Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process
In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), supe...
Saved in:
Published in | Surface & coatings technology Vol. 421; p. 127380 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2021.127380 |
Cover
Abstract | In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes.
•Excellent surface integrity and wear resistance of 300M steel were obtained by USRP.•USRP could generate a smooth surface with Ra of 7 nm under high processing passes.•Martensite phase transformation was observed on the surface layer with increasing processing passes.•Variation of surface integrity by USRP becomes saturated with increasing processing passes. |
---|---|
AbstractList | In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes. In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were comprehensively studied. The effects of processing pass on the surface integrity were analyzed in term of surface topography, surface roughness (Ra), superficial microstructure, microhardness, and residual stresses. The results indicated that 10-pass USRP treatment can generate a highly smooth surface with Ra ≈ 7 nm. Nanocrystalline and ultrafine crystalline structures were produced in the surface layer. Significant compressive residual stress with a maximum value of about −950 MPa and a depth of about 800 μm was introduced into the sample surface. The comprehensive effects of grain refinement, work hardening, and compressive residual stress improved the surface hardness by about 30.9%, which obviously enhanced the wear resistance of 300M steel. It is noteworthy that the improvements of surface integrity and wear resistance of 300M steel brought about by USRP tend to be saturated along with the increase of processing passes. •Excellent surface integrity and wear resistance of 300M steel were obtained by USRP.•USRP could generate a smooth surface with Ra of 7 nm under high processing passes.•Martensite phase transformation was observed on the surface layer with increasing processing passes.•Variation of surface integrity by USRP becomes saturated with increasing processing passes. |
ArticleNumber | 127380 |
Author | Dang, Jiaqiang Chen, Ming An, Qinglong Lian, Guohui Li, Yugang Wang, Haowei Zhang, Heng |
Author_xml | – sequence: 1 givenname: Jiaqiang surname: Dang fullname: Dang, Jiaqiang organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Heng surname: Zhang fullname: Zhang, Heng organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Qinglong surname: An fullname: An, Qinglong organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Guohui surname: Lian fullname: Lian, Guohui organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 5 givenname: Yugang surname: Li fullname: Li, Yugang email: yugang.li@sjtu.edu.cn organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 6 givenname: Haowei surname: Wang fullname: Wang, Haowei organization: State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 7 givenname: Ming surname: Chen fullname: Chen, Ming organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
BookMark | eNqFkE1LAzEQhoNUsFX_ggQ8b002u5td8KAUv6DiQT2HJDtbs6xJTbIV_70prRcvPQ0M87wz88zQxDoLCF1QMqeEVlf9PIy-007GeU5yOqc5ZzU5QlNa8yZjrOATNCV5ybO64fkJmoXQE0Iob4opkq-JlRqwsRFW3sQfLG2Lv0F6rOBDbozz2HWYEfKMQwQYcBhVDzpCi6PD4xC9DM4ajcM-ybthMHaF195pCOEMHXdyCHC-r6fo_f7ubfGYLV8enha3y0znnMSskEy1quKcNqogrCIldKqmqkm9RjesZTLdXFJQtNK1VKpiLS9yLstS101J2Cm63OWmvV8jhCh6N3qbVor0OytpmddFmqp2U9q7EDx0Yu3Np_Q_ghKx1Sl68adTbHWKnc4EXv8DtYkyGmeTADMcxm92OCQFGwNeBG3AamiNTzJF68yhiF_X5pgd |
CitedBy_id | crossref_primary_10_1080_02670844_2023_2218208 crossref_primary_10_1007_s12008_021_00770_4 crossref_primary_10_1016_j_jmatprotec_2024_118473 crossref_primary_10_1142_S0219686724500239 crossref_primary_10_1590_1980_5373_mr_2022_0606 crossref_primary_10_1177_14644207241290918 crossref_primary_10_1088_2051_672X_adb5a4 crossref_primary_10_1007_s10010_024_00758_y crossref_primary_10_1016_j_jmapro_2023_11_032 crossref_primary_10_1016_j_jmrt_2024_10_130 crossref_primary_10_1007_s11665_024_09606_0 crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_jmatprotec_2023_117942 crossref_primary_10_1007_s00170_023_10917_0 crossref_primary_10_1016_j_jmapro_2023_04_045 crossref_primary_10_1007_s11465_023_0769_8 crossref_primary_10_3390_jmmp8050192 crossref_primary_10_1016_j_surfcoat_2023_129371 crossref_primary_10_1149_2162_8777_ad384c crossref_primary_10_1016_j_jmrt_2024_11_261 crossref_primary_10_1177_09544054241310329 crossref_primary_10_1016_j_matchar_2024_114127 crossref_primary_10_3390_ma18020438 crossref_primary_10_1016_j_surfcoat_2021_127566 crossref_primary_10_1007_s40544_022_0685_7 crossref_primary_10_1177_09544062231161965 crossref_primary_10_1002_mawe_202200083 crossref_primary_10_1016_j_surfcoat_2024_131591 crossref_primary_10_3390_ma15207380 crossref_primary_10_1016_j_ijfatigue_2023_107803 crossref_primary_10_1016_j_matchemphys_2024_129092 crossref_primary_10_1016_j_surfcoat_2023_130167 crossref_primary_10_1016_j_triboint_2024_110494 crossref_primary_10_1007_s10853_023_09305_6 crossref_primary_10_3390_lubricants12060208 crossref_primary_10_1016_j_ijfatigue_2023_107561 crossref_primary_10_1038_s41598_023_34203_x crossref_primary_10_1007_s00170_024_14365_2 crossref_primary_10_3390_ma17051161 crossref_primary_10_1007_s11665_023_09130_7 crossref_primary_10_1016_j_tws_2023_111086 crossref_primary_10_1007_s00170_023_12147_w crossref_primary_10_1016_j_jallcom_2025_179167 crossref_primary_10_1002_crat_202300057 crossref_primary_10_1016_j_ceramint_2023_06_125 crossref_primary_10_1007_s12541_024_01194_2 crossref_primary_10_1016_j_ijfatigue_2022_107339 crossref_primary_10_1007_s11665_024_10469_8 crossref_primary_10_3390_met13101674 crossref_primary_10_1115_1_4067006 crossref_primary_10_1177_14644207231190491 crossref_primary_10_1016_j_jmrt_2023_07_217 crossref_primary_10_1016_j_surfcoat_2022_129033 crossref_primary_10_1016_j_surfcoat_2024_131445 crossref_primary_10_1002_pc_29696 crossref_primary_10_1007_s11665_023_08788_3 crossref_primary_10_1007_s11837_023_05776_9 crossref_primary_10_1016_j_surfcoat_2024_130518 crossref_primary_10_3390_coatings13030499 crossref_primary_10_1016_j_engfailanal_2023_107333 crossref_primary_10_1177_09544062241232236 crossref_primary_10_1016_j_msea_2024_147708 crossref_primary_10_1016_j_tafmec_2024_104707 crossref_primary_10_3390_app112210986 crossref_primary_10_1016_j_jmrt_2024_05_055 crossref_primary_10_1007_s00170_023_10960_x crossref_primary_10_1111_ffe_14218 crossref_primary_10_1016_j_surfcoat_2023_129881 crossref_primary_10_1051_meca_2023004 crossref_primary_10_1016_j_mtcomm_2023_107699 crossref_primary_10_1088_2631_7990_ac9e27 crossref_primary_10_1007_s11666_023_01544_y crossref_primary_10_1007_s00170_022_10270_8 crossref_primary_10_1016_j_jmapro_2024_03_017 crossref_primary_10_1016_j_jmrt_2024_05_091 crossref_primary_10_1155_2024_4083427 |
Cites_doi | 10.1016/j.surfcoat.2019.04.080 10.1016/j.msea.2014.06.114 10.1016/j.matchemphys.2011.05.068 10.1016/j.actamat.2014.06.044 10.1016/j.surfcoat.2017.04.052 10.1016/j.msea.2019.03.011 10.1126/science.1159610 10.1016/j.jmatprotec.2020.116806 10.1016/j.matdes.2013.08.104 10.1016/j.msea.2014.01.096 10.1016/j.ijfatigue.2018.02.022 10.1016/j.msea.2020.139375 10.1016/j.matchar.2019.109881 10.1016/j.actamat.2010.10.032 10.1016/j.ijfatigue.2008.10.004 10.1016/j.jmatprotec.2020.116767 10.1016/j.surfcoat.2017.08.067 10.1016/j.msea.2006.08.066 10.1016/j.ijfatigue.2019.105380 10.1016/j.msea.2012.05.052 10.1016/j.surfcoat.2020.126196 10.1243/09544054JEM299 10.1016/j.surfcoat.2020.125994 10.1016/j.jmapro.2020.11.001 10.1007/s00170-016-8659-4 10.1016/j.surfcoat.2017.10.080 10.1016/j.ijfatigue.2018.11.017 10.1016/j.msea.2015.06.072 10.1016/j.ijfatigue.2015.08.007 10.1016/S0167-577X(02)00838-8 10.1016/j.jmatprotec.2021.117068 10.1007/s10853-008-3021-3 10.1016/j.ijfatigue.2017.04.016 10.1016/j.msea.2013.04.021 10.1016/j.apsusc.2016.07.120 10.1016/j.surfcoat.2012.06.046 10.1016/j.matdes.2012.07.026 10.1016/j.actamat.2011.03.005 10.1016/j.msea.2016.08.065 10.1016/j.jallcom.2016.05.295 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2021.127380 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
ExternalDocumentID | 10_1016_j_surfcoat_2021_127380 S0257897221005545 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- RIG SEW SMS SPG SSH WUQ 7QQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c270t-4a3bdb67719b403605efb81b9b679c93d3a00151eb16c8abb63d7427a55c89503 |
IEDL.DBID | AIKHN |
ISSN | 0257-8972 |
IngestDate | Fri Jul 25 02:14:54 EDT 2025 Tue Jul 01 03:07:59 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Fri Feb 23 02:42:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface integrity 300M steel Ultrasonic surface rolling process Wear resistance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-4a3bdb67719b403605efb81b9b679c93d3a00151eb16c8abb63d7427a55c89503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2573515284 |
PQPubID | 2045394 |
ParticipantIDs | proquest_journals_2573515284 crossref_primary_10_1016_j_surfcoat_2021_127380 crossref_citationtrail_10_1016_j_surfcoat_2021_127380 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_127380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Li, Lian, Geng, Song, Chen, Wang (bb0170) 2021; 293 Sweeney, O’Brien, Dunne, McHugh, Leen (bb0030) 2014; 78 Tekeli (bb0070) 2002; 57 Zhang, Hu, Su, Zhou, Liu, Yang, Qi (bb0105) 2017; 321 Li, Hsu, Szpunar, Utsunomiya, Sakai (bb0135) 2008; 43 Chen, Ruan, Wang, Chan, Wang, Li, Lu (bb0195) 2011; 59 Liu, Li, Liu (bb0165) 2016; 685 Liu, Liu, Zhang, He, Ma, Wu (bb0090) 2020; 399 Lu, Sun, Li, Xiong (bb0095) 2016; 87 Chen, Ruan, Zhang, Liu, Lu (bb0185) 2011; 129 Fan, Fu (bb0190) 2012; 552 Sun, Fabijanic, Barr, Liu, Walker, Matthews, Orchowski, Easton, Brandt (bb0015) 2018; 333 Lu, Lu, Suresh (bb0160) 2009; 324 Kattoura, Mannava, Qian, Vasudevan (bb0035) 2017; 102 Dekhtyar, Mordyuk, Savvakin, Bondarchuk, Moiseeva, Khripta (bb0055) 2015; 641 Long, Liang, Jiang, Liang, Yang, Yi (bb0140) 2016; 676 Dang, Zhang, An, Ming, Chen (bb0005) 2021; 61 Yang, Zhou, Ling (bb0045) 2013; 43 Ye, Telang, Gill, Suslov, Idell, Zweiacker, Wiezorek, Zhou, Qian, Mannava, Vasudevan (bb0150) 2014; 613 Zhao, Liu, Zhang, Zhou, Zhang, Zhang, Ye (bb0110) 2019; 121 Li, Qu, Pan, Li (bb0085) 2016; 389 Ajaja, Jomaa, Bocher, Chromik, Brochu (bb0010) 2020; 131 Bertini, Santus (bb0050) 2015; 81 Gill, Telang, Mannava, Qian, Pyoun, Soyama, Vasudevan (bb0155) 2013; 576 Majzoobi, Abbasi (bb0065) 2017; 328 Li, Zhang, Fang, Zhang, Liu (bb0115) 2019; 156 Zhao, Liu, Zhang, Zhang, Liu, Ma, Zhang, Dong, Ye (bb0125) 2020; 397 Amanov, Cho, Kim, Pyun (bb0175) 2012; 207 Ye, Suslov, Kim, Stach, Cheng (bb0025) 2011; 59 Xu, Dunleavey, Antar, Hood, Soo, Kucukturk, Hyde, Clare (bb0060) 2018; 111 Zhang, Liu (bb0075) 2009; 31 Liu, Zhao, Wang (bb0080) 2014; 600 Aggarwal, Khan, Agrawal (bb0020) 2006; 220 Xu, Zhang, Liu, He, Zhao (bb0145) 2019; 752 Liu, Liu, Zhang, He, Xu, Ao, Ma, Liu (bb0100) 2019; 370 Ganesh, Sundar, Kumar, Kaul, Ranganathan, Hedaoo, Raghavendra, Kumar, Tiwari, Nagpure, Bindra, Kukreja, Oak (bb0040) 2014; 54 Baek, Kim, Park, Ham, Lee (bb0130) 2020; 785 Zhao, Liu, Chiang, Qin, Zhang, Zhang, Liu, Ren, Zhang, Doll, Vasudevan, Dong, Ye (bb0120) 2020; 285 Suh, Song, Suh, Pyoun (bb0180) 2007; 443 Tong, Liu, Jiao, Zhou, Yang, Ren (bb0200) 2020; 285 Zhao (10.1016/j.surfcoat.2021.127380_bb0125) 2020; 397 Baek (10.1016/j.surfcoat.2021.127380_bb0130) 2020; 785 Chen (10.1016/j.surfcoat.2021.127380_bb0185) 2011; 129 Ganesh (10.1016/j.surfcoat.2021.127380_bb0040) 2014; 54 Zhao (10.1016/j.surfcoat.2021.127380_bb0120) 2020; 285 Amanov (10.1016/j.surfcoat.2021.127380_bb0175) 2012; 207 Tekeli (10.1016/j.surfcoat.2021.127380_bb0070) 2002; 57 Chen (10.1016/j.surfcoat.2021.127380_bb0195) 2011; 59 Gill (10.1016/j.surfcoat.2021.127380_bb0155) 2013; 576 Ajaja (10.1016/j.surfcoat.2021.127380_bb0010) 2020; 131 Fan (10.1016/j.surfcoat.2021.127380_bb0190) 2012; 552 Liu (10.1016/j.surfcoat.2021.127380_bb0080) 2014; 600 Lu (10.1016/j.surfcoat.2021.127380_bb0095) 2016; 87 Li (10.1016/j.surfcoat.2021.127380_bb0115) 2019; 156 Majzoobi (10.1016/j.surfcoat.2021.127380_bb0065) 2017; 328 Ye (10.1016/j.surfcoat.2021.127380_bb0025) 2011; 59 Liu (10.1016/j.surfcoat.2021.127380_bb0100) 2019; 370 Yang (10.1016/j.surfcoat.2021.127380_bb0045) 2013; 43 Sun (10.1016/j.surfcoat.2021.127380_bb0015) 2018; 333 Bertini (10.1016/j.surfcoat.2021.127380_bb0050) 2015; 81 Dekhtyar (10.1016/j.surfcoat.2021.127380_bb0055) 2015; 641 Zhao (10.1016/j.surfcoat.2021.127380_bb0110) 2019; 121 Li (10.1016/j.surfcoat.2021.127380_bb0170) 2021; 293 Liu (10.1016/j.surfcoat.2021.127380_bb0090) 2020; 399 Long (10.1016/j.surfcoat.2021.127380_bb0140) 2016; 676 Xu (10.1016/j.surfcoat.2021.127380_bb0145) 2019; 752 Li (10.1016/j.surfcoat.2021.127380_bb0085) 2016; 389 Dang (10.1016/j.surfcoat.2021.127380_bb0005) 2021; 61 Aggarwal (10.1016/j.surfcoat.2021.127380_bb0020) 2006; 220 Kattoura (10.1016/j.surfcoat.2021.127380_bb0035) 2017; 102 Ye (10.1016/j.surfcoat.2021.127380_bb0150) 2014; 613 Sweeney (10.1016/j.surfcoat.2021.127380_bb0030) 2014; 78 Zhang (10.1016/j.surfcoat.2021.127380_bb0105) 2017; 321 Li (10.1016/j.surfcoat.2021.127380_bb0135) 2008; 43 Zhang (10.1016/j.surfcoat.2021.127380_bb0075) 2009; 31 Lu (10.1016/j.surfcoat.2021.127380_bb0160) 2009; 324 Xu (10.1016/j.surfcoat.2021.127380_bb0060) 2018; 111 Liu (10.1016/j.surfcoat.2021.127380_bb0165) 2016; 685 Suh (10.1016/j.surfcoat.2021.127380_bb0180) 2007; 443 Tong (10.1016/j.surfcoat.2021.127380_bb0200) 2020; 285 |
References_xml | – volume: 328 start-page: 292 year: 2017 end-page: 303 ident: bb0065 article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading publication-title: Surf. Coat. Technol. – volume: 600 start-page: 21 year: 2014 end-page: 31 ident: bb0080 article-title: Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation publication-title: Mater. Sci. Eng. A – volume: 397 year: 2020 ident: bb0125 article-title: The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel publication-title: Surf. Coat. Technol. – volume: 641 start-page: 348 year: 2015 end-page: 359 ident: bb0055 article-title: Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment publication-title: Mater. Sci. Eng. A – volume: 333 start-page: 210 year: 2018 end-page: 219 ident: bb0015 article-title: In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates publication-title: Surf. Coat. Technol. – volume: 59 start-page: 1014 year: 2011 end-page: 1025 ident: bb0025 article-title: Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening publication-title: Acta Mater. – volume: 87 start-page: 2533 year: 2016 end-page: 2539 ident: bb0095 article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process publication-title: Int. J. Adv. Manuf. Technol. – volume: 78 start-page: 341 year: 2014 end-page: 353 ident: bb0030 article-title: Strain-gradient modelling of grain size effects on fatigue of CoCr alloy publication-title: Acta Mater. – volume: 370 start-page: 24 year: 2019 end-page: 34 ident: bb0100 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf. Coat. Technol. – volume: 131 year: 2020 ident: bb0010 article-title: High cycle fatigue behavior of hard turned 300 M ultra-high strength steel publication-title: Int. J. Fatigue – volume: 685 start-page: 186 year: 2016 end-page: 193 ident: bb0165 article-title: Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening publication-title: J. Alloys Compd. – volume: 552 start-page: 359 year: 2012 end-page: 363 ident: bb0190 article-title: Toughened austenitic stainless steel by surface severe plastic deformation publication-title: Mater. Sci. Eng. A – volume: 293 year: 2021 ident: bb0170 article-title: Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite publication-title: J. Mater. Process. Technol. – volume: 785 year: 2020 ident: bb0130 article-title: Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors publication-title: Mater. Sci. Eng. A – volume: 102 start-page: 121 year: 2017 end-page: 134 ident: bb0035 article-title: Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy publication-title: Int. J. Fatigue – volume: 576 start-page: 346 year: 2013 end-page: 355 ident: bb0155 article-title: Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy publication-title: Mater. Sci. Eng. A – volume: 121 start-page: 30 year: 2019 end-page: 38 ident: bb0110 article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process publication-title: Int. J. Fatigue – volume: 389 start-page: 324 year: 2016 end-page: 334 ident: bb0085 article-title: Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy publication-title: Appl. Surf. Sci. – volume: 207 start-page: 135 year: 2012 end-page: 142 ident: bb0175 article-title: Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification publication-title: Surf. Coat. Technol. – volume: 43 start-page: 454 year: 2013 end-page: 459 ident: bb0045 article-title: Influences of surface grain size and gradient variation along depth on fatigue life of metallic materials publication-title: Mater. Des. – volume: 285 year: 2020 ident: bb0120 article-title: Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel publication-title: J. Mater. Process. Technol. – volume: 31 start-page: 889 year: 2009 end-page: 893 ident: bb0075 article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature publication-title: Int. J. Fatigue – volume: 285 start-page: 116806 year: 2020 ident: bb0200 article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening publication-title: J. Mater. Process. Technol. – volume: 59 start-page: 3697 year: 2011 end-page: 3709 ident: bb0195 article-title: The influence of strain rate on the microstructure transition of 304 stainless steel publication-title: Acta Mater. – volume: 156 year: 2019 ident: bb0115 article-title: Deformation behaviour and texture evolution of martensite steel subjected to hard milling publication-title: Mater. Charact. – volume: 752 start-page: 167 year: 2019 end-page: 179 ident: bb0145 article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V publication-title: Mater. Sci. Eng. A – volume: 399 year: 2020 ident: bb0090 article-title: Plain fatigue and fretting fatigue behaviors of 17-4PH steel subjected to ultrasonic surface rolling process: a comparative study publication-title: Surf. Coat. Technol. – volume: 443 start-page: 101 year: 2007 end-page: 106 ident: bb0180 article-title: Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology publication-title: Mater. Sci. Eng. A – volume: 43 start-page: 7148 year: 2008 end-page: 7156 ident: bb0135 article-title: Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets publication-title: J. Mater. Sci. – volume: 111 start-page: 196 year: 2018 end-page: 207 ident: bb0060 article-title: The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes publication-title: Int. J. Fatigue – volume: 220 start-page: 1325 year: 2006 end-page: 1331 ident: bb0020 article-title: Effect of surface roughness on the fretting fatigue behaviour of EN45A spring steel publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. – volume: 324 start-page: 349 year: 2009 ident: bb0160 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science – volume: 613 start-page: 274 year: 2014 end-page: 288 ident: bb0150 article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater. Sci. Eng. A – volume: 81 start-page: 179 year: 2015 end-page: 190 ident: bb0050 article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling publication-title: Int. J. Fatigue – volume: 57 start-page: 604 year: 2002 end-page: 608 ident: bb0070 article-title: Enhancement of fatigue strength of SAE 9245 steel by shot peening publication-title: Mater. Lett. – volume: 321 start-page: 64 year: 2017 end-page: 73 ident: bb0105 article-title: Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology publication-title: Surf. Coat. Technol. – volume: 61 start-page: 1 year: 2021 end-page: 14 ident: bb0005 article-title: Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process publication-title: J. Manuf. Process. – volume: 676 start-page: 38 year: 2016 end-page: 47 ident: bb0140 article-title: Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 734 year: 2014 end-page: 741 ident: bb0040 article-title: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening publication-title: Mater. Des. (1980-2015) – volume: 129 start-page: 1096 year: 2011 end-page: 1103 ident: bb0185 article-title: Introducing a hierarchical structure for fabrication of a high performance steel publication-title: Mater. Chem. Phys. – volume: 370 start-page: 24 year: 2019 ident: 10.1016/j.surfcoat.2021.127380_bb0100 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.04.080 – volume: 613 start-page: 274 year: 2014 ident: 10.1016/j.surfcoat.2021.127380_bb0150 article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.06.114 – volume: 129 start-page: 1096 issue: 3 year: 2011 ident: 10.1016/j.surfcoat.2021.127380_bb0185 article-title: Introducing a hierarchical structure for fabrication of a high performance steel publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.05.068 – volume: 78 start-page: 341 year: 2014 ident: 10.1016/j.surfcoat.2021.127380_bb0030 article-title: Strain-gradient modelling of grain size effects on fatigue of CoCr alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.06.044 – volume: 321 start-page: 64 year: 2017 ident: 10.1016/j.surfcoat.2021.127380_bb0105 article-title: Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.04.052 – volume: 752 start-page: 167 year: 2019 ident: 10.1016/j.surfcoat.2021.127380_bb0145 article-title: Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.03.011 – volume: 324 start-page: 349 issue: 5925 year: 2009 ident: 10.1016/j.surfcoat.2021.127380_bb0160 article-title: Strengthening materials by engineering coherent internal boundaries at the nanoscale publication-title: Science doi: 10.1126/science.1159610 – volume: 285 start-page: 116806 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0200 article-title: Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116806 – volume: 54 start-page: 734 year: 2014 ident: 10.1016/j.surfcoat.2021.127380_bb0040 article-title: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening publication-title: Mater. Des. (1980-2015) doi: 10.1016/j.matdes.2013.08.104 – volume: 600 start-page: 21 year: 2014 ident: 10.1016/j.surfcoat.2021.127380_bb0080 article-title: Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.01.096 – volume: 111 start-page: 196 year: 2018 ident: 10.1016/j.surfcoat.2021.127380_bb0060 article-title: The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.02.022 – volume: 785 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0130 article-title: Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139375 – volume: 156 year: 2019 ident: 10.1016/j.surfcoat.2021.127380_bb0115 article-title: Deformation behaviour and texture evolution of martensite steel subjected to hard milling publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109881 – volume: 59 start-page: 1014 issue: 3 year: 2011 ident: 10.1016/j.surfcoat.2021.127380_bb0025 article-title: Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.032 – volume: 31 start-page: 889 issue: 5 year: 2009 ident: 10.1016/j.surfcoat.2021.127380_bb0075 article-title: Effect of shot peening on fretting fatigue of Ti811 alloy at elevated temperature publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2008.10.004 – volume: 285 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0120 article-title: Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116767 – volume: 328 start-page: 292 year: 2017 ident: 10.1016/j.surfcoat.2021.127380_bb0065 article-title: On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.08.067 – volume: 443 start-page: 101 issue: 1 year: 2007 ident: 10.1016/j.surfcoat.2021.127380_bb0180 article-title: Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.08.066 – volume: 131 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0010 article-title: High cycle fatigue behavior of hard turned 300 M ultra-high strength steel publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.105380 – volume: 552 start-page: 359 year: 2012 ident: 10.1016/j.surfcoat.2021.127380_bb0190 article-title: Toughened austenitic stainless steel by surface severe plastic deformation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.05.052 – volume: 399 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0090 article-title: Plain fatigue and fretting fatigue behaviors of 17-4PH steel subjected to ultrasonic surface rolling process: a comparative study publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126196 – volume: 220 start-page: 1325 issue: 8 year: 2006 ident: 10.1016/j.surfcoat.2021.127380_bb0020 article-title: Effect of surface roughness on the fretting fatigue behaviour of EN45A spring steel publication-title: Proc. Inst. Mech. Eng. B J. Eng. Manuf. doi: 10.1243/09544054JEM299 – volume: 397 year: 2020 ident: 10.1016/j.surfcoat.2021.127380_bb0125 article-title: The effect of electropulsing-assisted ultrasonic nanocrystal surface modification on the microstructure and properties of 300M steel publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125994 – volume: 61 start-page: 1 year: 2021 ident: 10.1016/j.surfcoat.2021.127380_bb0005 article-title: Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.11.001 – volume: 87 start-page: 2533 issue: 9 year: 2016 ident: 10.1016/j.surfcoat.2021.127380_bb0095 article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8659-4 – volume: 333 start-page: 210 year: 2018 ident: 10.1016/j.surfcoat.2021.127380_bb0015 article-title: In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.10.080 – volume: 121 start-page: 30 year: 2019 ident: 10.1016/j.surfcoat.2021.127380_bb0110 article-title: Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.11.017 – volume: 641 start-page: 348 year: 2015 ident: 10.1016/j.surfcoat.2021.127380_bb0055 article-title: Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.06.072 – volume: 81 start-page: 179 year: 2015 ident: 10.1016/j.surfcoat.2021.127380_bb0050 article-title: Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2015.08.007 – volume: 57 start-page: 604 issue: 3 year: 2002 ident: 10.1016/j.surfcoat.2021.127380_bb0070 article-title: Enhancement of fatigue strength of SAE 9245 steel by shot peening publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)00838-8 – volume: 293 year: 2021 ident: 10.1016/j.surfcoat.2021.127380_bb0170 article-title: Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2021.117068 – volume: 43 start-page: 7148 issue: 22 year: 2008 ident: 10.1016/j.surfcoat.2021.127380_bb0135 article-title: Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-3021-3 – volume: 102 start-page: 121 year: 2017 ident: 10.1016/j.surfcoat.2021.127380_bb0035 article-title: Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.04.016 – volume: 576 start-page: 346 year: 2013 ident: 10.1016/j.surfcoat.2021.127380_bb0155 article-title: Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.04.021 – volume: 389 start-page: 324 year: 2016 ident: 10.1016/j.surfcoat.2021.127380_bb0085 article-title: Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.120 – volume: 207 start-page: 135 year: 2012 ident: 10.1016/j.surfcoat.2021.127380_bb0175 article-title: Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.06.046 – volume: 43 start-page: 454 year: 2013 ident: 10.1016/j.surfcoat.2021.127380_bb0045 article-title: Influences of surface grain size and gradient variation along depth on fatigue life of metallic materials publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.07.026 – volume: 59 start-page: 3697 issue: 9 year: 2011 ident: 10.1016/j.surfcoat.2021.127380_bb0195 article-title: The influence of strain rate on the microstructure transition of 304 stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.03.005 – volume: 676 start-page: 38 year: 2016 ident: 10.1016/j.surfcoat.2021.127380_bb0140 article-title: Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.065 – volume: 685 start-page: 186 year: 2016 ident: 10.1016/j.surfcoat.2021.127380_bb0165 article-title: Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.05.295 |
SSID | ssj0001794 |
Score | 2.610283 |
Snippet | In this work, the influences of ultrasonic surface rolling process (USRP) on the surface integrity and wear resistance of 300M steel samples were... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127380 |
SubjectTerms | 300M steel Compressive properties Grain refinement Integrity Microhardness Nickel chromium molybdenum steels Residual stress Skin pass rolling Surface hardness Surface integrity Surface layers Surface roughness Ultrafines Ultrasonic surface rolling process Wear resistance Work hardening |
Title | Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process |
URI | https://dx.doi.org/10.1016/j.surfcoat.2021.127380 https://www.proquest.com/docview/2573515284 |
Volume | 421 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPagH8YnPkoPXtdnNZrc5SrFURS8qeAt5QqW0pd3izd_upJsVFcSDxwRmdpmZfDMJ8wC4yDOLfrygieOeJjk3LNHUFrh03vesF241DOb-oRg-57cv_KUF_aYWJqRVRuyvMX2F1nGnG6XZnY1G3UcarE2UGV5aKDpFvgbrGRMFb8P61c3d8OETkIPNrZ5aOAIyEnwpFH5FiJp7M1UhrTJLL9NQqUJ_81E_0HrlggY7sB1jR3JV_94utNxkDzb6zci2Pdj60l1wH9QjflQZR-qWEBhuEzWx5A1tmzTV-WTqCaP0nqCy3Zgsljq8yzhLqilZjqu5WoTWuWQROc3rFt5kVpcXHMDz4PqpP0ziRIXEZCWtklwxbXVRlqnQOfouihrRGLgK3BNGMMtUCKJSBPDC9JTWBbN4dy4V56YnOGWH0J5MJ-4IiHdWUZ0LTzXNSzzILs2MZ94gP4xa0mPgjQylie3Gw9SLsWzyyl5lI3sZZC9r2R9D95NuVjfc-JNCNCqS30xHolf4k_as0amMh3ch0U4YhnnouE_-wfoUNsMq5Jak_Aza1XzpzjGAqXQH1i7f00400w9pRPCq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VGIAB8RTl6YE11InjpB5RBSrQsgASm-WnBKraqk3Fxm_nnAcvCTEwxomd6O7yfWfrHgBnaWKRxzMaOe5plHLDIk1thpfO-671wpXNYIZ3Wf8xvXniTy3oNbkwIayyxv4K00u0rkc6tTQ70-fnzj0N1ibyBDctFEmRL8FKylke4vrO3z7jPILFlQctHOEYH_-SJvyCADXzZqJCUGUSn8chT4X-xlA_sLokoKtN2Kg9R3JRfdwWtNx4G1Z7TcO2bVj_UltwB9Q9vlQZR6qCEOhsEzW25BUtmzS5-WTiCaN0SFDVbkTmCx1OZZwlxYQsRsVMzUPhXDKvV5pVBbzJtEou2IXHq8uHXj-q-ylEJslpEaWKaauzPI-FTpG5KOpDo9sqcEwYwSxTwYWKEb4z01VaZ8zizjlXnJuu4JTtwfJ4Mnb7QLyziupUeKppmuNv7OLEeOYNroc-S9wG3shQmrrYeOh5MZJNVNmLbGQvg-xlJfs2dD7mTatyG3_OEI2K5DfDkcgJf849anQq6193LtFOGDp5SNsH_1j6FFb7D8OBHFzf3R7CWrgTokxifgTLxWzhjtGVKfRJaarvcujxdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+integrity+and+wear+behavior+of+300M+steel+subjected+to+ultrasonic+surface+rolling+process&rft.jtitle=Surface+%26+coatings+technology&rft.au=Dang%2C+Jiaqiang&rft.au=Zhang%2C+Heng&rft.au=An%2C+Qinglong&rft.au=Lian%2C+Guohui&rft.date=2021-09-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=421&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.127380&rft.externalDocID=S0257897221005545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |