A general framework for whiteness-based parameters selection in variational models

In this work, we extend the residual whiteness principle , originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scena...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 91; no. 2; pp. 457 - 489
Main Authors Bevilacqua, Francesca, Lanza, Alessandro, Pragliola, Monica, Sgallari, Fiorella
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we extend the residual whiteness principle , originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but whitenable noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as generalized whiteness principle , is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as bilevel derivative-free approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework.
AbstractList In this work, we extend the residual whiteness principle , originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but whitenable noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as generalized whiteness principle , is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as bilevel derivative-free approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework.
In this work, we extend the residual whiteness principle, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but whitenable noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as generalized whiteness principle, is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as bilevel derivative-free approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework.
Author Bevilacqua, Francesca
Sgallari, Fiorella
Lanza, Alessandro
Pragliola, Monica
Author_xml – sequence: 1
  givenname: Francesca
  surname: Bevilacqua
  fullname: Bevilacqua, Francesca
  organization: Department of Mathematics, University of Bologna
– sequence: 2
  givenname: Alessandro
  surname: Lanza
  fullname: Lanza, Alessandro
  organization: Department of Mathematics, University of Bologna
– sequence: 3
  givenname: Monica
  orcidid: 0000-0002-3074-1550
  surname: Pragliola
  fullname: Pragliola, Monica
  email: monica.pragliola@unina.it
  organization: Department of Mathematics and Applications, University of Naples Federico II
– sequence: 4
  givenname: Fiorella
  surname: Sgallari
  fullname: Sgallari, Fiorella
  organization: Department of Mathematics, University of Bologna
BookMark eNp9kEtLw0AQxxepYFv9Ap4WPK_OPrKbHEvxBQVB9Lxsk0lNbbN1J7X47U2N4M3TMPwfzPwmbNTGFhm7lHAtAdwNScjyQoAyAsDKTKgTNpaZ00LlhRmxMRTKCgugz9iEaA0AhdNqzJ5nfIUtprDhdQpbPMT0zuuY-OGt6XqBSCwDYcV34Sh3mIgTbrDsmtjypuWfITXhuPQN21jhhs7ZaR02hBe_c8pe725f5g9i8XT_OJ8tRKkcdMLYUMi8RrAYrLFVjbZQahlsrh1obVwmbVlJ0CjLIjdSBlk5lwVVQ1W63Ogpuxp6dyl-7JE6v4771N9BXivIrNF5_--UqcFVpkiUsPa71GxD-vIS_JGdH9j5np3_YedVH9JDiHpzu8L0V_1P6hvo8nMn
Cites_doi 10.1016/0167-2789(92)90242-F
10.1137/1.9780898719697
10.1017/S0962492919000060
10.1088/0266-5611/30/5/055004
10.3390/jimaging7060099
10.1137/20M1377199
10.1109/TIP.2013.2257810
10.3390/jimaging8010001
10.1561/2000000111
10.1137/21M1410683
10.1007/s10543-021-00901-z
10.1137/090769521
10.1561/2200000016
10.1109/TVCG.2017.2769050
10.1016/j.apm.2022.12.018
10.1023/A:1013735414984
10.1007/BF01581204
10.1553/etna_vol59s202
10.1007/s10851-022-01110-1
10.1088/1361-6420/acb0f7
10.23919/EUSIPCO63174.2024.10715121
10.1553/etna_vol53s329
10.1137/21M1455887
10.1364/OE.24.025129
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10589-024-00615-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 489
ExternalDocumentID 10_1007_s10589_024_00615_2
GrantInformation_xml – fundername: Istituto Nazionale di Alta Matematica “Francesco Severi”
  funderid: http://dx.doi.org/10.13039/100009112
– fundername: Universitá degli Studi di Napoli Federico II
  funderid: http://dx.doi.org/10.13039/100007195
– fundername: Gruppo Nazionale per il Calcolo Scientifico
  funderid: http://dx.doi.org/10.13039/100017142
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-46a918fe06ea646dfe6922ba683703347516cd103e1c98411a1d775a2f0dc7843
IEDL.DBID U2A
ISSN 0926-6003
IngestDate Sat Aug 16 19:51:14 EDT 2025
Tue Jul 01 04:48:00 EDT 2025
Sun May 18 01:10:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Whiteness principle
Bilevel optimization
Variational models
Derivative free methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-46a918fe06ea646dfe6922ba683703347516cd103e1c98411a1d775a2f0dc7843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3074-1550
PQID 3205643800
PQPubID 30811
PageCount 33
ParticipantIDs proquest_journals_3205643800
crossref_primary_10_1007_s10589_024_00615_2
springer_journals_10_1007_s10589_024_00615_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References H Hristova (615_CR13) 2018; 24
615_CR5
615_CR15
A Lanza (615_CR12) 2021; 62
M Pragliola (615_CR27) 2023; 65
M Pragliola (615_CR4) 2023; 65
615_CR6
VA Morozov (615_CR1) 1966; 167
A Lanza (615_CR3) 2020; 53
F Bevilacqua (615_CR16) 2022; 8
L Bogensperger (615_CR19) 2022; 4
PC Hansen (615_CR2) 1998
Z Wang (615_CR22) 2004; 4
F Bevilacqua (615_CR9) 2023; 117
D di Serafino (615_CR24) 2021
A Chambolle (615_CR18) 2021; 14
615_CR26
K Bredies (615_CR17) 2010; 3
MSC Almeida (615_CR11) 2013; 22
615_CR25
F Bevilacqua (615_CR10) 2023; 39
S Boyd (615_CR23) 2011; 3
J Eckstein (615_CR14) 1992; 55
J Larson (615_CR20) 2019; 28
S Lucidi (615_CR21) 2002; 21
LI Rudin (615_CR7) 1992; 60
A Lanza (615_CR8) 2023; 59
References_xml – volume: 60
  start-page: 259
  year: 1992
  ident: 615_CR7
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– year: 1998
  ident: 615_CR2
  publication-title: Soc. Indus. Appl. Math.
  doi: 10.1137/1.9780898719697
– volume: 28
  start-page: 287
  year: 2019
  ident: 615_CR20
  publication-title: Acta Numer.
  doi: 10.1017/S0962492919000060
– ident: 615_CR15
  doi: 10.1088/0266-5611/30/5/055004
– year: 2021
  ident: 615_CR24
  publication-title: J. Imag.
  doi: 10.3390/jimaging7060099
– volume: 14
  start-page: 778
  issue: 2
  year: 2021
  ident: 615_CR18
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/20M1377199
– volume: 22
  start-page: 2751
  year: 2013
  ident: 615_CR11
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2257810
– ident: 615_CR25
– volume: 8
  start-page: 1
  year: 2022
  ident: 615_CR16
  publication-title: J. Imag.
  doi: 10.3390/jimaging8010001
– ident: 615_CR5
  doi: 10.1561/2000000111
– volume: 65
  start-page: 601
  issue: 3
  year: 2023
  ident: 615_CR27
  publication-title: SIAM Rev.
  doi: 10.1137/21M1410683
– volume: 62
  start-page: 931
  year: 2021
  ident: 615_CR12
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-021-00901-z
– volume: 3
  start-page: 492
  year: 2010
  ident: 615_CR17
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/090769521
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 615_CR23
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 24
  start-page: 2813
  issue: 10
  year: 2018
  ident: 615_CR13
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2017.2769050
– volume: 117
  start-page: 197
  year: 2023
  ident: 615_CR9
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.12.018
– volume: 21
  start-page: 119
  issue: 2
  year: 2002
  ident: 615_CR21
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013735414984
– volume: 55
  start-page: 293
  year: 1992
  ident: 615_CR14
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– volume: 59
  start-page: 202
  year: 2023
  ident: 615_CR8
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol59s202
– volume: 65
  start-page: 99
  year: 2023
  ident: 615_CR4
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-022-01110-1
– volume: 39
  year: 2023
  ident: 615_CR10
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/acb0f7
– ident: 615_CR6
  doi: 10.23919/EUSIPCO63174.2024.10715121
– volume: 53
  start-page: 329
  year: 2020
  ident: 615_CR3
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol53s329
– volume: 4
  start-page: 1003
  issue: 3
  year: 2022
  ident: 615_CR19
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/21M1455887
– ident: 615_CR26
  doi: 10.1364/OE.24.025129
– volume: 4
  start-page: 600
  year: 2004
  ident: 615_CR22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 167
  start-page: 510
  year: 1966
  ident: 615_CR1
  publication-title: Dokl. Akad. Nauk SSSR
SSID ssj0009732
Score 2.411332
Snippet In this work, we extend the residual whiteness principle , originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection...
In this work, we extend the residual whiteness principle, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 457
SubjectTerms Algorithms
Convex and Discrete Geometry
Inverse problems
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Parameters
Regularization
Regularization methods
Smoothness
Statistics
White noise
Title A general framework for whiteness-based parameters selection in variational models
URI https://link.springer.com/article/10.1007/s10589-024-00615-2
https://www.proquest.com/docview/3205643800
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQu5QBQQFRKJUHNrBkO46djClqqUDtgKhUpsgfCWIgIFLg72M7CSkIBqYoH_Lw7Nw7--7eAXAW2cfGEgUSkRaISeWChDRHTBmpSJhL7cuj5ws-W7LrVbiqi8LKJtu9CUl6S71R7Ba69B7KkOdhZA1vN7R7d5fItaRJK7UrfFsyHFOOLJ0HdanM72N8p6PWx_wRFvVsM90FO7WbCJNqXvfAVlb0wfaGeKC9m38prpZ90HNeYyW6vA9uE_hQyUnDvEm-gtY7hR8uaOCMG3LsZaAT_n5yCTElLH1DHDtL8LGA73YHXZ8SQt8rpzwAy-nk7nKG6uYJSFOB14hxGZMozzDPJGfc5BmPKVWSO7WbIGAiJFwbgoOM6DhihEhihAglzbHRImLBIegUz0V2BCAlmmAljciNZEaxyG2zRIx1rJkihA_AeYNh-lJpZKStGrJDPLWIpx7xlA7AsIE5rf-XMg2odcSc-D0egIsG-vb136Md_-_zE9CjroGvP0YZgs769S07tV7FWo1AN5mOxwt3vbq_mYz8ovoEw-nF5w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDJQBQQFRKOCBDSzZjmMnY4WoCrQdUCt1s_yRIAYCIgX-PraTkIJgYMyHPJzte8--u3cAnCfutXVAgURiBGJK-yAhzRHTVmkS58qE8ujJlI_m7HYRL-qisLLJdm9CksFTrxS7xT69hzIUcBg5x7vhyEDi1_KcDlqpXRHakuGUcuTgPKpLZX4f4zsctRzzR1g0oM1wB2zXNBEOqnndBWtZ0QVbK-KB7mnypbhadkHHs8ZKdHkP3A_gQyUnDfMm-Qo6dgo_fNDAOzfk0ctCL_z95BNiSliGhjhuluBjAd_dCbq-JYShV065D-bD69nVCNXNE5ChAi8R4yolSZ5hninOuM0znlKqFfdqN1HEREy4sQRHGTFpwghRxAoRK5pja0TCogOwXjwX2SGAlBiCtbIit4pZzRJ_zBIpNqlhmhDeAxeNDeVLpZEhWzVkb3HpLC6DxSXtgX5jZlnvl1JG1BExL36Pe-CyMX37-e_Rjv73-xnYHM0mYzm-md4dgw71zXzDlUofrC9f37ITxzCW-jQsqE_VOsXK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkVAZEBQQhQIe2MBq7Dh2MlZAVR6tEKJSN8uPBDEQKhLg72M7CS0IBsY85OHO9nf23fcdACexfW0sUCAea46oVC5JSDJElZEKR5nUnh49nrDRlF7PotkSi99XuzcpyYrT4FSa8rI_N1l_ifgWuVIfQpHHZGQ34VXq2MB2Rk_JYCG7y32LsiAhDFloD2vazO9jfIemRbz5I0XqkWe4CTbqkBEOKh9vgZU074D1JSFB-zT-Ul8tOqDtIshKgHkb3A_gYyUtDbOmEAvaSBV-uASC2-iQQzIDnQj4syuOKWDhm-NYj8GnHL7b03R9Ywh935xiB0yHlw_nI1Q3UkCa8KBElMkEx1kasFQyykyWsoQQJZlTvglDyiPMtMFBmGKdxBRjiQ3nkSRZYDSPabgLWvlLnu4BSLDGgZKGZ0ZSo2jsjlw8CXSiqcKYdcFpY0Mxr_QyxEIZ2VlcWIsLb3FBuqDXmFnUa6cQ1osRc0L4QRecNaZffP57tP3__X4M1u4uhuL2anJzANrE9fX1tys90Cpf39JDG2yU6sjPp0-CQcn9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+whiteness-based+parameters+selection+in+variational+models&rft.jtitle=Computational+optimization+and+applications&rft.au=Bevilacqua%2C+Francesca&rft.au=Lanza%2C+Alessandro&rft.au=Pragliola%2C+Monica&rft.au=Sgallari%2C+Fiorella&rft.date=2025-06-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=91&rft.issue=2&rft.spage=457&rft.epage=489&rft_id=info:doi/10.1007%2Fs10589-024-00615-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00615_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon