Proposal for temperature-independent optical sensor based on asymmetric Mach–Zehnder interferometer

An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the opti...

Full description

Saved in:
Bibliographic Details
Published inOptical and quantum electronics Vol. 53; no. 11
Main Authors Luo, Yanxia, Yin, Rui, Ji, Wei, Huang, Qingjie, Cui, Jianmin, Jiang, Shouzhen, Gong, Zisu, Liu, Fengyu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices.
AbstractList An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices.
An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices.
ArticleNumber 623
Author Luo, Yanxia
Yin, Rui
Huang, Qingjie
Gong, Zisu
Cui, Jianmin
Jiang, Shouzhen
Liu, Fengyu
Ji, Wei
Author_xml – sequence: 1
  givenname: Yanxia
  surname: Luo
  fullname: Luo, Yanxia
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
– sequence: 2
  givenname: Rui
  orcidid: 0000-0003-3959-040X
  surname: Yin
  fullname: Yin, Rui
  email: yinrui@sdu.edu.cn
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
– sequence: 3
  givenname: Wei
  surname: Ji
  fullname: Ji, Wei
  email: Jiwww@sdu.edu.cn
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
– sequence: 4
  givenname: Qingjie
  surname: Huang
  fullname: Huang, Qingjie
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
– sequence: 5
  givenname: Jianmin
  surname: Cui
  fullname: Cui, Jianmin
  organization: Department of Optical Engineering, School of Optoelectronics, Beijing Institute of Technology
– sequence: 6
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
  organization: Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University
– sequence: 7
  givenname: Zisu
  surname: Gong
  fullname: Gong, Zisu
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
– sequence: 8
  givenname: Fengyu
  surname: Liu
  fullname: Liu, Fengyu
  organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University
BookMark eNp9kL9OwzAQhy1UJErhBZgiMRvOdhPbI6r4JxXBABJisVznQlM1drDToRvvwBvyJBiKxMZyN9z3u9N9h2Tkg0dCThicMQB5nhgDxSlwRkFwyWi1R8aslJwqJp9HZAwCKqo00wfkMKUVAFTTEsYEH2LoQ7LrogmxGLDrMdphE5G2vsYec_FDEfqhdZlJ6FPGFjZhXQRf2LTtOhxi64o765af7x8vuMyRWLR-wNhgDHmM8YjsN3ad8Pi3T8jT1eXj7IbO769vZxdz6riEgYq61FNEmLpaai6FUqXUC1HlDyvOJFRWlAtZa6dE47gG7USjNbeKNRpdbcWEnO729jG8bTANZhU20eeThpeKKSGFLjPFd5SLIaWIjelj29m4NQzMt06z02myTvOj01Q5JHahlGH_ivFv9T-pL3MkfBk
Cites_doi 10.1109/JSEN.2017.2777740
10.1049/iet-opt.2008.0015
10.1109/LPT.2015.2463812
10.1364/OL.35.004229
10.1109/JSEN.2016.2637411
10.1002/adfm.201504534
10.1364/OL.39.005590
10.3390/s16122087
10.3390/s18072176
10.1364/OE.20.004032
10.1063/1.4995364
10.1016/j.snb.2014.01.075
10.3390/ma12040552
10.1364/OE.26.000477
10.1117/1.OE.54.9.097104
10.1109/JSEN.2018.2824852
10.1109/LPT.2006.883210
10.1016/j.precisioneng.2011.12.004
10.1364/OE.388407
10.1209/0295-5075/107/34008
10.3390/s16111800
10.1364/OL.42.003630
10.1109/JLT.2017.2766119
10.1364/OL.44.000299
10.1109/JSEN.2014.2340437
10.1016/j.yofte.2019.01.009
10.1364/AO.41.006211
10.1063/1.4820909
10.1109/OECC.2009.5212971
10.1109/AICI.2010.63
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11082-021-03271-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1572-817X
ExternalDocumentID 10_1007_s11082_021_03271_6
GrantInformation_xml – fundername: Key Technology Research and Development Program of Shandong
  grantid: 2017YFC0803403; 2018YFC0831103
  funderid: http://dx.doi.org/10.13039/100014103
– fundername: National Natural Science Foundation of China
  grantid: 61571273; 31430031-2
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8Z
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-3d594ee04cd7927388579b36007621706a35b7d9c83fc2909c3f992a81f9ecda3
IEDL.DBID U2A
ISSN 0306-8919
IngestDate Fri Jul 25 11:03:42 EDT 2025
Tue Jul 01 01:26:21 EDT 2025
Fri Feb 21 02:47:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Optical sensor
Temperature independence
Fabrication tolerance analysis
Asymmetric Mach–Zehnder interferometer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3d594ee04cd7927388579b36007621706a35b7d9c83fc2909c3f992a81f9ecda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3959-040X
PQID 2581837395
PQPubID 2043598
ParticipantIDs proquest_journals_2581837395
crossref_primary_10_1007_s11082_021_03271_6
springer_journals_10_1007_s11082_021_03271_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Optical and quantum electronics
PublicationTitleAbbrev Opt Quant Electron
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Deng, Liu, Li, Zhou (CR7) 2014; 39
Li, Li, Li, Zhao, Li (CR18) 2015; 2015
Wei (CR30) 2013; 11
Chen, Reano (CR3) 2012; 20
Li, Lu, Qu, Zhang, Ni, Liu, Zhang (CR21) 2020; 12
Wang, Zhou, Wu, Chen, He, Guo, Gao, Huang, Chen (CR27) 2019; 12
Xia, Wang, Wang, Zhao (CR31) 2016; 51
Delgado, Carvalho, Coelho, Santos (CR6) 2016; 16
Xiong, Liu, Wu (CR32) 2017; 42
Zhang, Zou, Cao, He (CR36) 2019; 44
Attivissimo, Carducci, Lanzolla, Massaro, Vadrucci (CR2) 2015; 15
Hu, Tong, Zhao, Deng, Guo, Mao, Wang (CR12) 2015; 54
Hung, Chang, Chang (CR13) 2016; 16
Yang, Hua, Lei, Zhang, Liu, Ye, Xiao (CR33) 2016; 2016
Cho, Jokerst (CR5) 2006; 18
Jiang, Dong, Chen, Sun (CR14) 2015; 27
Li, Shi, Tan, Li, Zhou, Ren (CR19) 2017; 17
Ghouila-Houri, Talbi, Viard, Moutaouekkil, Elmazria, Gallas, Garnier, Merlen, Pernod (CR9) 2017; 111
Chen, Hou, Si (CR4) 2018; 18
Grusemann, Zeitner, Rottschalk, Ruske, Rasch (CR10) 2002; 41
Lang, Liu, Cao, Qu (CR16) 2018; 26
Moirangthem, Arts, Merkx, Schenning (CR24) 2016; 26
CR29
Wang, Dai (CR26) 2010; 35
Olyaee, Hamedi, Dashtban (CR25) 2012; 36
Zhao, Cai, Li, Meng (CR37) 2014; 196
CR22
Atef, Wang, Wang (CR1) 2018; 18
Khan, Krupin, Lisicka-Skrzek, Berini (CR15) 2013; 103
Li, Tan, Chen, Hong, Zhou (CR20) 2019; 48
Liu, Salemink (CR23) 2014; 107
Yi (CR34) 2017; 29
Zhang, Duan, Zhao, He (CR35) 2018; 18
Wang, Jiang, Hu, Han, Sun, Zheng, Cheng, Liu (CR28) 2020; 28
Ghassemlooy, Rajbhandari (CR8) 2009; 3
Han, Hu, Wang, Zhang, Song, Ding, Zhang, Liu (CR11) 2017; 35
Lee, Yoon (CR17) 2012; 2
SS Hung (3271_CR13) 2016; 16
M Atef (3271_CR1) 2018; 18
T Li (3271_CR19) 2017; 17
W Jiang (3271_CR14) 2015; 27
M Moirangthem (3271_CR24) 2016; 26
J Lee (3271_CR17) 2012; 2
J Han (3271_CR11) 2017; 35
SH Yi (3271_CR34) 2017; 29
C Lang (3271_CR16) 2018; 26
Y Liu (3271_CR23) 2014; 107
Z Ghassemlooy (3271_CR8) 2009; 3
A Khan (3271_CR15) 2013; 103
S Olyaee (3271_CR25) 2012; 36
Y Li (3271_CR18) 2015; 2015
P Hu (3271_CR12) 2015; 54
J Wang (3271_CR26) 2010; 35
Y Zhang (3271_CR36) 2019; 44
C Chen (3271_CR4) 2018; 18
Y Li (3271_CR21) 2020; 12
L Chen (3271_CR3) 2012; 20
C Ghouila-Houri (3271_CR9) 2017; 111
U Grusemann (3271_CR10) 2002; 41
Y Zhao (3271_CR37) 2014; 196
F Delgado (3271_CR6) 2016; 16
R Li (3271_CR20) 2019; 48
SY Cho (3271_CR5) 2006; 18
S Xia (3271_CR31) 2016; 51
Q Deng (3271_CR7) 2014; 39
X Wei (3271_CR30) 2013; 11
3271_CR29
S Yang (3271_CR33) 2016; 2016
H Xiong (3271_CR32) 2017; 42
W Wang (3271_CR27) 2019; 12
F Attivissimo (3271_CR2) 2015; 15
H Wang (3271_CR28) 2020; 28
3271_CR22
R Zhang (3271_CR35) 2018; 18
References_xml – volume: 18
  start-page: 652
  issue: 2
  year: 2018
  end-page: 659
  ident: CR1
  article-title: a fully integrated high-sensitivity wide dynamic range PPG sensor with an integrated photodiode and an automatic dimming control LED driver
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2777740
– volume: 3
  start-page: 142
  issue: 3
  year: 2009
  end-page: 148
  ident: CR8
  article-title: Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links
  publication-title: Iet Optoelect.
  doi: 10.1049/iet-opt.2008.0015
– ident: CR22
– volume: 27
  start-page: 2347
  issue: 22
  year: 2015
  end-page: 2350
  ident: CR14
  article-title: Asymmetric phase-tunable MZI integrated by external adjustor
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2015.2463812
– volume: 35
  start-page: 4229
  issue: 24
  year: 2010
  end-page: 4231
  ident: CR26
  article-title: Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.004229
– volume: 17
  start-page: 1021
  issue: 4
  year: 2017
  end-page: 1029
  ident: CR19
  article-title: A diaphragm type fiber bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2637411
– volume: 2
  start-page: 159
  issue: 2
  year: 2012
  end-page: 180
  ident: CR17
  article-title: Self-heterodyne mixing method of two inter-mode beat frequencies for frequency stabilization of a three-mode He-Ne laser
  publication-title: AIP Adv.
– volume: 26
  start-page: 1154
  issue: 8
  year: 2016
  end-page: 1160
  ident: CR24
  article-title: An optical sensor based on a photonic polymer film to detect calcium in serum
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504534
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR33
  article-title: An IFPI temperature sensor fabricated in an unstriped optical fiber with self-strain-compensation function
  publication-title: J. Sens.
– volume: 39
  start-page: 5590
  issue: 19
  year: 2014
  end-page: 5593
  ident: CR7
  article-title: Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.005590
– volume: 16
  start-page: 2087
  issue: 12
  year: 2016
  ident: CR13
  article-title: A portable array-type optical fiber sensing instrument for real-time gas detection
  publication-title: Sensors.
  doi: 10.3390/s16122087
– volume: 18
  start-page: 2176
  year: 2018
  ident: CR35
  article-title: Temperature compensation of elasto-magneto-electric (EME) sensors in cable force monitoring using BP neural network
  publication-title: Sensors.
  doi: 10.3390/s18072176
– volume: 20
  start-page: 4032
  issue: 4
  year: 2012
  end-page: 4038
  ident: CR3
  article-title: Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings
  publication-title: Opt. Exp.
  doi: 10.1364/OE.20.004032
– volume: 111
  start-page: 113502
  year: 2017
  ident: CR9
  article-title: High temperature gradient nanogap-Pirani micro-sensor with maximum sensitivity around atmospheric pressure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4995364
– volume: 196
  start-page: 518
  year: 2014
  end-page: 524
  ident: CR37
  article-title: Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2014.01.075
– volume: 12
  start-page: 552
  issue: 4
  year: 2019
  ident: CR27
  article-title: Monolithic structure-optical fiber sensor with temperature compensation for pressure measurement
  publication-title: Materials.
  doi: 10.3390/ma12040552
– volume: 26
  start-page: 477
  issue: 1
  year: 2018
  ident: CR16
  article-title: Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure
  publication-title: Opt. Exp.
  doi: 10.1364/OE.26.000477
– ident: CR29
– volume: 54
  start-page: 097104
  issue: 9
  year: 2015
  ident: CR12
  article-title: Study on high temperature fabry-perot fiber acoustic sensor with temperature self-compensation
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.9.097104
– volume: 18
  start-page: 5368
  issue: 13
  year: 2018
  end-page: 5375
  ident: CR4
  article-title: Theoretical design of an integrated optical sensor for a standard immunoassay
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2824852
– volume: 18
  start-page: 2096
  issue: 20
  year: 2006
  end-page: 2098
  ident: CR5
  article-title: A polymer microdisk photonic sensor integrated onto silicon
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2006.883210
– volume: 36
  start-page: 379
  issue: 3
  year: 2012
  end-page: 387
  ident: CR25
  article-title: Efficient performance of neural networks for nonlinearity error modeling of three-longitudinal-mode interferometer in nano-metrology system
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.12.004
– volume: 28
  start-page: 13682
  issue: 9
  year: 2020
  end-page: 13693
  ident: CR28
  article-title: Temperature compensation of optical alternating magnetic field sensor via a novel method for on-line measuring
  publication-title: Opt. Exp.
  doi: 10.1364/OE.388407
– volume: 107
  start-page: 34008
  issue: 3
  year: 2014
  ident: CR23
  article-title: All-optical on-chip sensor for high refractive index sensing in photonic crystals
  publication-title: EPL (europhys. Lett.)
  doi: 10.1209/0295-5075/107/34008
– volume: 16
  start-page: 1800
  issue: 11
  year: 2016
  ident: CR6
  article-title: An optical fiber sensor and its application in UAVs for current measurements
  publication-title: Sensors
  doi: 10.3390/s16111800
– volume: 42
  start-page: 3630
  issue: 18
  year: 2017
  end-page: 3633
  ident: CR32
  article-title: Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.003630
– volume: 29
  start-page: 243
  issue: 3
  year: 2017
  end-page: 252
  ident: CR34
  article-title: Temperature compensation methods of nondispersive infrared CO gas sensor with dual ellipsoidal optical waveguide
  publication-title: Sens. Mater.
– volume: 35
  start-page: 4910
  issue: 22
  year: 2017
  end-page: 4915
  ident: CR11
  article-title: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber bragg gratings
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2017.2766119
– volume: 44
  start-page: 299
  issue: 2
  year: 2019
  end-page: 302
  ident: CR36
  article-title: Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000299
– volume: 51
  start-page: 1345
  year: 2016
  end-page: 1350
  ident: CR31
  article-title: A temperature compensation algorithm based on curve fitting and spline interpolation
  publication-title: Chem. Eng. Trans.
– volume: 15
  start-page: 146
  issue: 1
  year: 2015
  end-page: 153
  ident: CR2
  article-title: A portable optical sensor for sea quality monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2340437
– volume: 11
  start-page: 3304
  issue: 6
  year: 2013
  end-page: 3313
  ident: CR30
  article-title: Sensor temperature compensation technique simulation based on BP neural network
  publication-title: TELKOMNIKA Indonesian J. Elect. Eng.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 6
  ident: CR18
  article-title: The research of temperature compensation for thermopile sensor based on improved PSO-BP algorithm
  publication-title: Math. Problems Eng.
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  ident: CR21
  article-title: An optical fiber twist sensor with temperature compensation mechanism based on T-SMS structure
  publication-title: IEEE Photon. J.
– volume: 48
  start-page: 199
  year: 2019
  end-page: 206
  ident: CR20
  article-title: Investigation of sensitivity enhancing and temperature compensation for fiber bragg grating (FBG)-based strain sensor
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2019.01.009
– volume: 41
  start-page: 6211
  issue: 29
  year: 2002
  end-page: 6219
  ident: CR10
  article-title: Integrated-optical wavelength sensor with self-compensation of thermally induced phase shifts by use of a LiNbO unbalanced Mach-Zehnder interferometer
  publication-title: Appl. Opt.
  doi: 10.1364/AO.41.006211
– volume: 103
  start-page: 111108
  issue: 11
  year: 2013
  ident: CR15
  article-title: Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4820909
– volume: 18
  start-page: 652
  issue: 2
  year: 2018
  ident: 3271_CR1
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2777740
– volume: 41
  start-page: 6211
  issue: 29
  year: 2002
  ident: 3271_CR10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.41.006211
– ident: 3271_CR22
  doi: 10.1109/OECC.2009.5212971
– volume: 15
  start-page: 146
  issue: 1
  year: 2015
  ident: 3271_CR2
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2340437
– volume: 11
  start-page: 3304
  issue: 6
  year: 2013
  ident: 3271_CR30
  publication-title: TELKOMNIKA Indonesian J. Elect. Eng.
– volume: 2015
  start-page: 1
  year: 2015
  ident: 3271_CR18
  publication-title: Math. Problems Eng.
– volume: 17
  start-page: 1021
  issue: 4
  year: 2017
  ident: 3271_CR19
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2637411
– volume: 16
  start-page: 2087
  issue: 12
  year: 2016
  ident: 3271_CR13
  publication-title: Sensors.
  doi: 10.3390/s16122087
– volume: 18
  start-page: 2096
  issue: 20
  year: 2006
  ident: 3271_CR5
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2006.883210
– ident: 3271_CR29
  doi: 10.1109/AICI.2010.63
– volume: 18
  start-page: 5368
  issue: 13
  year: 2018
  ident: 3271_CR4
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2824852
– volume: 16
  start-page: 1800
  issue: 11
  year: 2016
  ident: 3271_CR6
  publication-title: Sensors
  doi: 10.3390/s16111800
– volume: 28
  start-page: 13682
  issue: 9
  year: 2020
  ident: 3271_CR28
  publication-title: Opt. Exp.
  doi: 10.1364/OE.388407
– volume: 54
  start-page: 097104
  issue: 9
  year: 2015
  ident: 3271_CR12
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.9.097104
– volume: 2
  start-page: 159
  issue: 2
  year: 2012
  ident: 3271_CR17
  publication-title: AIP Adv.
– volume: 36
  start-page: 379
  issue: 3
  year: 2012
  ident: 3271_CR25
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.12.004
– volume: 3
  start-page: 142
  issue: 3
  year: 2009
  ident: 3271_CR8
  publication-title: Iet Optoelect.
  doi: 10.1049/iet-opt.2008.0015
– volume: 39
  start-page: 5590
  issue: 19
  year: 2014
  ident: 3271_CR7
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.005590
– volume: 2016
  start-page: 1
  year: 2016
  ident: 3271_CR33
  publication-title: J. Sens.
– volume: 26
  start-page: 1154
  issue: 8
  year: 2016
  ident: 3271_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504534
– volume: 35
  start-page: 4910
  issue: 22
  year: 2017
  ident: 3271_CR11
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2017.2766119
– volume: 35
  start-page: 4229
  issue: 24
  year: 2010
  ident: 3271_CR26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.004229
– volume: 12
  start-page: 552
  issue: 4
  year: 2019
  ident: 3271_CR27
  publication-title: Materials.
  doi: 10.3390/ma12040552
– volume: 27
  start-page: 2347
  issue: 22
  year: 2015
  ident: 3271_CR14
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2015.2463812
– volume: 29
  start-page: 243
  issue: 3
  year: 2017
  ident: 3271_CR34
  publication-title: Sens. Mater.
– volume: 44
  start-page: 299
  issue: 2
  year: 2019
  ident: 3271_CR36
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000299
– volume: 111
  start-page: 113502
  year: 2017
  ident: 3271_CR9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4995364
– volume: 42
  start-page: 3630
  issue: 18
  year: 2017
  ident: 3271_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.003630
– volume: 107
  start-page: 34008
  issue: 3
  year: 2014
  ident: 3271_CR23
  publication-title: EPL (europhys. Lett.)
  doi: 10.1209/0295-5075/107/34008
– volume: 196
  start-page: 518
  year: 2014
  ident: 3271_CR37
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2014.01.075
– volume: 20
  start-page: 4032
  issue: 4
  year: 2012
  ident: 3271_CR3
  publication-title: Opt. Exp.
  doi: 10.1364/OE.20.004032
– volume: 26
  start-page: 477
  issue: 1
  year: 2018
  ident: 3271_CR16
  publication-title: Opt. Exp.
  doi: 10.1364/OE.26.000477
– volume: 51
  start-page: 1345
  year: 2016
  ident: 3271_CR31
  publication-title: Chem. Eng. Trans.
– volume: 103
  start-page: 111108
  issue: 11
  year: 2013
  ident: 3271_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4820909
– volume: 18
  start-page: 2176
  year: 2018
  ident: 3271_CR35
  publication-title: Sensors.
  doi: 10.3390/s18072176
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 3271_CR21
  publication-title: IEEE Photon. J.
– volume: 48
  start-page: 199
  year: 2019
  ident: 3271_CR20
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2019.01.009
SSID ssj0006450
Score 2.2779613
Snippet An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ambient temperature
Asymmetry
Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Error compensation
Error reduction
Lasers
Mach-Zehnder interferometers
Optical Devices
Optical measuring instruments
Optical waveguides
Optics
Photonics
Physics
Physics and Astronomy
Refractivity
Sensors
Title Proposal for temperature-independent optical sensor based on asymmetric Mach–Zehnder interferometer
URI https://link.springer.com/article/10.1007/s11082-021-03271-6
https://www.proquest.com/docview/2581837395
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BFRIMPAqI8pIHNrCU2LETj-VREAjEQCVgiRzHVhn6ECkDG_-Bf8gvwZcmFBAMTLEU6wbfne-zffcdwH5olNIujmgWcUMjyR1NssSPYiek1on3dbzQv7qW593o4k7cVUVhRZ3tXj9Jljv1tNgt9OGKYkpBwFkcUjkLDYFnd2_FXdb-3H9lVPZlRTBMExWqqlTmdxnfw9EUY_54Fi2jTWcFliqYSNoTva7CjB00YbmCjKRyyKIJi1_4BJswX-ZzmmIN7A12Pyi8CA9KCfJPVeTJ9PGz7-2YDEflTTYp_FnWT8OIlpPhgOjipd_HVluGXGnTe399e7A9rIIhyC7x5CxyHPjBOnQ7p7fH57TqqEANi4Mx5blQkbVBZPJYYVFOImKVceSolwyJdDQXWZwrk3BnmAqU4U4pppPQKWtyzTdgbjAc2E0ggXGKscQKxV1kM6E9dJG5zrR0OhahbsFBvbDpaEKckU4pklENqVdDWqohlS3Yqdc-rZyoSJnwaILjS2ILDmt9TH__LW3rf9O3YYGhSZQVhjswN356trseaoyzPWi0j06OOvg9u7883Sst7QPAKM8p
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xCAEFxwJiOV3QgaXEjh27RAi0HIsoWAnRRI5jaynYRWQp6PgH_pAvwRMSFhAUdJZiTeHxeF7seW8A9mKrtfFpQvOEW5pI7qnKVRilXkhjVIh1vNDvXspOLzm7ETc1Kaxsqt2bJ8nqpB6T3eKQriiWFEScpTGVkzAdwIDCQq4eO_w8f2VS9WVFMEyVjnVNlfndxvd0NMaYP55Fq2xzsgQLNUwkhx9-XYYJN2jBYg0ZSR2QZQvmv-gJtmCmque05Qq4K-x-UAYTAZQS1J-qxZPp3Wff2xEZPlQ32aQM_7JhGma0ggwHxJTP9_fYasuSrrH9t5fXW9dHFgxBdYlH71DjIAxWoXdyfH3UoXVHBWpZGo0oL4ROnIsSW6QaSTlKpDrnqFEvGQrpGC7ytNBWcW-ZjrTlXmtmVOy1s4XhazA1GA7cOpDIes2YckJzn7hcmABdZGFyI71JRWzasN8sbPbwIZyRjSWS0Q1ZcENWuSGTbdhq1j6rg6jMmAhoguNLYhsOGn-MP_9tbeN_03dhtnPdvcguTi_PN2GO4fao2IZbMDV6fHLbAXaM8p1ql70DrgTPFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xCAQFxwJiOV3QgUVix05cImDFLQpWQjSR49iCguyKhIKOf-AP-RI82SwLCAo6S7FceGY8L_a8NwA7oVFKuziiWcQNjSR3NMkSP4qdkFonPtbxQv_ySp50o7NbcfuFxV9Xuw-fJAecBlRpKqr9fu72R8S30KcuiuUFAWdxSOU4TPrjOES_7rKDz7NYRnWPVgTGNFGhamgzv6_xPTWN8OaPJ9I683QWYK6BjORgYONFGLNFC-Yb-Eia4CxbMPtFW7AFU3VtpymXwF5jJ4TSL-EBKkEtqkZImT589sCtSK9f32qT0v_X-mmY3XLSK4guXx4fse2WIZfa3L-_vt3Ze2TEEFSaeHIW9Q78YBm6neObwxPadFeghsVBRXkuVGRtEJk8VkjQSUSsMo569ZKhqI7mIotzZRLuDFOBMtwpxXQSOmVNrvkKTBS9wq4CCYxTjCVWKO4imwntYYzMdaal07EIdRt2hxub9gciGulILhnNkHozpLUZUtmGjeHep01AlSkTHllwfFVsw97QHqPPf6-29r_p2zB9fdRJL06vztdhhqF31MTDDZionp7tpkcgVbZVO9kHxS3TUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+for+temperature-independent+optical+sensor+based+on+asymmetric+Mach%E2%80%93Zehnder+interferometer&rft.jtitle=Optical+and+quantum+electronics&rft.au=Luo+Yanxia&rft.au=Yin+Rui&rft.au=Ji%2C+Wei&rft.au=Huang+Qingjie&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=53&rft.issue=11&rft_id=info:doi/10.1007%2Fs11082-021-03271-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon