A general framework for whiteness-based parameters selection in variational models
In this work, we extend the residual whiteness principle , originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scena...
Saved in:
Published in | Computational optimization and applications Vol. 91; no. 2; pp. 457 - 489 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we extend the
residual whiteness principle
, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but
whitenable
noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as
generalized whiteness principle
, is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as
bilevel derivative-free
approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework. |
---|---|
AbstractList | In this work, we extend the
residual whiteness principle
, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but
whitenable
noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as
generalized whiteness principle
, is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as
bilevel derivative-free
approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework. In this work, we extend the residual whiteness principle, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection of a single regularization parameter in variational models for inverse problems under additive white noise corruption, to much broader scenarios. More specifically, we address the problem of estimating multiple parameters for imaging inverse problems subject to both white and non-white but whitenable noise corruptions, thus covering most of the application cases. The proposed parameter selection criterion, referred to as generalized whiteness principle, is formulated as a bilevel optimization problem. To circumvent the non-smoothness of the variational models typically employed in imaging problems—the non-smoothness representing a bottleneck in the bilevel set-up—we propose to adopt a derivative-free minimization algorithm for the solution of the designed bilevel problem. We refer to this novel numerical solution paradigm as bilevel derivative-free approach. Numerical tests highlight both the ability of the proposed generalized whiteness principle to effectively select multiple parameters and the significant advantages, in terms of computational cost, of the bilevel derivative-free numerical solution framework. |
Author | Bevilacqua, Francesca Sgallari, Fiorella Lanza, Alessandro Pragliola, Monica |
Author_xml | – sequence: 1 givenname: Francesca surname: Bevilacqua fullname: Bevilacqua, Francesca organization: Department of Mathematics, University of Bologna – sequence: 2 givenname: Alessandro surname: Lanza fullname: Lanza, Alessandro organization: Department of Mathematics, University of Bologna – sequence: 3 givenname: Monica orcidid: 0000-0002-3074-1550 surname: Pragliola fullname: Pragliola, Monica email: monica.pragliola@unina.it organization: Department of Mathematics and Applications, University of Naples Federico II – sequence: 4 givenname: Fiorella surname: Sgallari fullname: Sgallari, Fiorella organization: Department of Mathematics, University of Bologna |
BookMark | eNp9kEtLw0AQxxepYFv9Ap4WPK_OPrKbHEvxBQVB9Lxsk0lNbbN1J7X47U2N4M3TMPwfzPwmbNTGFhm7lHAtAdwNScjyQoAyAsDKTKgTNpaZ00LlhRmxMRTKCgugz9iEaA0AhdNqzJ5nfIUtprDhdQpbPMT0zuuY-OGt6XqBSCwDYcV34Sh3mIgTbrDsmtjypuWfITXhuPQN21jhhs7ZaR02hBe_c8pe725f5g9i8XT_OJ8tRKkcdMLYUMi8RrAYrLFVjbZQahlsrh1obVwmbVlJ0CjLIjdSBlk5lwVVQ1W63Ogpuxp6dyl-7JE6v4771N9BXivIrNF5_--UqcFVpkiUsPa71GxD-vIS_JGdH9j5np3_YedVH9JDiHpzu8L0V_1P6hvo8nMn |
Cites_doi | 10.1016/0167-2789(92)90242-F 10.1137/1.9780898719697 10.1017/S0962492919000060 10.1088/0266-5611/30/5/055004 10.3390/jimaging7060099 10.1137/20M1377199 10.1109/TIP.2013.2257810 10.3390/jimaging8010001 10.1561/2000000111 10.1137/21M1410683 10.1007/s10543-021-00901-z 10.1137/090769521 10.1561/2200000016 10.1109/TVCG.2017.2769050 10.1016/j.apm.2022.12.018 10.1023/A:1013735414984 10.1007/BF01581204 10.1553/etna_vol59s202 10.1007/s10851-022-01110-1 10.1088/1361-6420/acb0f7 10.23919/EUSIPCO63174.2024.10715121 10.1553/etna_vol53s329 10.1137/21M1455887 10.1364/OE.24.025129 10.1109/TIP.2003.819861 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10589-024-00615-2 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 489 |
ExternalDocumentID | 10_1007_s10589_024_00615_2 |
GrantInformation_xml | – fundername: Istituto Nazionale di Alta Matematica “Francesco Severi” funderid: http://dx.doi.org/10.13039/100009112 – fundername: Universitá degli Studi di Napoli Federico II funderid: http://dx.doi.org/10.13039/100007195 – fundername: Gruppo Nazionale per il Calcolo Scientifico funderid: http://dx.doi.org/10.13039/100017142 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ~8M ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-46a918fe06ea646dfe6922ba683703347516cd103e1c98411a1d775a2f0dc7843 |
IEDL.DBID | U2A |
ISSN | 0926-6003 |
IngestDate | Sat Aug 16 19:51:14 EDT 2025 Tue Jul 01 04:48:00 EDT 2025 Sun May 18 01:10:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Whiteness principle Bilevel optimization Variational models Derivative free methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-46a918fe06ea646dfe6922ba683703347516cd103e1c98411a1d775a2f0dc7843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3074-1550 |
PQID | 3205643800 |
PQPubID | 30811 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3205643800 crossref_primary_10_1007_s10589_024_00615_2 springer_journals_10_1007_s10589_024_00615_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250600 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | H Hristova (615_CR13) 2018; 24 615_CR5 615_CR15 A Lanza (615_CR12) 2021; 62 M Pragliola (615_CR27) 2023; 65 M Pragliola (615_CR4) 2023; 65 615_CR6 VA Morozov (615_CR1) 1966; 167 A Lanza (615_CR3) 2020; 53 F Bevilacqua (615_CR16) 2022; 8 L Bogensperger (615_CR19) 2022; 4 PC Hansen (615_CR2) 1998 Z Wang (615_CR22) 2004; 4 F Bevilacqua (615_CR9) 2023; 117 D di Serafino (615_CR24) 2021 A Chambolle (615_CR18) 2021; 14 615_CR26 K Bredies (615_CR17) 2010; 3 MSC Almeida (615_CR11) 2013; 22 615_CR25 F Bevilacqua (615_CR10) 2023; 39 S Boyd (615_CR23) 2011; 3 J Eckstein (615_CR14) 1992; 55 J Larson (615_CR20) 2019; 28 S Lucidi (615_CR21) 2002; 21 LI Rudin (615_CR7) 1992; 60 A Lanza (615_CR8) 2023; 59 |
References_xml | – volume: 60 start-page: 259 year: 1992 ident: 615_CR7 publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – year: 1998 ident: 615_CR2 publication-title: Soc. Indus. Appl. Math. doi: 10.1137/1.9780898719697 – volume: 28 start-page: 287 year: 2019 ident: 615_CR20 publication-title: Acta Numer. doi: 10.1017/S0962492919000060 – ident: 615_CR15 doi: 10.1088/0266-5611/30/5/055004 – year: 2021 ident: 615_CR24 publication-title: J. Imag. doi: 10.3390/jimaging7060099 – volume: 14 start-page: 778 issue: 2 year: 2021 ident: 615_CR18 publication-title: SIAM J. Imag. Sci. doi: 10.1137/20M1377199 – volume: 22 start-page: 2751 year: 2013 ident: 615_CR11 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2257810 – ident: 615_CR25 – volume: 8 start-page: 1 year: 2022 ident: 615_CR16 publication-title: J. Imag. doi: 10.3390/jimaging8010001 – ident: 615_CR5 doi: 10.1561/2000000111 – volume: 65 start-page: 601 issue: 3 year: 2023 ident: 615_CR27 publication-title: SIAM Rev. doi: 10.1137/21M1410683 – volume: 62 start-page: 931 year: 2021 ident: 615_CR12 publication-title: BIT Numer. Math. doi: 10.1007/s10543-021-00901-z – volume: 3 start-page: 492 year: 2010 ident: 615_CR17 publication-title: SIAM J. Imag. Sci. doi: 10.1137/090769521 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 615_CR23 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 24 start-page: 2813 issue: 10 year: 2018 ident: 615_CR13 publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2017.2769050 – volume: 117 start-page: 197 year: 2023 ident: 615_CR9 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.12.018 – volume: 21 start-page: 119 issue: 2 year: 2002 ident: 615_CR21 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1013735414984 – volume: 55 start-page: 293 year: 1992 ident: 615_CR14 publication-title: Math. Program. doi: 10.1007/BF01581204 – volume: 59 start-page: 202 year: 2023 ident: 615_CR8 publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol59s202 – volume: 65 start-page: 99 year: 2023 ident: 615_CR4 publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-022-01110-1 – volume: 39 year: 2023 ident: 615_CR10 publication-title: Inverse Problems doi: 10.1088/1361-6420/acb0f7 – ident: 615_CR6 doi: 10.23919/EUSIPCO63174.2024.10715121 – volume: 53 start-page: 329 year: 2020 ident: 615_CR3 publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol53s329 – volume: 4 start-page: 1003 issue: 3 year: 2022 ident: 615_CR19 publication-title: SIAM J. Math. Data Sci. doi: 10.1137/21M1455887 – ident: 615_CR26 doi: 10.1364/OE.24.025129 – volume: 4 start-page: 600 year: 2004 ident: 615_CR22 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 167 start-page: 510 year: 1966 ident: 615_CR1 publication-title: Dokl. Akad. Nauk SSSR |
SSID | ssj0009732 |
Score | 2.411332 |
Snippet | In this work, we extend the
residual whiteness principle
, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection... In this work, we extend the residual whiteness principle, originally proposed in (Lanza et al. in Electron Trans Numer Anal 53:329–352 2020) for the selection... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 457 |
SubjectTerms | Algorithms Convex and Discrete Geometry Inverse problems Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Parameters Regularization Regularization methods Smoothness Statistics White noise |
Title | A general framework for whiteness-based parameters selection in variational models |
URI | https://link.springer.com/article/10.1007/s10589-024-00615-2 https://www.proquest.com/docview/3205643800 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQu5QBQQFRKJUHNrBkO46djClqqUDtgKhUpsgfCWIgIFLg72M7CSkIBqYoH_Lw7Nw7--7eAXAW2cfGEgUSkRaISeWChDRHTBmpSJhL7cuj5ws-W7LrVbiqi8LKJtu9CUl6S71R7Ba69B7KkOdhZA1vN7R7d5fItaRJK7UrfFsyHFOOLJ0HdanM72N8p6PWx_wRFvVsM90FO7WbCJNqXvfAVlb0wfaGeKC9m38prpZ90HNeYyW6vA9uE_hQyUnDvEm-gtY7hR8uaOCMG3LsZaAT_n5yCTElLH1DHDtL8LGA73YHXZ8SQt8rpzwAy-nk7nKG6uYJSFOB14hxGZMozzDPJGfc5BmPKVWSO7WbIGAiJFwbgoOM6DhihEhihAglzbHRImLBIegUz0V2BCAlmmAljciNZEaxyG2zRIx1rJkihA_AeYNh-lJpZKStGrJDPLWIpx7xlA7AsIE5rf-XMg2odcSc-D0egIsG-vb136Md_-_zE9CjroGvP0YZgs769S07tV7FWo1AN5mOxwt3vbq_mYz8ovoEw-nF5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDJQBQQFRKOCBDSzZjmMnY4WoCrQdUCt1s_yRIAYCIgX-PraTkIJgYMyHPJzte8--u3cAnCfutXVAgURiBGJK-yAhzRHTVmkS58qE8ujJlI_m7HYRL-qisLLJdm9CksFTrxS7xT69hzIUcBg5x7vhyEDi1_KcDlqpXRHakuGUcuTgPKpLZX4f4zsctRzzR1g0oM1wB2zXNBEOqnndBWtZ0QVbK-KB7mnypbhadkHHs8ZKdHkP3A_gQyUnDfMm-Qo6dgo_fNDAOzfk0ctCL_z95BNiSliGhjhuluBjAd_dCbq-JYShV065D-bD69nVCNXNE5ChAi8R4yolSZ5hninOuM0znlKqFfdqN1HEREy4sQRHGTFpwghRxAoRK5pja0TCogOwXjwX2SGAlBiCtbIit4pZzRJ_zBIpNqlhmhDeAxeNDeVLpZEhWzVkb3HpLC6DxSXtgX5jZlnvl1JG1BExL36Pe-CyMX37-e_Rjv73-xnYHM0mYzm-md4dgw71zXzDlUofrC9f37ITxzCW-jQsqE_VOsXK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkVAZEBQQhQIe2MBq7Dh2MlZAVR6tEKJSN8uPBDEQKhLg72M7CS0IBsY85OHO9nf23fcdACexfW0sUCAea46oVC5JSDJElZEKR5nUnh49nrDRlF7PotkSi99XuzcpyYrT4FSa8rI_N1l_ifgWuVIfQpHHZGQ34VXq2MB2Rk_JYCG7y32LsiAhDFloD2vazO9jfIemRbz5I0XqkWe4CTbqkBEOKh9vgZU074D1JSFB-zT-Ul8tOqDtIshKgHkb3A_gYyUtDbOmEAvaSBV-uASC2-iQQzIDnQj4syuOKWDhm-NYj8GnHL7b03R9Ywh935xiB0yHlw_nI1Q3UkCa8KBElMkEx1kasFQyykyWsoQQJZlTvglDyiPMtMFBmGKdxBRjiQ3nkSRZYDSPabgLWvlLnu4BSLDGgZKGZ0ZSo2jsjlw8CXSiqcKYdcFpY0Mxr_QyxEIZ2VlcWIsLb3FBuqDXmFnUa6cQ1osRc0L4QRecNaZffP57tP3__X4M1u4uhuL2anJzANrE9fX1tys90Cpf39JDG2yU6sjPp0-CQcn9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+framework+for+whiteness-based+parameters+selection+in+variational+models&rft.jtitle=Computational+optimization+and+applications&rft.au=Bevilacqua%2C+Francesca&rft.au=Lanza%2C+Alessandro&rft.au=Pragliola%2C+Monica&rft.au=Sgallari%2C+Fiorella&rft.date=2025-06-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=91&rft.issue=2&rft.spage=457&rft.epage=489&rft_id=info:doi/10.1007%2Fs10589-024-00615-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00615_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |