RCSFN: A remote sensing image scene classification and recognition network based on rectangle convolutional self attention fusion

Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 18; no. 12; pp. 8739 - 8756
Main Authors Hou, Jingjin, Zhou, Houkui, Yu, Huimin, Hu, Haoji
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique local details, thus affecting classification accuracy. Each category within remote sensing scenes has its unique local details, such as the rectangular features of buildings in schools or industrial areas, as well as bridges and roads in parks or squares. The most important features are often these rectangular structures and their spatial positions, which standard convolutional kernels find challenging to capture effectively.To address this issue, we propose a remote sensing scene classification method based on a Rectangle Convolution Self-Attention Fusion Network (RCSFN) architecture. In the RCSFN network, the Rectangle Convolution Maximum Fusion (RCMF) module operates in parallel with the first 4 × 4 convolutional layer of VanillaNet-5. The RCMF module uses two different rectangular convolutional kernels to extract different receptive fields, enhancing the extraction of shallow local features through addition and fusion. This process, combined with the concatenation of the original input features, results in richer local detail information.Additionally, we introduce an Area Selection (AS) module that focuses on selecting feature information within local regions. The Sequential Polarisation Self-Attention (SPS) mechanism, integrated with the Mini Region Convolution (MRC) module through feature multiplication, enhances important features and improves spatial positional relationships, thereby increasing the accuracy of recognising categories with rectangular or elongated features. Experiments were carried out on AID and NWPU-RESISC45 data sets, and the overall classification accuracy was 96.56% and 92.46%, respectively. This shows that the RCSFN network model proposed in this paper is feasible and effective for class classification problems with unique local detail features.
AbstractList Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique local details, thus affecting classification accuracy. Each category within remote sensing scenes has its unique local details, such as the rectangular features of buildings in schools or industrial areas, as well as bridges and roads in parks or squares. The most important features are often these rectangular structures and their spatial positions, which standard convolutional kernels find challenging to capture effectively.To address this issue, we propose a remote sensing scene classification method based on a Rectangle Convolution Self-Attention Fusion Network (RCSFN) architecture. In the RCSFN network, the Rectangle Convolution Maximum Fusion (RCMF) module operates in parallel with the first 4 × 4 convolutional layer of VanillaNet-5. The RCMF module uses two different rectangular convolutional kernels to extract different receptive fields, enhancing the extraction of shallow local features through addition and fusion. This process, combined with the concatenation of the original input features, results in richer local detail information.Additionally, we introduce an Area Selection (AS) module that focuses on selecting feature information within local regions. The Sequential Polarisation Self-Attention (SPS) mechanism, integrated with the Mini Region Convolution (MRC) module through feature multiplication, enhances important features and improves spatial positional relationships, thereby increasing the accuracy of recognising categories with rectangular or elongated features. Experiments were carried out on AID and NWPU-RESISC45 data sets, and the overall classification accuracy was 96.56% and 92.46%, respectively. This shows that the RCSFN network model proposed in this paper is feasible and effective for class classification problems with unique local detail features.
Author Hou, Jingjin
Hu, Haoji
Zhou, Houkui
Yu, Huimin
Author_xml – sequence: 1
  givenname: Jingjin
  surname: Hou
  fullname: Hou, Jingjin
  organization: School of Mathematics and Computer Science, Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology
– sequence: 2
  givenname: Houkui
  surname: Zhou
  fullname: Zhou, Houkui
  email: zhouhk@zju.edu.cn
  organization: School of Mathematics and Computer Science, Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology
– sequence: 3
  givenname: Huimin
  surname: Yu
  fullname: Yu, Huimin
  organization: College of Information Science and Electronic Engineering, Zhejiang University, State Key Laboratory of CAD & CG
– sequence: 4
  givenname: Haoji
  surname: Hu
  fullname: Hu, Haoji
  organization: College of Information Science and Electronic Engineering, Zhejiang University
BookMark eNp9kEtPAyEUhYmpibX2D7gicT3KY2DQXdNYNWk08bEmDAOTqVOowGhc-s-lrdGdLO7lXr5zQs4xGDnvDACnGJ1jhKqLiHHFUYFIWSDKMC7EARhjwWmBK4xHv3dEj8A0xhXKh5JKcDEGX4_zp8X9FZzBYNY-GRiNi51rYbdWbZ60cQbqXsXY2U6r1HkHlWsyrX3rut3sTPrw4RXWKpoG5kV-TMq1fVZ69-77YYupPnv3FqqUjNvp7BBzOwGHVvXRTH_6BLwsrp_nt8Xy4eZuPlsWmlQoFbS-ZKzh1mgluMIE1TXTAhlSY65QSTmzVNFKN7wkFWeaMyOYEpYIzQTFgk7A2d53E_zbYGKSKz-E_K0oKSYlRrmwTJE9pYOPMRgrNyFHET4lRnKbttynLXPacpe23FrTvShm2LUm_Fn_o_oGpf2FWw
Cites_doi 10.1109/JSTARS.2023.3290676
10.1109/TGRS.2017.2685945
10.1038/s41598-022-19831-z
10.1109/JSTARS.2021.3051569
10.3390/rs15112865
10.1016/0034-4257(80)90044-9
10.3390/rs13101950
10.3390/rs14205095
10.1109/TNNLS.2021.3071369
10.1109/TGRS.2018.2864987
10.1109/TIP.2020.2975718
10.1109/ACCESS.2021.3116968
10.1109/LGRS.2020.2968550
10.1109/LGRS.2019.2894399
10.1109/JSTARS.2020.3018307
10.1109/TGRS.2020.3047447
10.1109/ACCESS.2020.3038989
10.1109/JSTARS.2022.3155665
10.3390/rs13040548
10.1109/TGRS.2020.3044655
10.1049/ipr2.12836
10.1109/TGRS.2017.2783902
10.1109/JPROC.2017.2675998
10.1109/TGRS.2019.2931801
10.1109/ACCESS.2019.2918732
10.1109/TGRS.2019.2917161
10.1109/JSTARS.2021.3117857
10.1109/TGRS.2016.2523563
10.1109/LGRS.2022.3176499
10.1109/CVPR.2017.195
10.1155/2018/8639367
10.1109/IGARSS.2019.8900199
10.1109/ICCV48922.2021.01172
10.1109/ICCV48922.2021.00061
10.1109/ICCV48922.2021.00060
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11760-024-03511-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 8756
ExternalDocumentID 10_1007_s11760_024_03511_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-3b955d6feca86a120bb5c80e2b16a04365f3a37cd642765c65e85a8f28c583183
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Sat Jul 26 00:26:11 EDT 2025
Tue Jul 01 03:24:23 EDT 2025
Fri Feb 21 02:36:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Scene classification
Attention mechanism
Local feature fusion
Remote sensing
Position enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-3b955d6feca86a120bb5c80e2b16a04365f3a37cd642765c65e85a8f28c583183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3124101245
PQPubID 2044169
PageCount 18
ParticipantIDs proquest_journals_3124101245
crossref_primary_10_1007_s11760_024_03511_8
springer_journals_10_1007_s11760_024_03511_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Wang, Yuan, Xu, Wen (CR17) 2021; 14
Wang, Xu, Yuan, Wen (CR18) 2023; 17
CR19
Li, Zhu, Yu, Zhang (CR3) 2021; 59
CR38
Xu, Huang, Deng, Li (CR23) 2022; 33
CR37
Yao, Han, Cheng, Qian, Guo (CR2) 2016; 54
Sun, Li, Zheng, Lu (CR5) 2020; 58
Wang, Xu, Yuan, Dai, Wen (CR32) 2022; 14
Hao, Li, Ye (CR16) 2023; 16
CR30
Wu, Zhao, Li, Lu, Chen (CR12) 2020; 8
Lu, Sun, Zheng (CR25) 2019; 57
Cao, Fang, Lu, He (CR6) 2021; 18
Shi, Zhao, Wang (CR13) 2021; 13
Wang, Wang, Ning, Zhou (CR11) 2021; 59
Zhang, Pun, Liu (CR39) 2021; 13
Sha, Li (CR14) 2022; 19
Xia, Hu, Hu, Shi, Bai, Zhong, Zhang, Lu (CR21) 2017; 55
Cheng, Yang, Yao, Guo, Han (CR34) 2018; 56
Ma, Li, Tang, Zhang, Liu, Jiao (CR31) 2022; 15
Liu, Zhou, Zhao, Yao, Liu, Zheng (CR35) 2019; 16
Walsh (CR1) 1980; 9
Zheng, Lin, Zhou, Huang (CR15) 2023; 15
Wang, Liu, Chanussot, Li (CR4) 2019; 57
CR29
CR28
CR9
CR26
CR24
Shi, Wang, Wang (CR7) 2020; 13
Guo, Ji, Lu, Huo, Fang, Li (CR36) 2019; 7
CR20
Cheng, Han, Lu (CR22) 2017; 105
Bi, Qin, Li, Zhang, Xu, Xia (CR10) 2020; 29
Guo, Jia, Bai (CR27) 2022; 12
Kong, Gao, Zhang, Lei, Wang, Zhang (CR33) 2021; 9
Tang, Ma, Zhang, Liu, Ma, Jiao (CR8) 2021; 14
Q Wang (3511_CR4) 2019; 57
C Shi (3511_CR7) 2020; 13
3511_CR20
G-S Xia (3511_CR21) 2017; 55
3511_CR24
G Cheng (3511_CR34) 2018; 56
Y Guo (3511_CR36) 2019; 7
J Guo (3511_CR27) 2022; 12
X Yao (3511_CR2) 2016; 54
X Tang (3511_CR8) 2021; 14
H Sun (3511_CR5) 2020; 58
X Wang (3511_CR17) 2021; 14
SJ Walsh (3511_CR1) 1980; 9
Q Bi (3511_CR10) 2020; 29
3511_CR26
3511_CR29
3511_CR28
X Wang (3511_CR32) 2022; 14
G Cheng (3511_CR22) 2017; 105
H Wu (3511_CR12) 2020; 8
3511_CR30
R Cao (3511_CR6) 2021; 18
Y Li (3511_CR3) 2021; 59
X Wang (3511_CR11) 2021; 59
Z Sha (3511_CR14) 2022; 19
X Zhang (3511_CR39) 2021; 13
J Ma (3511_CR31) 2022; 15
X Wang (3511_CR18) 2023; 17
3511_CR9
F Zheng (3511_CR15) 2023; 15
S Hao (3511_CR16) 2023; 16
C Shi (3511_CR13) 2021; 13
X Lu (3511_CR25) 2019; 57
3511_CR38
J Kong (3511_CR33) 2021; 9
3511_CR37
K Xu (3511_CR23) 2022; 33
X Liu (3511_CR35) 2019; 16
3511_CR19
References_xml – volume: 16
  start-page: 6265
  year: 2023
  end-page: 6278
  ident: CR16
  article-title: Inductive biased swin-transformer with cyclic Regressor for Remote sensing scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2023.3290676
– volume: 55
  start-page: 3965
  year: 2017
  end-page: 3981
  ident: CR21
  article-title: AID: A Benchmark Data Set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– volume: 12
  start-page: 15473
  year: 2022
  ident: CR27
  article-title: Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19831-z
– volume: 14
  start-page: 2030
  year: 2021
  end-page: 2045
  ident: CR8
  article-title: Attention consistent network for remote sensing scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2021.3051569
– volume: 15
  start-page: 2865
  year: 2023
  ident: CR15
  article-title: A Lightweight Dual-Branch Swin Transformer for Remote sensing scene classification
  publication-title: Remote Sens.
  doi: 10.3390/rs15112865
– volume: 9
  start-page: 11
  year: 1980
  end-page: 26
  ident: CR1
  article-title: Coniferous tree species mapping using LANDSAT data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90044-9
– ident: CR37
– ident: CR30
– volume: 13
  start-page: 1950
  year: 2021
  ident: CR13
  article-title: A Multi-branch Feature Fusion Strategy based on an attention mechanism for remote sensing image scene classification
  publication-title: Remote Sens.
  doi: 10.3390/rs13101950
– volume: 14
  start-page: 5095
  year: 2022
  ident: CR32
  article-title: A remote-sensing scene-image classification method based on deep multiple-Instance Learning with a residual dense attention ConvNet
  publication-title: Remote Sens.
  doi: 10.3390/rs14205095
– volume: 33
  start-page: 5751
  year: 2022
  end-page: 5765
  ident: CR23
  article-title: Deep feature aggregation Framework Driven by Graph Convolutional Network for Scene Classification in Remote Sensing
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3071369
– volume: 57
  start-page: 1155
  year: 2019
  end-page: 1167
  ident: CR4
  article-title: Scene classification with recurrent attention of VHR Remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2864987
– volume: 29
  start-page: 4911
  year: 2020
  end-page: 4926
  ident: CR10
  article-title: A multiple-Instance densely-connected ConvNet for Aerial scene classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2975718
– volume: 9
  start-page: 134800
  year: 2021
  end-page: 134808
  ident: CR33
  article-title: Improved attention mechanism and residual network for remote sensing image scene classification
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3116968
– ident: CR29
– volume: 18
  start-page: 43
  year: 2021
  end-page: 47
  ident: CR6
  article-title: Self-attention-based Deep Feature Fusion for Remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2968550
– volume: 16
  start-page: 1200
  year: 2019
  end-page: 1204
  ident: CR35
  article-title: Siamese convolutional neural networks for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2894399
– volume: 13
  start-page: 5194
  year: 2020
  end-page: 5210
  ident: CR7
  article-title: Branch Feature Fusion Convolution Network for Remote sensing scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.3018307
– volume: 59
  start-page: 10590
  year: 2021
  end-page: 10603
  ident: CR3
  article-title: Learning Deep Cross-modal Embedding Networks for Zero-Shot Remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047447
– volume: 8
  start-page: 210347
  year: 2020
  end-page: 210359
  ident: CR12
  article-title: Self-attention Network with Joint loss for remote sensing image scene classification
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3038989
– volume: 15
  start-page: 2223
  year: 2022
  end-page: 2239
  ident: CR31
  article-title: Homo–Heterogenous Transformer Learning Framework for RS Scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2022.3155665
– volume: 13
  start-page: 548
  year: 2021
  ident: CR39
  article-title: Semi-supervised multi-temporal deep representation Fusion Network for Landslide Mapping from Aerial Orthophotos
  publication-title: Remote Sens.
  doi: 10.3390/rs13040548
– volume: 59
  start-page: 7918
  year: 2021
  end-page: 7932
  ident: CR11
  article-title: Enhanced feature pyramid Network with Deep Semantic Embedding for Remote sensing scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3044655
– ident: CR19
– volume: 17
  start-page: 3106
  year: 2023
  end-page: 3126
  ident: CR18
  article-title: A lightweight and stochastic depth residual attention network for remote sensing scene classification
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12836
– ident: CR38
– volume: 56
  start-page: 2811
  year: 2018
  end-page: 2821
  ident: CR34
  article-title: When Deep Learning meets Metric Learning: Remote sensing image scene classification via learning discriminative CNNs
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2783902
– volume: 105
  start-page: 1865
  year: 2017
  end-page: 1883
  ident: CR22
  article-title: Remote sensing image scene classification: Benchmark and State of the art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– ident: CR9
– volume: 58
  start-page: 82
  year: 2020
  end-page: 96
  ident: CR5
  article-title: Remote sensing scene classification by gated bidirectional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2931801
– volume: 7
  start-page: 67200
  year: 2019
  end-page: 67212
  ident: CR36
  article-title: Global-local attention network for aerial scene classification
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2918732
– volume: 57
  start-page: 7894
  year: 2019
  end-page: 7906
  ident: CR25
  article-title: A feature aggregation convolutional neural network for remote sensing scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2917161
– volume: 14
  start-page: 10484
  year: 2021
  end-page: 10499
  ident: CR17
  article-title: CSDS: End-to-end aerial scenes classification with Depthwise Separable Convolution and an attention mechanism
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2021.3117857
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 54
  start-page: 3660
  year: 2016
  end-page: 3671
  ident: CR2
  article-title: Semantic annotation of high-Resolution Satellite images via weakly supervised learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2523563
– ident: CR20
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: CR14
  article-title: MITformer: A Multiinstance Vision Transformer for Remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3176499
– ident: 3511_CR9
– volume: 16
  start-page: 6265
  year: 2023
  ident: 3511_CR16
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2023.3290676
– volume: 18
  start-page: 43
  year: 2021
  ident: 3511_CR6
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2968550
– volume: 13
  start-page: 5194
  year: 2020
  ident: 3511_CR7
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2020.3018307
– volume: 15
  start-page: 2865
  year: 2023
  ident: 3511_CR15
  publication-title: Remote Sens.
  doi: 10.3390/rs15112865
– volume: 55
  start-page: 3965
  year: 2017
  ident: 3511_CR21
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– volume: 29
  start-page: 4911
  year: 2020
  ident: 3511_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2975718
– volume: 57
  start-page: 7894
  year: 2019
  ident: 3511_CR25
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2917161
– volume: 14
  start-page: 5095
  year: 2022
  ident: 3511_CR32
  publication-title: Remote Sens.
  doi: 10.3390/rs14205095
– ident: 3511_CR24
  doi: 10.1109/CVPR.2017.195
– ident: 3511_CR26
  doi: 10.1155/2018/8639367
– ident: 3511_CR20
– volume: 14
  start-page: 2030
  year: 2021
  ident: 3511_CR8
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2021.3051569
– volume: 8
  start-page: 210347
  year: 2020
  ident: 3511_CR12
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3038989
– ident: 3511_CR37
  doi: 10.1109/IGARSS.2019.8900199
– volume: 17
  start-page: 3106
  year: 2023
  ident: 3511_CR18
  publication-title: IET Image Proc.
  doi: 10.1049/ipr2.12836
– volume: 12
  start-page: 15473
  year: 2022
  ident: 3511_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19831-z
– volume: 13
  start-page: 1950
  year: 2021
  ident: 3511_CR13
  publication-title: Remote Sens.
  doi: 10.3390/rs13101950
– volume: 9
  start-page: 11
  year: 1980
  ident: 3511_CR1
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90044-9
– ident: 3511_CR29
  doi: 10.1109/ICCV48922.2021.01172
– volume: 13
  start-page: 548
  year: 2021
  ident: 3511_CR39
  publication-title: Remote Sens.
  doi: 10.3390/rs13040548
– volume: 57
  start-page: 1155
  year: 2019
  ident: 3511_CR4
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2864987
– volume: 59
  start-page: 10590
  year: 2021
  ident: 3511_CR3
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047447
– volume: 15
  start-page: 2223
  year: 2022
  ident: 3511_CR31
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2022.3155665
– volume: 7
  start-page: 67200
  year: 2019
  ident: 3511_CR36
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2918732
– ident: 3511_CR28
  doi: 10.1109/ICCV48922.2021.00061
– volume: 14
  start-page: 10484
  year: 2021
  ident: 3511_CR17
  publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.
  doi: 10.1109/JSTARS.2021.3117857
– volume: 59
  start-page: 7918
  year: 2021
  ident: 3511_CR11
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3044655
– ident: 3511_CR19
– ident: 3511_CR38
– volume: 58
  start-page: 82
  year: 2020
  ident: 3511_CR5
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2931801
– volume: 54
  start-page: 3660
  year: 2016
  ident: 3511_CR2
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2523563
– ident: 3511_CR30
  doi: 10.1109/ICCV48922.2021.00060
– volume: 105
  start-page: 1865
  year: 2017
  ident: 3511_CR22
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– volume: 56
  start-page: 2811
  year: 2018
  ident: 3511_CR34
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2783902
– volume: 33
  start-page: 5751
  year: 2022
  ident: 3511_CR23
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3071369
– volume: 19
  start-page: 1
  year: 2022
  ident: 3511_CR14
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3176499
– volume: 9
  start-page: 134800
  year: 2021
  ident: 3511_CR33
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3116968
– volume: 16
  start-page: 1200
  year: 2019
  ident: 3511_CR35
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2894399
SSID ssj0000327868
Score 2.3381746
Snippet Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 8739
SubjectTerms Accuracy
Classification
Computer Imaging
Computer Science
Convolution
Feature extraction
Image Processing and Computer Vision
Industrial areas
Modules
Multimedia Information Systems
Multiplication
Original Paper
Pattern Recognition and Graphics
Rectangles
Remote sensing
Signal,Image and Speech Processing
Vision
Title RCSFN: A remote sensing image scene classification and recognition network based on rectangle convolutional self attention fusion
URI https://link.springer.com/article/10.1007/s11760-024-03511-8
https://www.proquest.com/docview/3124101245
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgUUCUlzywgaXUiR2HrSAKAtEBqART5Dg2Qiopags7_5y7NKGAYGCK8rKifOd7-e4zwIH3TtnQU6IqsjyK8ognwjuuklhYDA_QpFG_83VPXfSjy3t5XzWFjetq93pJstTUs2a3dqwCjjaFl6tfXM9DQ1LsjlLcF53PzEoQilhPe-C0Iv7NIKy6ZX4f5rtFmrmZP1ZGS4PTXYXlylNknSm0azDniias1LswsGpSNmHpC6XgOrzfnN52e8esw0YOUXBsTBXqxSN7ekbNwYi7yTFLLjPVCJWwMFPk7LOQCM-LaWk4IwuXM7xAWtEUjwN8c1i8VcKK3zZ2A8-IoLMsmWT-lVJvG9Dvnt2dXvBqmwVuRRxMeJglUubKO2u0Mm0RZJm0OnAiaytDDPXShyaMbY6hSqykVdJpabQX2kpNKmETFoph4baAWWOUcVpZlyQIu0V1kWBAkiVW2Ch2pgWH9a9OX6ZsGumMN5mASRGYtAQm1S3YrdFIq5k1TkN0SIiTLJItOKoRmt3-e7Tt_z2-A4uChKSsXNmFhcno1e2h_zHJ9qHR6Z6c9Oh4_nB1tl-K3weHLNVi
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8PbCBpdSJHYetqqjKqwNQiS1yHLtCgoBoYeefc5cmFBAMjHlZkT_77uz77jPAofdO2dDTRlVkeRTlEU-Ed1wlsbC4PECXRvXOV33VG0Tnd_KuKgob1Wz3OiVZWuppsVsrVgFHn8LL7BfXszCHwYAmItdAtD93VoJQxHpSA6cV6W8GYVUt83sz3z3SNMz8kRktHU53BZaqSJG1J9Cuwowr1mC5PoWBVZNyDRa_SAquw_t156bbP2Ft9uIQBcdGxFAvhuz-ES0HI-0mxyyFzMQRKmFhpsjZJ5EIr4sJNZyRh8sZ3iCraIrhA375VLxVgxX_beQePCOBzpIyyfwrbb1twKB7etvp8eqYBW5FHIx5mCVS5so7a7QyLRFkmbQ6cCJrKUMK9dKHJoxtjkuVWEmrpNPSaC-0lZpMwiY0iqfCbQGzxijjtLIuSRB2i-YiwQVJllhho9iZJhzVXZ0-T9Q00qluMgGTIjBpCUyqm7Bbo5FWM2uUhhiQkCZZJJtwXCM0ffx3a9v_e_0A5nu3V5fp5Vn_YgcWBA2YksWyC43xy6vbw1hknO2XQ-8DXDvVRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIqH2AHTbioUCPnCj1mad2HG4rQrRAmVVFVbaW-Q4dlWpuKvdbe_8c2by0RRUDhzzZUV-45mx_eYZ4J33TtnY00JVYnmSVAnPhHdcZamwOD3AkEb1zt9majpPvizk4l4Vf81277Ykm5oGUmkKm9Gy8qO-8G2cqohjfOH1ThjXW_AY3fGY7HouJnerLFEsUt3Uw2lFWpxR3FbOPNzMn9GpTzn_2iWtg0_-HJ62WSObNDDvwSMXBvCsO5GBtQN0ALv35AX34df5yfd89oFN2MohIo6tia0eLtjlT_QijHScHLOUPhNfqIaImVCxO1IRXoeGJs4o2lUMb5CHNOHiCr-8Dret4eK_rd2VZyTWWdMnmb-hZbgDmOeffpxMeXvkArcijTY8LjMpK-WdNVqZsYjKUlodOVGOlSG1euljE6e2wmlLqqRV0mlptBfaSk3u4RC2w3VwL4BZY5RxWlmXZWgCFl1HhpOTMrPCJqkzQ3jfdXWxbJQ1il5DmYApEJiiBqbQQzjq0CjaUbYuYkxOSJ8skUM47hDqH_-7tZf_9_pbeHL2MS9OP8--voIdQfZSE1qOYHuzunGvMS3ZlG9qy_sNx73ZgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCSFN%3A+A+remote+sensing+image+scene+classification+and+recognition+network+based+on+rectangle+convolutional+self+attention+fusion&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Hou%2C+Jingjin&rft.au=Zhou%2C+Houkui&rft.au=Yu%2C+Huimin&rft.au=Hu%2C+Haoji&rft.date=2024-12-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=12&rft.spage=8739&rft.epage=8756&rft_id=info:doi/10.1007%2Fs11760-024-03511-8&rft.externalDocID=10_1007_s11760_024_03511_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon