1016/j.surfcoat.2021.127380_bb0080) 2014; 600
Lu (10.1016/j.surfcoat.2021.127380_bb0095) 2016; 87
Li (10.1016/j.surfcoat.2021.127380_bb0115) 2019; 156
Majzoobi (10.1016/j.surfcoat.2021.127380_bb0065) 2017; 328
Ye (10.1016/j.surfcoat.2021.127380_bb0025) 2011; 59
Liu (10.1016/j.surfcoat.2021.127380_bb0100) 2019; 370
Yang (10.1016/j.surfcoat.2021.127380_bb0045) 2013; 43
Sun (10.1016/j.surfcoat.2021.127380_bb0015) 2018; 333
Bertini (10.1016/j.surfcoat.2021.127380_bb0050) 2015; 81
Dekhtyar (10.1016/j.surfcoat.2021.127380_bb0055) 2015; 641
Zhao (10.1016/j.surfcoat.2021.127380_bb0110) 2019; 121
Li (10.1016/j.surfcoat.2021.127380_bb0170) 2021; 293
Liu (10.1016/j.surfcoat.2021.127380_bb0090) 2020; 399
Long (10.1016/j.surfcoat.2021.127380_bb0140) 2016; 676
Xu (10.1016/j.surfcoat.2021.127380_bb0145) 2019; 752
Li (10.1016/j.surfcoat.2021.127380_bb0085) 2016; 389
Dang (10.1016/j.surfcoat.2021.127380_bb0005) 2021; 61
Aggarwal (10.1016/j.surfcoat.2021.127380_bb0020) 2006; 220
Kattoura (10.1016/j.surfcoat.2021.127380_bb0035) 2017; 102
Ye (10.1016/j.surfcoat.2021.127380_bb0150) 2014; 613
Sweeney (10.1016/j.surfcoat.2021.127380_bb0030) 2014; 78
Zhang (10.1016/j.surfcoat.2021.127380_bb0105) 2017; 321
Li (10.1016/j.surfcoat.2021.127380_bb0135) 2008; 43
Zhang (10.1016/j.surfcoat.2021.127380_bb0075) 2009; 31
Lu (10.1016/j.surfcoat.2021.127380_bb0160) 2009; 324
Xu (10.1016/j.surfcoat.2021.127380_bb0060) 2018; 111
Liu (10.1016/j.surfcoat.2021.127380_bb0165) 2016; 685
Suh (10.1016/j.surfcoat.2021.127380_bb0180) 2007; 443
Tong (10.1016/j.surfcoat.2021.127380_bb0200) 2020; 285
References_xml – volume: 328
  start-page: 292
  year: 2017
  end-page: 303
  ident: bb0065
  article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading
  publication-title: Surf. Coat. Technol.
– volume: 600
  start-page: 21
  year: 2014
  end-page: 31
  ident: bb0080
  article-title: Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation
  publication-title: Mater. Sci. Eng. A
– volume: 397
  year: 2020
  ident: bb0125
  article-title: The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel
  publication-title: Surf. Coat. Technol.
– volume: 641
  start-page: 348
  year: 2015
  end-page: 359
  ident: bb0055
  article-title: Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment
  publication-title: Mater. Sci. Eng. A
– volume: 333
  start-page: 210
  year: 2018
  end-page: 219
  ident: bb0015
  article-title: In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates
  publication-title: Surf. Coat. Technol.
– volume: 59
  start-page: 1014
  year: 2011
  end-page: 1025
  ident: bb0025
  article-title: Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening
  publication-title: Acta Mater.
– volume: 87
  start-page: 2533
  year: 2016
  end-page: 2539
  ident: bb0095
  article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 78
  start-page: 341
  year: 2014
  end-page: 353
  ident: bb0030
  article-title: Strain-gradient modelling of grain size effects on fatigue of CoCr alloy
  publication-title: Acta Mater.
– volume: 370
  start-page: 24
  year: 2019
  end-page: 34
  ident: bb0100
  article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy
  publication-title: Surf. Coat. Technol.
– volume: 131
  year: 2020
  ident: bb0010
  article-title: High cycle fatigue behavior of hard turned 300 M ultra-high strength steel
  publication-title: Int. J. Fatigue
– volume: 685
  start-page: 186
  year: 2016
  end-page: 193
  ident: bb0165
  article-title: Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening
  publication-title: J. Alloys Compd.
– volume: 552
  start-page: 359
  year: 2012
  end-page: 363
  ident: bb0190
  article-title: Toughened austenitic stainless steel by surface severe plastic deformation
  publication-title: Mater. Sci. Eng. A
– volume: 293
  year: 2021
  ident: bb0170
  article-title: Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite
  publication-title: J. Mater. Process. Technol.
– volume: 785
  year: 2020
  ident: bb0130
  article-title: Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors
  publication-title: Mater. Sci. Eng. A
– volume: 102
  start-page: 121
  year: 2017
  end-page: 134
  ident: bb0035
  article-title: Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy
  publication-title: Int. J. Fatigue
– volume: 576
  start-page: 346
  year: 2013
  end-page: 355
  ident: bb0155
  article-title: Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy
  publication-title: Mater. Sci. Eng. A
– volume: 121
  start-page: 30
  year: 2019
  end-page: 38
  ident: bb0110
  article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process
  publication-title: Int. J. Fatigue
– volume: 389
  start-page: 324
  year: 2016
  end-page: 334
  ident: bb0085
  article-title: Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy
  publication-title: Appl. Surf. Sci.
– volume: 207
  start-page: 135
  year: 2012
  end-page: 142
  ident: bb0175
  article-title: Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification
  publication-title: Surf. Coat. Technol.
– volume: 43
  start-page: 454
  year: 2013
  end-page: 459
  ident: bb0045
  article-title: Influences of surface grain size and gradient variation along depth on fatigue life of metallic materials
  publication-title: Mater. Des.
– volume: 285
  year: 2020
  ident: bb0120
  article-title: Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel
  publication-title: J. Mater. Process. Technol.
– volume: 31
  start-page: 889
  year: 2009
  end-page: 893
  ident: bb0075
  article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature
  publication-title: Int. J. Fatigue
– volume: 285
  start-page: 116806
  year: 2020
  ident: bb0200
  article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
  publication-title: J. Mater. Process. Technol.
– volume: 59
  start-page: 3697
  year: 2011
  end-page: 3709
  ident: bb0195
  article-title: The influence of strain rate on the microstructure transition of 304 stainless steel
  publication-title: Acta Mater.
– volume: 156
  year: 2019
  ident: bb0115
  article-title: Deformation behaviour and texture evolution of martensite steel subjected to hard milling
  publication-title: Mater. Charact.
– volume: 752
  start-page: 167
  year: 2019
  end-page: 179
  ident: bb0145
  article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V
  publication-title: Mater. Sci. Eng. A
– volume: 399
  year: 2020
  ident: bb0090
  article-title: Plain fatigue and fretting fatigue behaviors of 17-4PH steel subjected to ultrasonic surface rolling process: a comparative study
  publication-title: Surf. Coat. Technol.
– volume: 443
  start-page: 101
  year: 2007
  end-page: 106
  ident: bb0180
  article-title: Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology
  publication-title: Mater. Sci. Eng. A
– volume: 43
  start-page: 7148
  year: 2008
  end-page: 7156
  ident: bb0135
  article-title: Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets
  publication-title: J. Mater. Sci.
– volume: 111
  start-page: 196
  year: 2018
  end-page: 207
  ident: bb0060
  article-title: The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes
  publication-title: Int. J. Fatigue
– volume: 220
  start-page: 1325
  year: 2006
  end-page: 1331
  ident: bb0020
  article-title: Effect of surface roughness on the fretting fatigue behaviour of EN45A spring steel
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
– volume: 324
  start-page: 349
  year: 2009
  ident: bb0160
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
– volume: 613
  start-page: 274
  year: 2014
  end-page: 288
  ident: bb0150
  article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
– volume: 81
  start-page: 179
  year: 2015
  end-page: 190
  ident: bb0050
  article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling
  publication-title: Int. J. Fatigue
– volume: 57
  start-page: 604
  year: 2002
  end-page: 608
  ident: bb0070
  article-title: Enhancement of fatigue strength of SAE 9245 steel by shot peening
  publication-title: Mater. Lett.
– volume: 321
  start-page: 64
  year: 2017
  end-page: 73
  ident: bb0105
  article-title: Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology
  publication-title: Surf. Coat. Technol.
– volume: 61
  start-page: 1
  year: 2021
  end-page: 14
  ident: bb0005
  article-title: Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process
  publication-title: J. Manuf. Process.
– volume: 676
  start-page: 38
  year: 2016
  end-page: 47
  ident: bb0140
  article-title: Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel
  publication-title: Mater. Sci. Eng. A
– volume: 54
  start-page: 734
  year: 2014
  end-page: 741
  ident: bb0040
  article-title: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening
  publication-title: Mater. Des. (1980-2015)
– volume: 129
  start-page: 1096
  year: 2011
  end-page: 1103
  ident: bb0185
  article-title: Introducing a hierarchical structure for fabrication of a high performance steel
  publication-title: Mater. Chem. Phys.
– volume: 370
  start-page: 24
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127380_bb0100
  article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.04.080
– volume: 613
  start-page: 274
  year: 2014
  ident: 10.1016/j.surfcoat.2021.127380_bb0150
  article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.06.114
– volume: 129
  start-page: 1096
  issue: 3
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127380_bb0185
  article-title: Introducing a hierarchical structure for fabrication of a high performance steel
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.05.068
– volume: 78
  start-page: 341
  year: 2014
  ident: 10.1016/j.surfcoat.2021.127380_bb0030
  article-title: Strain-gradient modelling of grain size effects on fatigue of CoCr alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.06.044
– volume: 321
  start-page: 64
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127380_bb0105
  article-title: Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.04.052
– volume: 752
  start-page: 167
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127380_bb0145
  article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.03.011
– volume: 324
  start-page: 349
  issue: 5925
  year: 2009
  ident: 10.1016/j.surfcoat.2021.127380_bb0160
  article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale
  publication-title: Science
  doi: 10.1126/science.1159610
– volume: 285
  start-page: 116806
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0200
  article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116806
– volume: 54
  start-page: 734
  year: 2014
  ident: 10.1016/j.surfcoat.2021.127380_bb0040
  article-title: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening
  publication-title: Mater. Des. (1980-2015)
  doi: 10.1016/j.matdes.2013.08.104
– volume: 600
  start-page: 21
  year: 2014
  ident: 10.1016/j.surfcoat.2021.127380_bb0080
  article-title: Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.01.096
– volume: 111
  start-page: 196
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127380_bb0060
  article-title: The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.02.022
– volume: 785
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0130
  article-title: Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139375
– volume: 156
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127380_bb0115
  article-title: Deformation behaviour and texture evolution of martensite steel subjected to hard milling
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2019.109881
– volume: 59
  start-page: 1014
  issue: 3
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127380_bb0025
  article-title: Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.10.032
– volume: 31
  start-page: 889
  issue: 5
  year: 2009
  ident: 10.1016/j.surfcoat.2021.127380_bb0075
  article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2008.10.004
– volume: 285
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0120
  article-title: Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116767
– volume: 328
  start-page: 292
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127380_bb0065
  article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.08.067
– volume: 443
  start-page: 101
  issue: 1
  year: 2007
  ident: 10.1016/j.surfcoat.2021.127380_bb0180
  article-title: Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.08.066
– volume: 131
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0010
  article-title: High cycle fatigue behavior of hard turned 300 M ultra-high strength steel
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.105380
– volume: 552
  start-page: 359
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127380_bb0190
  article-title: Toughened austenitic stainless steel by surface severe plastic deformation
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.05.052
– volume: 399
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0090
  article-title: Plain fatigue and fretting fatigue behaviors of 17-4PH steel subjected to ultrasonic surface rolling process: a comparative study
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126196
– volume: 220
  start-page: 1325
  issue: 8
  year: 2006
  ident: 10.1016/j.surfcoat.2021.127380_bb0020
  article-title: Effect of surface roughness on the fretting fatigue behaviour of EN45A spring steel
  publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf.
  doi: 10.1243/09544054JEM299
– volume: 397
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127380_bb0125
  article-title: The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125994
– volume: 61
  start-page: 1
  year: 2021
  ident: 10.1016/j.surfcoat.2021.127380_bb0005
  article-title: Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.11.001
– volume: 87
  start-page: 2533
  issue: 9
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127380_bb0095
  article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8659-4
– volume: 333
  start-page: 210
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127380_bb0015
  article-title: In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.10.080
– volume: 121
  start-page: 30
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127380_bb0110
  article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.11.017
– volume: 641
  start-page: 348
  year: 2015
  ident: 10.1016/j.surfcoat.2021.127380_bb0055
  article-title: Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.06.072
– volume: 81
  start-page: 179
  year: 2015
  ident: 10.1016/j.surfcoat.2021.127380_bb0050
  article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2015.08.007
– volume: 57
  start-page: 604
  issue: 3
  year: 2002
  ident: 10.1016/j.surfcoat.2021.127380_bb0070
  article-title: Enhancement of fatigue strength of SAE 9245 steel by shot peening
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(02)00838-8
– volume: 293
  year: 2021
  ident: 10.1016/j.surfcoat.2021.127380_bb0170
  article-title: Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2021.117068
– volume: 43
  start-page: 7148
  issue: 22
  year: 2008
  ident: 10.1016/j.surfcoat.2021.127380_bb0135
  article-title: Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-3021-3
– volume: 102
  start-page: 121
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127380_bb0035
  article-title: Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.04.016
– volume: 576
  start-page: 346
  year: 2013
  ident: 10.1016/j.surfcoat.2021.127380_bb0155
  article-title: Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.021
– volume: 389
  start-page: 324
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127380_bb0085
  article-title: Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.120
– volume: 207
  start-page: 135
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127380_bb0175
  article-title: Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.06.046
– volume: 43
  start-page: 454
  year: 2013
  ident: 10.1016/j.surfcoat.2021.127380_bb0045
  article-title: Influences of surface grain size and gradient variation along depth on fatigue life of metallic materials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.07.026
– volume: 59
  start-page: 3697
  issue: 9
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127380_bb0195
  article-title: The influence of strain rate on the microstructure transition of 304 stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.03.005
– volume: 676
  start-page: 38
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127380_bb0140
  article-title: Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.065
– volume: 685
  start-page: 186
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127380_bb0165
  article-title: Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.05.295
SSID ssj0001794
Score 2.610283
Snippet In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127380
SubjectTerms 300M steel
Compressive properties
Grain refinement
Integrity
Microhardness
Nickel chromium molybdenum steels
Residual stress
Skin pass rolling
Surface hardness
Surface integrity
Surface layers
Surface roughness
Ultrafines
Ultrasonic surface rolling process
Wear resistance
Work hardening
Title Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process
URI https://dx.doi.org/10.1016/j.surfcoat.2021.127380
https://www.proquest.com/docview/2573515284
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH8YnPkoPXtdnNZrc5SrFURS8qeAt5QqW0pd3izd_upJsVFcSDxwRmdpmZfDMJ8wC4yDOLfrygieOeJjk3LNHUFrh03vesF241DOb-oRg-57cv_KUF_aYWJqRVRuyvMX2F1nGnG6XZnY1G3UcarE2UGV5aKDpFvgbrGRMFb8P61c3d8OETkIPNrZ5aOAIyEnwpFH5FiJp7M1UhrTJLL9NQqUJ_81E_0HrlggY7sB1jR3JV_94utNxkDzb6zci2Pdj60l1wH9QjflQZR-qWEBhuEzWx5A1tmzTV-WTqCaP0nqCy3Zgsljq8yzhLqilZjqu5WoTWuWQROc3rFt5kVpcXHMDz4PqpP0ziRIXEZCWtklwxbXVRlqnQOfouihrRGLgK3BNGMMtUCKJSBPDC9JTWBbN4dy4V56YnOGWH0J5MJ-4IiHdWUZ0LTzXNSzzILs2MZ94gP4xa0mPgjQylie3Gw9SLsWzyyl5lI3sZZC9r2R9D95NuVjfc-JNCNCqS30xHolf4k_as0amMh3ch0U4YhnnouE_-wfoUNsMq5Jak_Aza1XzpzjGAqXQH1i7f00400w9pRPCq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VGIAB8RTl6YE11InjpB5RBSrQsgASm-WnBKraqk3Fxm_nnAcvCTEwxomd6O7yfWfrHgBnaWKRxzMaOe5plHLDIk1thpfO-671wpXNYIZ3Wf8xvXniTy3oNbkwIayyxv4K00u0rkc6tTQ70-fnzj0N1ibyBDctFEmRL8FKylke4vrO3z7jPILFlQctHOEYH_-SJvyCADXzZqJCUGUSn8chT4X-xlA_sLokoKtN2Kg9R3JRfdwWtNx4G1Z7TcO2bVj_UltwB9Q9vlQZR6qCEOhsEzW25BUtmzS5-WTiCaN0SFDVbkTmCx1OZZwlxYQsRsVMzUPhXDKvV5pVBbzJtEou2IXHq8uHXj-q-ylEJslpEaWKaauzPI-FTpG5KOpDo9sqcEwYwSxTwYWKEb4z01VaZ8zizjlXnJuu4JTtwfJ4Mnb7QLyziupUeKppmuNv7OLEeOYNroc-S9wG3shQmrrYeOh5MZJNVNmLbGQvg-xlJfs2dD7mTatyG3_OEI2K5DfDkcgJf849anQq6193LtFOGDp5SNsH_1j6FFb7D8OBHFzf3R7CWrgTokxifgTLxWzhjtGVKfRJaarvcujxdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+integrity+and+wear+behavior+of+300M+steel+subjected+to+ultrasonic+surface+rolling+process&rft.jtitle=Surface+%26+coatings+technology&rft.au=Dang%2C+Jiaqiang&rft.au=Zhang%2C+Heng&rft.au=An%2C+Qinglong&rft.au=Lian%2C+Guohui&rft.date=2021-09-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=421&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.127380&rft.externalDocID=S0257897221005545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon