Proposal for temperature-independent optical sensor based on asymmetric Mach–Zehnder interferometer
An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the opti...
Saved in:
Published in | Optical and quantum electronics Vol. 53; no. 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices. |
---|---|
AbstractList | An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices. An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on AMZI is very sensitive to the change of ambient temperature. The temperature shift will lead to the change of the refractive index of the optical waveguide, which will affect the accuracy of the measurement of target-parameters. The designed optical sensor is composed of two AMZIs cascaded, one acting as a sensing AMZI and the other as a compensating AMZI. When the temperature changes, the sensing curve of the sensing AMZI shifts. The compensating AMZI can make the sensing curve goes into reverse to realize the compensation. The error of compensation results is reduced by 2–3 orders of magnitude, the compensation temperature range is from 5 to 45 °C, and the error is reduced to < 0.1%. This cascade compensation structure can be used not only for based on AMZI optical sensor, but for other interference optical devices. |
ArticleNumber | 623 |
Author | Luo, Yanxia Yin, Rui Huang, Qingjie Gong, Zisu Cui, Jianmin Jiang, Shouzhen Liu, Fengyu Ji, Wei |
Author_xml | – sequence: 1 givenname: Yanxia surname: Luo fullname: Luo, Yanxia organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University – sequence: 2 givenname: Rui orcidid: 0000-0003-3959-040X surname: Yin fullname: Yin, Rui email: yinrui@sdu.edu.cn organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University – sequence: 3 givenname: Wei surname: Ji fullname: Ji, Wei email: Jiwww@sdu.edu.cn organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University – sequence: 4 givenname: Qingjie surname: Huang fullname: Huang, Qingjie organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University – sequence: 5 givenname: Jianmin surname: Cui fullname: Cui, Jianmin organization: Department of Optical Engineering, School of Optoelectronics, Beijing Institute of Technology – sequence: 6 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen organization: Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University – sequence: 7 givenname: Zisu surname: Gong fullname: Gong, Zisu organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University – sequence: 8 givenname: Fengyu surname: Liu fullname: Liu, Fengyu organization: Department of Electronic Science and Technology, School of Information Science and Engineering, Shandong University |
BookMark | eNp9kL9OwzAQhy1UJErhBZgiMRvOdhPbI6r4JxXBABJisVznQlM1drDToRvvwBvyJBiKxMZyN9z3u9N9h2Tkg0dCThicMQB5nhgDxSlwRkFwyWi1R8aslJwqJp9HZAwCKqo00wfkMKUVAFTTEsYEH2LoQ7LrogmxGLDrMdphE5G2vsYec_FDEfqhdZlJ6FPGFjZhXQRf2LTtOhxi64o765af7x8vuMyRWLR-wNhgDHmM8YjsN3ad8Pi3T8jT1eXj7IbO769vZxdz6riEgYq61FNEmLpaai6FUqXUC1HlDyvOJFRWlAtZa6dE47gG7USjNbeKNRpdbcWEnO729jG8bTANZhU20eeThpeKKSGFLjPFd5SLIaWIjelj29m4NQzMt06z02myTvOj01Q5JHahlGH_ivFv9T-pL3MkfBk |
Cites_doi | 10.1109/JSEN.2017.2777740 10.1049/iet-opt.2008.0015 10.1109/LPT.2015.2463812 10.1364/OL.35.004229 10.1109/JSEN.2016.2637411 10.1002/adfm.201504534 10.1364/OL.39.005590 10.3390/s16122087 10.3390/s18072176 10.1364/OE.20.004032 10.1063/1.4995364 10.1016/j.snb.2014.01.075 10.3390/ma12040552 10.1364/OE.26.000477 10.1117/1.OE.54.9.097104 10.1109/JSEN.2018.2824852 10.1109/LPT.2006.883210 10.1016/j.precisioneng.2011.12.004 10.1364/OE.388407 10.1209/0295-5075/107/34008 10.3390/s16111800 10.1364/OL.42.003630 10.1109/JLT.2017.2766119 10.1364/OL.44.000299 10.1109/JSEN.2014.2340437 10.1016/j.yofte.2019.01.009 10.1364/AO.41.006211 10.1063/1.4820909 10.1109/OECC.2009.5212971 10.1109/AICI.2010.63 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11082-021-03271-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1572-817X |
ExternalDocumentID | 10_1007_s11082_021_03271_6 |
GrantInformation_xml | – fundername: Key Technology Research and Development Program of Shandong grantid: 2017YFC0803403; 2018YFC0831103 funderid: http://dx.doi.org/10.13039/100014103 – fundername: National Natural Science Foundation of China grantid: 61571273; 31430031-2 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8Z Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-3d594ee04cd7927388579b36007621706a35b7d9c83fc2909c3f992a81f9ecda3 |
IEDL.DBID | U2A |
ISSN | 0306-8919 |
IngestDate | Fri Jul 25 11:03:42 EDT 2025 Tue Jul 01 01:26:21 EDT 2025 Fri Feb 21 02:47:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Optical sensor Temperature independence Fabrication tolerance analysis Asymmetric Mach–Zehnder interferometer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-3d594ee04cd7927388579b36007621706a35b7d9c83fc2909c3f992a81f9ecda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3959-040X |
PQID | 2581837395 |
PQPubID | 2043598 |
ParticipantIDs | proquest_journals_2581837395 crossref_primary_10_1007_s11082_021_03271_6 springer_journals_10_1007_s11082_021_03271_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Optical and quantum electronics |
PublicationTitleAbbrev | Opt Quant Electron |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Deng, Liu, Li, Zhou (CR7) 2014; 39 Li, Li, Li, Zhao, Li (CR18) 2015; 2015 Wei (CR30) 2013; 11 Chen, Reano (CR3) 2012; 20 Li, Lu, Qu, Zhang, Ni, Liu, Zhang (CR21) 2020; 12 Wang, Zhou, Wu, Chen, He, Guo, Gao, Huang, Chen (CR27) 2019; 12 Xia, Wang, Wang, Zhao (CR31) 2016; 51 Delgado, Carvalho, Coelho, Santos (CR6) 2016; 16 Xiong, Liu, Wu (CR32) 2017; 42 Zhang, Zou, Cao, He (CR36) 2019; 44 Attivissimo, Carducci, Lanzolla, Massaro, Vadrucci (CR2) 2015; 15 Hu, Tong, Zhao, Deng, Guo, Mao, Wang (CR12) 2015; 54 Hung, Chang, Chang (CR13) 2016; 16 Yang, Hua, Lei, Zhang, Liu, Ye, Xiao (CR33) 2016; 2016 Cho, Jokerst (CR5) 2006; 18 Jiang, Dong, Chen, Sun (CR14) 2015; 27 Li, Shi, Tan, Li, Zhou, Ren (CR19) 2017; 17 Ghouila-Houri, Talbi, Viard, Moutaouekkil, Elmazria, Gallas, Garnier, Merlen, Pernod (CR9) 2017; 111 Chen, Hou, Si (CR4) 2018; 18 Grusemann, Zeitner, Rottschalk, Ruske, Rasch (CR10) 2002; 41 Lang, Liu, Cao, Qu (CR16) 2018; 26 Moirangthem, Arts, Merkx, Schenning (CR24) 2016; 26 CR29 Wang, Dai (CR26) 2010; 35 Olyaee, Hamedi, Dashtban (CR25) 2012; 36 Zhao, Cai, Li, Meng (CR37) 2014; 196 CR22 Atef, Wang, Wang (CR1) 2018; 18 Khan, Krupin, Lisicka-Skrzek, Berini (CR15) 2013; 103 Li, Tan, Chen, Hong, Zhou (CR20) 2019; 48 Liu, Salemink (CR23) 2014; 107 Yi (CR34) 2017; 29 Zhang, Duan, Zhao, He (CR35) 2018; 18 Wang, Jiang, Hu, Han, Sun, Zheng, Cheng, Liu (CR28) 2020; 28 Ghassemlooy, Rajbhandari (CR8) 2009; 3 Han, Hu, Wang, Zhang, Song, Ding, Zhang, Liu (CR11) 2017; 35 Lee, Yoon (CR17) 2012; 2 SS Hung (3271_CR13) 2016; 16 M Atef (3271_CR1) 2018; 18 T Li (3271_CR19) 2017; 17 W Jiang (3271_CR14) 2015; 27 M Moirangthem (3271_CR24) 2016; 26 J Lee (3271_CR17) 2012; 2 J Han (3271_CR11) 2017; 35 SH Yi (3271_CR34) 2017; 29 C Lang (3271_CR16) 2018; 26 Y Liu (3271_CR23) 2014; 107 Z Ghassemlooy (3271_CR8) 2009; 3 A Khan (3271_CR15) 2013; 103 S Olyaee (3271_CR25) 2012; 36 Y Li (3271_CR18) 2015; 2015 P Hu (3271_CR12) 2015; 54 J Wang (3271_CR26) 2010; 35 Y Zhang (3271_CR36) 2019; 44 C Chen (3271_CR4) 2018; 18 Y Li (3271_CR21) 2020; 12 L Chen (3271_CR3) 2012; 20 C Ghouila-Houri (3271_CR9) 2017; 111 U Grusemann (3271_CR10) 2002; 41 Y Zhao (3271_CR37) 2014; 196 F Delgado (3271_CR6) 2016; 16 R Li (3271_CR20) 2019; 48 SY Cho (3271_CR5) 2006; 18 S Xia (3271_CR31) 2016; 51 Q Deng (3271_CR7) 2014; 39 X Wei (3271_CR30) 2013; 11 3271_CR29 S Yang (3271_CR33) 2016; 2016 H Xiong (3271_CR32) 2017; 42 W Wang (3271_CR27) 2019; 12 F Attivissimo (3271_CR2) 2015; 15 H Wang (3271_CR28) 2020; 28 3271_CR22 R Zhang (3271_CR35) 2018; 18 |
References_xml | – volume: 18 start-page: 652 issue: 2 year: 2018 end-page: 659 ident: CR1 article-title: a fully integrated high-sensitivity wide dynamic range PPG sensor with an integrated photodiode and an automatic dimming control LED driver publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2777740 – volume: 3 start-page: 142 issue: 3 year: 2009 end-page: 148 ident: CR8 article-title: Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links publication-title: Iet Optoelect. doi: 10.1049/iet-opt.2008.0015 – ident: CR22 – volume: 27 start-page: 2347 issue: 22 year: 2015 end-page: 2350 ident: CR14 article-title: Asymmetric phase-tunable MZI integrated by external adjustor publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2015.2463812 – volume: 35 start-page: 4229 issue: 24 year: 2010 end-page: 4231 ident: CR26 article-title: Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring publication-title: Opt. Lett. doi: 10.1364/OL.35.004229 – volume: 17 start-page: 1021 issue: 4 year: 2017 end-page: 1029 ident: CR19 article-title: A diaphragm type fiber bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2637411 – volume: 2 start-page: 159 issue: 2 year: 2012 end-page: 180 ident: CR17 article-title: Self-heterodyne mixing method of two inter-mode beat frequencies for frequency stabilization of a three-mode He-Ne laser publication-title: AIP Adv. – volume: 26 start-page: 1154 issue: 8 year: 2016 end-page: 1160 ident: CR24 article-title: An optical sensor based on a photonic polymer film to detect calcium in serum publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504534 – volume: 2016 start-page: 1 year: 2016 end-page: 7 ident: CR33 article-title: An IFPI temperature sensor fabricated in an unstriped optical fiber with self-strain-compensation function publication-title: J. Sens. – volume: 39 start-page: 5590 issue: 19 year: 2014 end-page: 5593 ident: CR7 article-title: Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference publication-title: Opt. Lett. doi: 10.1364/OL.39.005590 – volume: 16 start-page: 2087 issue: 12 year: 2016 ident: CR13 article-title: A portable array-type optical fiber sensing instrument for real-time gas detection publication-title: Sensors. doi: 10.3390/s16122087 – volume: 18 start-page: 2176 year: 2018 ident: CR35 article-title: Temperature compensation of elasto-magneto-electric (EME) sensors in cable force monitoring using BP neural network publication-title: Sensors. doi: 10.3390/s18072176 – volume: 20 start-page: 4032 issue: 4 year: 2012 end-page: 4038 ident: CR3 article-title: Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings publication-title: Opt. Exp. doi: 10.1364/OE.20.004032 – volume: 111 start-page: 113502 year: 2017 ident: CR9 article-title: High temperature gradient nanogap-Pirani micro-sensor with maximum sensitivity around atmospheric pressure publication-title: Appl. Phys. Lett. doi: 10.1063/1.4995364 – volume: 196 start-page: 518 year: 2014 end-page: 524 ident: CR37 article-title: Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2014.01.075 – volume: 12 start-page: 552 issue: 4 year: 2019 ident: CR27 article-title: Monolithic structure-optical fiber sensor with temperature compensation for pressure measurement publication-title: Materials. doi: 10.3390/ma12040552 – volume: 26 start-page: 477 issue: 1 year: 2018 ident: CR16 article-title: Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure publication-title: Opt. Exp. doi: 10.1364/OE.26.000477 – ident: CR29 – volume: 54 start-page: 097104 issue: 9 year: 2015 ident: CR12 article-title: Study on high temperature fabry-perot fiber acoustic sensor with temperature self-compensation publication-title: Opt. Eng. doi: 10.1117/1.OE.54.9.097104 – volume: 18 start-page: 5368 issue: 13 year: 2018 end-page: 5375 ident: CR4 article-title: Theoretical design of an integrated optical sensor for a standard immunoassay publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2824852 – volume: 18 start-page: 2096 issue: 20 year: 2006 end-page: 2098 ident: CR5 article-title: A polymer microdisk photonic sensor integrated onto silicon publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2006.883210 – volume: 36 start-page: 379 issue: 3 year: 2012 end-page: 387 ident: CR25 article-title: Efficient performance of neural networks for nonlinearity error modeling of three-longitudinal-mode interferometer in nano-metrology system publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.12.004 – volume: 28 start-page: 13682 issue: 9 year: 2020 end-page: 13693 ident: CR28 article-title: Temperature compensation of optical alternating magnetic field sensor via a novel method for on-line measuring publication-title: Opt. Exp. doi: 10.1364/OE.388407 – volume: 107 start-page: 34008 issue: 3 year: 2014 ident: CR23 article-title: All-optical on-chip sensor for high refractive index sensing in photonic crystals publication-title: EPL (europhys. Lett.) doi: 10.1209/0295-5075/107/34008 – volume: 16 start-page: 1800 issue: 11 year: 2016 ident: CR6 article-title: An optical fiber sensor and its application in UAVs for current measurements publication-title: Sensors doi: 10.3390/s16111800 – volume: 42 start-page: 3630 issue: 18 year: 2017 end-page: 3633 ident: CR32 article-title: Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation publication-title: Opt. Lett. doi: 10.1364/OL.42.003630 – volume: 29 start-page: 243 issue: 3 year: 2017 end-page: 252 ident: CR34 article-title: Temperature compensation methods of nondispersive infrared CO gas sensor with dual ellipsoidal optical waveguide publication-title: Sens. Mater. – volume: 35 start-page: 4910 issue: 22 year: 2017 end-page: 4915 ident: CR11 article-title: Temperature-compensated magnetostrictive current sensor based on the configuration of dual fiber bragg gratings publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2017.2766119 – volume: 44 start-page: 299 issue: 2 year: 2019 end-page: 302 ident: CR36 article-title: Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer publication-title: Opt. Lett. doi: 10.1364/OL.44.000299 – volume: 51 start-page: 1345 year: 2016 end-page: 1350 ident: CR31 article-title: A temperature compensation algorithm based on curve fitting and spline interpolation publication-title: Chem. Eng. Trans. – volume: 15 start-page: 146 issue: 1 year: 2015 end-page: 153 ident: CR2 article-title: A portable optical sensor for sea quality monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2340437 – volume: 11 start-page: 3304 issue: 6 year: 2013 end-page: 3313 ident: CR30 article-title: Sensor temperature compensation technique simulation based on BP neural network publication-title: TELKOMNIKA Indonesian J. Elect. Eng. – volume: 2015 start-page: 1 year: 2015 end-page: 6 ident: CR18 article-title: The research of temperature compensation for thermopile sensor based on improved PSO-BP algorithm publication-title: Math. Problems Eng. – volume: 12 start-page: 1 issue: 1 year: 2020 end-page: 8 ident: CR21 article-title: An optical fiber twist sensor with temperature compensation mechanism based on T-SMS structure publication-title: IEEE Photon. J. – volume: 48 start-page: 199 year: 2019 end-page: 206 ident: CR20 article-title: Investigation of sensitivity enhancing and temperature compensation for fiber bragg grating (FBG)-based strain sensor publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.01.009 – volume: 41 start-page: 6211 issue: 29 year: 2002 end-page: 6219 ident: CR10 article-title: Integrated-optical wavelength sensor with self-compensation of thermally induced phase shifts by use of a LiNbO unbalanced Mach-Zehnder interferometer publication-title: Appl. Opt. doi: 10.1364/AO.41.006211 – volume: 103 start-page: 111108 issue: 11 year: 2013 ident: CR15 article-title: Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides publication-title: Appl. Phys. Lett. doi: 10.1063/1.4820909 – volume: 18 start-page: 652 issue: 2 year: 2018 ident: 3271_CR1 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2777740 – volume: 41 start-page: 6211 issue: 29 year: 2002 ident: 3271_CR10 publication-title: Appl. Opt. doi: 10.1364/AO.41.006211 – ident: 3271_CR22 doi: 10.1109/OECC.2009.5212971 – volume: 15 start-page: 146 issue: 1 year: 2015 ident: 3271_CR2 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2340437 – volume: 11 start-page: 3304 issue: 6 year: 2013 ident: 3271_CR30 publication-title: TELKOMNIKA Indonesian J. Elect. Eng. – volume: 2015 start-page: 1 year: 2015 ident: 3271_CR18 publication-title: Math. Problems Eng. – volume: 17 start-page: 1021 issue: 4 year: 2017 ident: 3271_CR19 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2637411 – volume: 16 start-page: 2087 issue: 12 year: 2016 ident: 3271_CR13 publication-title: Sensors. doi: 10.3390/s16122087 – volume: 18 start-page: 2096 issue: 20 year: 2006 ident: 3271_CR5 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2006.883210 – ident: 3271_CR29 doi: 10.1109/AICI.2010.63 – volume: 18 start-page: 5368 issue: 13 year: 2018 ident: 3271_CR4 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2824852 – volume: 16 start-page: 1800 issue: 11 year: 2016 ident: 3271_CR6 publication-title: Sensors doi: 10.3390/s16111800 – volume: 28 start-page: 13682 issue: 9 year: 2020 ident: 3271_CR28 publication-title: Opt. Exp. doi: 10.1364/OE.388407 – volume: 54 start-page: 097104 issue: 9 year: 2015 ident: 3271_CR12 publication-title: Opt. Eng. doi: 10.1117/1.OE.54.9.097104 – volume: 2 start-page: 159 issue: 2 year: 2012 ident: 3271_CR17 publication-title: AIP Adv. – volume: 36 start-page: 379 issue: 3 year: 2012 ident: 3271_CR25 publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.12.004 – volume: 3 start-page: 142 issue: 3 year: 2009 ident: 3271_CR8 publication-title: Iet Optoelect. doi: 10.1049/iet-opt.2008.0015 – volume: 39 start-page: 5590 issue: 19 year: 2014 ident: 3271_CR7 publication-title: Opt. Lett. doi: 10.1364/OL.39.005590 – volume: 2016 start-page: 1 year: 2016 ident: 3271_CR33 publication-title: J. Sens. – volume: 26 start-page: 1154 issue: 8 year: 2016 ident: 3271_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504534 – volume: 35 start-page: 4910 issue: 22 year: 2017 ident: 3271_CR11 publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2017.2766119 – volume: 35 start-page: 4229 issue: 24 year: 2010 ident: 3271_CR26 publication-title: Opt. Lett. doi: 10.1364/OL.35.004229 – volume: 12 start-page: 552 issue: 4 year: 2019 ident: 3271_CR27 publication-title: Materials. doi: 10.3390/ma12040552 – volume: 27 start-page: 2347 issue: 22 year: 2015 ident: 3271_CR14 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2015.2463812 – volume: 29 start-page: 243 issue: 3 year: 2017 ident: 3271_CR34 publication-title: Sens. Mater. – volume: 44 start-page: 299 issue: 2 year: 2019 ident: 3271_CR36 publication-title: Opt. Lett. doi: 10.1364/OL.44.000299 – volume: 111 start-page: 113502 year: 2017 ident: 3271_CR9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4995364 – volume: 42 start-page: 3630 issue: 18 year: 2017 ident: 3271_CR32 publication-title: Opt. Lett. doi: 10.1364/OL.42.003630 – volume: 107 start-page: 34008 issue: 3 year: 2014 ident: 3271_CR23 publication-title: EPL (europhys. Lett.) doi: 10.1209/0295-5075/107/34008 – volume: 196 start-page: 518 year: 2014 ident: 3271_CR37 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2014.01.075 – volume: 20 start-page: 4032 issue: 4 year: 2012 ident: 3271_CR3 publication-title: Opt. Exp. doi: 10.1364/OE.20.004032 – volume: 26 start-page: 477 issue: 1 year: 2018 ident: 3271_CR16 publication-title: Opt. Exp. doi: 10.1364/OE.26.000477 – volume: 51 start-page: 1345 year: 2016 ident: 3271_CR31 publication-title: Chem. Eng. Trans. – volume: 103 start-page: 111108 issue: 11 year: 2013 ident: 3271_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4820909 – volume: 18 start-page: 2176 year: 2018 ident: 3271_CR35 publication-title: Sensors. doi: 10.3390/s18072176 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 3271_CR21 publication-title: IEEE Photon. J. – volume: 48 start-page: 199 year: 2019 ident: 3271_CR20 publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.01.009 |
SSID | ssj0006450 |
Score | 2.2779613 |
Snippet | An optical sensor based on dual asymmetric Mach–Zehnder interferometers (AMZIs) cascade with temperature-independent is proposed. The optical sensor based on... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ambient temperature Asymmetry Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Error compensation Error reduction Lasers Mach-Zehnder interferometers Optical Devices Optical measuring instruments Optical waveguides Optics Photonics Physics Physics and Astronomy Refractivity Sensors |
Title | Proposal for temperature-independent optical sensor based on asymmetric Mach–Zehnder interferometer |
URI | https://link.springer.com/article/10.1007/s11082-021-03271-6 https://www.proquest.com/docview/2581837395 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BFRIMPAqI8pIHNrCU2LETj-VREAjEQCVgiRzHVhn6ECkDG_-Bf8gvwZcmFBAMTLEU6wbfne-zffcdwH5olNIujmgWcUMjyR1NssSPYiek1on3dbzQv7qW593o4k7cVUVhRZ3tXj9Jljv1tNgt9OGKYkpBwFkcUjkLDYFnd2_FXdb-3H9lVPZlRTBMExWqqlTmdxnfw9EUY_54Fi2jTWcFliqYSNoTva7CjB00YbmCjKRyyKIJi1_4BJswX-ZzmmIN7A12Pyi8CA9KCfJPVeTJ9PGz7-2YDEflTTYp_FnWT8OIlpPhgOjipd_HVluGXGnTe399e7A9rIIhyC7x5CxyHPjBOnQ7p7fH57TqqEANi4Mx5blQkbVBZPJYYVFOImKVceSolwyJdDQXWZwrk3BnmAqU4U4pppPQKWtyzTdgbjAc2E0ggXGKscQKxV1kM6E9dJG5zrR0OhahbsFBvbDpaEKckU4pklENqVdDWqohlS3Yqdc-rZyoSJnwaILjS2ILDmt9TH__LW3rf9O3YYGhSZQVhjswN356trseaoyzPWi0j06OOvg9u7883Sst7QPAKM8p |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xCAEFxwJiOV3QgaXEjh27RAi0HIsoWAnRRI5jaynYRWQp6PgH_pAvwRMSFhAUdJZiTeHxeF7seW8A9mKrtfFpQvOEW5pI7qnKVRilXkhjVIh1vNDvXspOLzm7ETc1Kaxsqt2bJ8nqpB6T3eKQriiWFEScpTGVkzAdwIDCQq4eO_w8f2VS9WVFMEyVjnVNlfndxvd0NMaYP55Fq2xzsgQLNUwkhx9-XYYJN2jBYg0ZSR2QZQvmv-gJtmCmque05Qq4K-x-UAYTAZQS1J-qxZPp3Wff2xEZPlQ32aQM_7JhGma0ggwHxJTP9_fYasuSrrH9t5fXW9dHFgxBdYlH71DjIAxWoXdyfH3UoXVHBWpZGo0oL4ROnIsSW6QaSTlKpDrnqFEvGQrpGC7ytNBWcW-ZjrTlXmtmVOy1s4XhazA1GA7cOpDIes2YckJzn7hcmABdZGFyI71JRWzasN8sbPbwIZyRjSWS0Q1ZcENWuSGTbdhq1j6rg6jMmAhoguNLYhsOGn-MP_9tbeN_03dhtnPdvcguTi_PN2GO4fao2IZbMDV6fHLbAXaM8p1ql70DrgTPFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xCAQFxwJiOV3QgUVix05cImDFLQpWQjSR49iCguyKhIKOf-AP-RI82SwLCAo6S7FceGY8L_a8NwA7oVFKuziiWcQNjSR3NMkSP4qdkFonPtbxQv_ySp50o7NbcfuFxV9Xuw-fJAecBlRpKqr9fu72R8S30KcuiuUFAWdxSOU4TPrjOES_7rKDz7NYRnWPVgTGNFGhamgzv6_xPTWN8OaPJ9I683QWYK6BjORgYONFGLNFC-Yb-Eia4CxbMPtFW7AFU3VtpymXwF5jJ4TSL-EBKkEtqkZImT589sCtSK9f32qT0v_X-mmY3XLSK4guXx4fse2WIZfa3L-_vt3Ze2TEEFSaeHIW9Q78YBm6neObwxPadFeghsVBRXkuVGRtEJk8VkjQSUSsMo569ZKhqI7mIotzZRLuDFOBMtwpxXQSOmVNrvkKTBS9wq4CCYxTjCVWKO4imwntYYzMdaal07EIdRt2hxub9gciGulILhnNkHozpLUZUtmGjeHep01AlSkTHllwfFVsw97QHqPPf6-29r_p2zB9fdRJL06vztdhhqF31MTDDZionp7tpkcgVbZVO9kHxS3TUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+for+temperature-independent+optical+sensor+based+on+asymmetric+Mach%E2%80%93Zehnder+interferometer&rft.jtitle=Optical+and+quantum+electronics&rft.au=Luo+Yanxia&rft.au=Yin+Rui&rft.au=Ji%2C+Wei&rft.au=Huang+Qingjie&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0306-8919&rft.eissn=1572-817X&rft.volume=53&rft.issue=11&rft_id=info:doi/10.1007%2Fs11082-021-03271-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-8919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-8919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-8919&client=summon |