RCSFN: A remote sensing image scene classification and recognition network based on rectangle convolutional self attention fusion
Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique...
Saved in:
Published in | Signal, image and video processing Vol. 18; no. 12; pp. 8739 - 8756 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique local details, thus affecting classification accuracy. Each category within remote sensing scenes has its unique local details, such as the rectangular features of buildings in schools or industrial areas, as well as bridges and roads in parks or squares. The most important features are often these rectangular structures and their spatial positions, which standard convolutional kernels find challenging to capture effectively.To address this issue, we propose a remote sensing scene classification method based on a Rectangle Convolution Self-Attention Fusion Network (RCSFN) architecture. In the RCSFN network, the Rectangle Convolution Maximum Fusion (RCMF) module operates in parallel with the first 4 × 4 convolutional layer of VanillaNet-5. The RCMF module uses two different rectangular convolutional kernels to extract different receptive fields, enhancing the extraction of shallow local features through addition and fusion. This process, combined with the concatenation of the original input features, results in richer local detail information.Additionally, we introduce an Area Selection (AS) module that focuses on selecting feature information within local regions. The Sequential Polarisation Self-Attention (SPS) mechanism, integrated with the Mini Region Convolution (MRC) module through feature multiplication, enhances important features and improves spatial positional relationships, thereby increasing the accuracy of recognising categories with rectangular or elongated features. Experiments were carried out on AID and NWPU-RESISC45 data sets, and the overall classification accuracy was 96.56% and 92.46%, respectively. This shows that the RCSFN network model proposed in this paper is feasible and effective for class classification problems with unique local detail features. |
---|---|
AbstractList | Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard convolutional kernels to extract feature information. Although these methods have seen improvements, they still struggle to fully capture unique local details, thus affecting classification accuracy. Each category within remote sensing scenes has its unique local details, such as the rectangular features of buildings in schools or industrial areas, as well as bridges and roads in parks or squares. The most important features are often these rectangular structures and their spatial positions, which standard convolutional kernels find challenging to capture effectively.To address this issue, we propose a remote sensing scene classification method based on a Rectangle Convolution Self-Attention Fusion Network (RCSFN) architecture. In the RCSFN network, the Rectangle Convolution Maximum Fusion (RCMF) module operates in parallel with the first 4 × 4 convolutional layer of VanillaNet-5. The RCMF module uses two different rectangular convolutional kernels to extract different receptive fields, enhancing the extraction of shallow local features through addition and fusion. This process, combined with the concatenation of the original input features, results in richer local detail information.Additionally, we introduce an Area Selection (AS) module that focuses on selecting feature information within local regions. The Sequential Polarisation Self-Attention (SPS) mechanism, integrated with the Mini Region Convolution (MRC) module through feature multiplication, enhances important features and improves spatial positional relationships, thereby increasing the accuracy of recognising categories with rectangular or elongated features. Experiments were carried out on AID and NWPU-RESISC45 data sets, and the overall classification accuracy was 96.56% and 92.46%, respectively. This shows that the RCSFN network model proposed in this paper is feasible and effective for class classification problems with unique local detail features. |
Author | Hou, Jingjin Hu, Haoji Zhou, Houkui Yu, Huimin |
Author_xml | – sequence: 1 givenname: Jingjin surname: Hou fullname: Hou, Jingjin organization: School of Mathematics and Computer Science, Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology – sequence: 2 givenname: Houkui surname: Zhou fullname: Zhou, Houkui email: zhouhk@zju.edu.cn organization: School of Mathematics and Computer Science, Zhejiang A&F University, Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology – sequence: 3 givenname: Huimin surname: Yu fullname: Yu, Huimin organization: College of Information Science and Electronic Engineering, Zhejiang University, State Key Laboratory of CAD & CG – sequence: 4 givenname: Haoji surname: Hu fullname: Hu, Haoji organization: College of Information Science and Electronic Engineering, Zhejiang University |
BookMark | eNp9kEtPAyEUhYmpibX2D7gicT3KY2DQXdNYNWk08bEmDAOTqVOowGhc-s-lrdGdLO7lXr5zQs4xGDnvDACnGJ1jhKqLiHHFUYFIWSDKMC7EARhjwWmBK4xHv3dEj8A0xhXKh5JKcDEGX4_zp8X9FZzBYNY-GRiNi51rYbdWbZ60cQbqXsXY2U6r1HkHlWsyrX3rut3sTPrw4RXWKpoG5kV-TMq1fVZ69-77YYupPnv3FqqUjNvp7BBzOwGHVvXRTH_6BLwsrp_nt8Xy4eZuPlsWmlQoFbS-ZKzh1mgluMIE1TXTAhlSY65QSTmzVNFKN7wkFWeaMyOYEpYIzQTFgk7A2d53E_zbYGKSKz-E_K0oKSYlRrmwTJE9pYOPMRgrNyFHET4lRnKbttynLXPacpe23FrTvShm2LUm_Fn_o_oGpf2FWw |
Cites_doi | 10.1109/JSTARS.2023.3290676 10.1109/TGRS.2017.2685945 10.1038/s41598-022-19831-z 10.1109/JSTARS.2021.3051569 10.3390/rs15112865 10.1016/0034-4257(80)90044-9 10.3390/rs13101950 10.3390/rs14205095 10.1109/TNNLS.2021.3071369 10.1109/TGRS.2018.2864987 10.1109/TIP.2020.2975718 10.1109/ACCESS.2021.3116968 10.1109/LGRS.2020.2968550 10.1109/LGRS.2019.2894399 10.1109/JSTARS.2020.3018307 10.1109/TGRS.2020.3047447 10.1109/ACCESS.2020.3038989 10.1109/JSTARS.2022.3155665 10.3390/rs13040548 10.1109/TGRS.2020.3044655 10.1049/ipr2.12836 10.1109/TGRS.2017.2783902 10.1109/JPROC.2017.2675998 10.1109/TGRS.2019.2931801 10.1109/ACCESS.2019.2918732 10.1109/TGRS.2019.2917161 10.1109/JSTARS.2021.3117857 10.1109/TGRS.2016.2523563 10.1109/LGRS.2022.3176499 10.1109/CVPR.2017.195 10.1155/2018/8639367 10.1109/IGARSS.2019.8900199 10.1109/ICCV48922.2021.01172 10.1109/ICCV48922.2021.00061 10.1109/ICCV48922.2021.00060 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-024-03511-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 8756 |
ExternalDocumentID | 10_1007_s11760_024_03511_8 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-3b955d6feca86a120bb5c80e2b16a04365f3a37cd642765c65e85a8f28c583183 |
IEDL.DBID | U2A |
ISSN | 1863-1703 |
IngestDate | Sat Jul 26 00:26:11 EDT 2025 Tue Jul 01 03:24:23 EDT 2025 Fri Feb 21 02:36:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Scene classification Attention mechanism Local feature fusion Remote sensing Position enhancement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-3b955d6feca86a120bb5c80e2b16a04365f3a37cd642765c65e85a8f28c583183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3124101245 |
PQPubID | 2044169 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3124101245 crossref_primary_10_1007_s11760_024_03511_8 springer_journals_10_1007_s11760_024_03511_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Wang, Yuan, Xu, Wen (CR17) 2021; 14 Wang, Xu, Yuan, Wen (CR18) 2023; 17 CR19 Li, Zhu, Yu, Zhang (CR3) 2021; 59 CR38 Xu, Huang, Deng, Li (CR23) 2022; 33 CR37 Yao, Han, Cheng, Qian, Guo (CR2) 2016; 54 Sun, Li, Zheng, Lu (CR5) 2020; 58 Wang, Xu, Yuan, Dai, Wen (CR32) 2022; 14 Hao, Li, Ye (CR16) 2023; 16 CR30 Wu, Zhao, Li, Lu, Chen (CR12) 2020; 8 Lu, Sun, Zheng (CR25) 2019; 57 Cao, Fang, Lu, He (CR6) 2021; 18 Shi, Zhao, Wang (CR13) 2021; 13 Wang, Wang, Ning, Zhou (CR11) 2021; 59 Zhang, Pun, Liu (CR39) 2021; 13 Sha, Li (CR14) 2022; 19 Xia, Hu, Hu, Shi, Bai, Zhong, Zhang, Lu (CR21) 2017; 55 Cheng, Yang, Yao, Guo, Han (CR34) 2018; 56 Ma, Li, Tang, Zhang, Liu, Jiao (CR31) 2022; 15 Liu, Zhou, Zhao, Yao, Liu, Zheng (CR35) 2019; 16 Walsh (CR1) 1980; 9 Zheng, Lin, Zhou, Huang (CR15) 2023; 15 Wang, Liu, Chanussot, Li (CR4) 2019; 57 CR29 CR28 CR9 CR26 CR24 Shi, Wang, Wang (CR7) 2020; 13 Guo, Ji, Lu, Huo, Fang, Li (CR36) 2019; 7 CR20 Cheng, Han, Lu (CR22) 2017; 105 Bi, Qin, Li, Zhang, Xu, Xia (CR10) 2020; 29 Guo, Jia, Bai (CR27) 2022; 12 Kong, Gao, Zhang, Lei, Wang, Zhang (CR33) 2021; 9 Tang, Ma, Zhang, Liu, Ma, Jiao (CR8) 2021; 14 Q Wang (3511_CR4) 2019; 57 C Shi (3511_CR7) 2020; 13 3511_CR20 G-S Xia (3511_CR21) 2017; 55 3511_CR24 G Cheng (3511_CR34) 2018; 56 Y Guo (3511_CR36) 2019; 7 J Guo (3511_CR27) 2022; 12 X Yao (3511_CR2) 2016; 54 X Tang (3511_CR8) 2021; 14 H Sun (3511_CR5) 2020; 58 X Wang (3511_CR17) 2021; 14 SJ Walsh (3511_CR1) 1980; 9 Q Bi (3511_CR10) 2020; 29 3511_CR26 3511_CR29 3511_CR28 X Wang (3511_CR32) 2022; 14 G Cheng (3511_CR22) 2017; 105 H Wu (3511_CR12) 2020; 8 3511_CR30 R Cao (3511_CR6) 2021; 18 Y Li (3511_CR3) 2021; 59 X Wang (3511_CR11) 2021; 59 Z Sha (3511_CR14) 2022; 19 X Zhang (3511_CR39) 2021; 13 J Ma (3511_CR31) 2022; 15 X Wang (3511_CR18) 2023; 17 3511_CR9 F Zheng (3511_CR15) 2023; 15 S Hao (3511_CR16) 2023; 16 C Shi (3511_CR13) 2021; 13 X Lu (3511_CR25) 2019; 57 3511_CR38 J Kong (3511_CR33) 2021; 9 3511_CR37 K Xu (3511_CR23) 2022; 33 X Liu (3511_CR35) 2019; 16 3511_CR19 |
References_xml | – volume: 16 start-page: 6265 year: 2023 end-page: 6278 ident: CR16 article-title: Inductive biased swin-transformer with cyclic Regressor for Remote sensing scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2023.3290676 – volume: 55 start-page: 3965 year: 2017 end-page: 3981 ident: CR21 article-title: AID: A Benchmark Data Set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – volume: 12 start-page: 15473 year: 2022 ident: CR27 article-title: Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image publication-title: Sci. Rep. doi: 10.1038/s41598-022-19831-z – volume: 14 start-page: 2030 year: 2021 end-page: 2045 ident: CR8 article-title: Attention consistent network for remote sensing scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2021.3051569 – volume: 15 start-page: 2865 year: 2023 ident: CR15 article-title: A Lightweight Dual-Branch Swin Transformer for Remote sensing scene classification publication-title: Remote Sens. doi: 10.3390/rs15112865 – volume: 9 start-page: 11 year: 1980 end-page: 26 ident: CR1 article-title: Coniferous tree species mapping using LANDSAT data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90044-9 – ident: CR37 – ident: CR30 – volume: 13 start-page: 1950 year: 2021 ident: CR13 article-title: A Multi-branch Feature Fusion Strategy based on an attention mechanism for remote sensing image scene classification publication-title: Remote Sens. doi: 10.3390/rs13101950 – volume: 14 start-page: 5095 year: 2022 ident: CR32 article-title: A remote-sensing scene-image classification method based on deep multiple-Instance Learning with a residual dense attention ConvNet publication-title: Remote Sens. doi: 10.3390/rs14205095 – volume: 33 start-page: 5751 year: 2022 end-page: 5765 ident: CR23 article-title: Deep feature aggregation Framework Driven by Graph Convolutional Network for Scene Classification in Remote Sensing publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3071369 – volume: 57 start-page: 1155 year: 2019 end-page: 1167 ident: CR4 article-title: Scene classification with recurrent attention of VHR Remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2864987 – volume: 29 start-page: 4911 year: 2020 end-page: 4926 ident: CR10 article-title: A multiple-Instance densely-connected ConvNet for Aerial scene classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975718 – volume: 9 start-page: 134800 year: 2021 end-page: 134808 ident: CR33 article-title: Improved attention mechanism and residual network for remote sensing image scene classification publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3116968 – ident: CR29 – volume: 18 start-page: 43 year: 2021 end-page: 47 ident: CR6 article-title: Self-attention-based Deep Feature Fusion for Remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2968550 – volume: 16 start-page: 1200 year: 2019 end-page: 1204 ident: CR35 article-title: Siamese convolutional neural networks for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2894399 – volume: 13 start-page: 5194 year: 2020 end-page: 5210 ident: CR7 article-title: Branch Feature Fusion Convolution Network for Remote sensing scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2020.3018307 – volume: 59 start-page: 10590 year: 2021 end-page: 10603 ident: CR3 article-title: Learning Deep Cross-modal Embedding Networks for Zero-Shot Remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3047447 – volume: 8 start-page: 210347 year: 2020 end-page: 210359 ident: CR12 article-title: Self-attention Network with Joint loss for remote sensing image scene classification publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3038989 – volume: 15 start-page: 2223 year: 2022 end-page: 2239 ident: CR31 article-title: Homo–Heterogenous Transformer Learning Framework for RS Scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2022.3155665 – volume: 13 start-page: 548 year: 2021 ident: CR39 article-title: Semi-supervised multi-temporal deep representation Fusion Network for Landslide Mapping from Aerial Orthophotos publication-title: Remote Sens. doi: 10.3390/rs13040548 – volume: 59 start-page: 7918 year: 2021 end-page: 7932 ident: CR11 article-title: Enhanced feature pyramid Network with Deep Semantic Embedding for Remote sensing scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3044655 – ident: CR19 – volume: 17 start-page: 3106 year: 2023 end-page: 3126 ident: CR18 article-title: A lightweight and stochastic depth residual attention network for remote sensing scene classification publication-title: IET Image Proc. doi: 10.1049/ipr2.12836 – ident: CR38 – volume: 56 start-page: 2811 year: 2018 end-page: 2821 ident: CR34 article-title: When Deep Learning meets Metric Learning: Remote sensing image scene classification via learning discriminative CNNs publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2783902 – volume: 105 start-page: 1865 year: 2017 end-page: 1883 ident: CR22 article-title: Remote sensing image scene classification: Benchmark and State of the art publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – ident: CR9 – volume: 58 start-page: 82 year: 2020 end-page: 96 ident: CR5 article-title: Remote sensing scene classification by gated bidirectional network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2931801 – volume: 7 start-page: 67200 year: 2019 end-page: 67212 ident: CR36 article-title: Global-local attention network for aerial scene classification publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2918732 – volume: 57 start-page: 7894 year: 2019 end-page: 7906 ident: CR25 article-title: A feature aggregation convolutional neural network for remote sensing scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2917161 – volume: 14 start-page: 10484 year: 2021 end-page: 10499 ident: CR17 article-title: CSDS: End-to-end aerial scenes classification with Depthwise Separable Convolution and an attention mechanism publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2021.3117857 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 54 start-page: 3660 year: 2016 end-page: 3671 ident: CR2 article-title: Semantic annotation of high-Resolution Satellite images via weakly supervised learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2523563 – ident: CR20 – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: CR14 article-title: MITformer: A Multiinstance Vision Transformer for Remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3176499 – ident: 3511_CR9 – volume: 16 start-page: 6265 year: 2023 ident: 3511_CR16 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2023.3290676 – volume: 18 start-page: 43 year: 2021 ident: 3511_CR6 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2968550 – volume: 13 start-page: 5194 year: 2020 ident: 3511_CR7 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2020.3018307 – volume: 15 start-page: 2865 year: 2023 ident: 3511_CR15 publication-title: Remote Sens. doi: 10.3390/rs15112865 – volume: 55 start-page: 3965 year: 2017 ident: 3511_CR21 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – volume: 29 start-page: 4911 year: 2020 ident: 3511_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975718 – volume: 57 start-page: 7894 year: 2019 ident: 3511_CR25 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2917161 – volume: 14 start-page: 5095 year: 2022 ident: 3511_CR32 publication-title: Remote Sens. doi: 10.3390/rs14205095 – ident: 3511_CR24 doi: 10.1109/CVPR.2017.195 – ident: 3511_CR26 doi: 10.1155/2018/8639367 – ident: 3511_CR20 – volume: 14 start-page: 2030 year: 2021 ident: 3511_CR8 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2021.3051569 – volume: 8 start-page: 210347 year: 2020 ident: 3511_CR12 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3038989 – ident: 3511_CR37 doi: 10.1109/IGARSS.2019.8900199 – volume: 17 start-page: 3106 year: 2023 ident: 3511_CR18 publication-title: IET Image Proc. doi: 10.1049/ipr2.12836 – volume: 12 start-page: 15473 year: 2022 ident: 3511_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-022-19831-z – volume: 13 start-page: 1950 year: 2021 ident: 3511_CR13 publication-title: Remote Sens. doi: 10.3390/rs13101950 – volume: 9 start-page: 11 year: 1980 ident: 3511_CR1 publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90044-9 – ident: 3511_CR29 doi: 10.1109/ICCV48922.2021.01172 – volume: 13 start-page: 548 year: 2021 ident: 3511_CR39 publication-title: Remote Sens. doi: 10.3390/rs13040548 – volume: 57 start-page: 1155 year: 2019 ident: 3511_CR4 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2864987 – volume: 59 start-page: 10590 year: 2021 ident: 3511_CR3 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3047447 – volume: 15 start-page: 2223 year: 2022 ident: 3511_CR31 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2022.3155665 – volume: 7 start-page: 67200 year: 2019 ident: 3511_CR36 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2918732 – ident: 3511_CR28 doi: 10.1109/ICCV48922.2021.00061 – volume: 14 start-page: 10484 year: 2021 ident: 3511_CR17 publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2021.3117857 – volume: 59 start-page: 7918 year: 2021 ident: 3511_CR11 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3044655 – ident: 3511_CR19 – ident: 3511_CR38 – volume: 58 start-page: 82 year: 2020 ident: 3511_CR5 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2931801 – volume: 54 start-page: 3660 year: 2016 ident: 3511_CR2 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2523563 – ident: 3511_CR30 doi: 10.1109/ICCV48922.2021.00060 – volume: 105 start-page: 1865 year: 2017 ident: 3511_CR22 publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – volume: 56 start-page: 2811 year: 2018 ident: 3511_CR34 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2783902 – volume: 33 start-page: 5751 year: 2022 ident: 3511_CR23 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3071369 – volume: 19 start-page: 1 year: 2022 ident: 3511_CR14 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3176499 – volume: 9 start-page: 134800 year: 2021 ident: 3511_CR33 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3116968 – volume: 16 start-page: 1200 year: 2019 ident: 3511_CR35 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2894399 |
SSID | ssj0000327868 |
Score | 2.3381746 |
Snippet | Remote sensing scene classification is a critical task in the processing and analysis of remote sensing images. Traditional methods typically use standard... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8739 |
SubjectTerms | Accuracy Classification Computer Imaging Computer Science Convolution Feature extraction Image Processing and Computer Vision Industrial areas Modules Multimedia Information Systems Multiplication Original Paper Pattern Recognition and Graphics Rectangles Remote sensing Signal,Image and Speech Processing Vision |
Title | RCSFN: A remote sensing image scene classification and recognition network based on rectangle convolutional self attention fusion |
URI | https://link.springer.com/article/10.1007/s11760-024-03511-8 https://www.proquest.com/docview/3124101245 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgUUCUlzywgaXUiR2HrSAKAtEBqART5Dg2Qiopags7_5y7NKGAYGCK8rKifOd7-e4zwIH3TtnQU6IqsjyK8ognwjuuklhYDA_QpFG_83VPXfSjy3t5XzWFjetq93pJstTUs2a3dqwCjjaFl6tfXM9DQ1LsjlLcF53PzEoQilhPe-C0Iv7NIKy6ZX4f5rtFmrmZP1ZGS4PTXYXlylNknSm0azDniias1LswsGpSNmHpC6XgOrzfnN52e8esw0YOUXBsTBXqxSN7ekbNwYi7yTFLLjPVCJWwMFPk7LOQCM-LaWk4IwuXM7xAWtEUjwN8c1i8VcKK3zZ2A8-IoLMsmWT-lVJvG9Dvnt2dXvBqmwVuRRxMeJglUubKO2u0Mm0RZJm0OnAiaytDDPXShyaMbY6hSqykVdJpabQX2kpNKmETFoph4baAWWOUcVpZlyQIu0V1kWBAkiVW2Ch2pgWH9a9OX6ZsGumMN5mASRGYtAQm1S3YrdFIq5k1TkN0SIiTLJItOKoRmt3-e7Tt_z2-A4uChKSsXNmFhcno1e2h_zHJ9qHR6Z6c9Oh4_nB1tl-K3weHLNVi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBN6I8PbCBpdSJHYetqqjKqwNQiS1yHLtCgoBoYeefc5cmFBAMjHlZkT_77uz77jPAofdO2dDTRlVkeRTlEU-Ed1wlsbC4PECXRvXOV33VG0Tnd_KuKgob1Wz3OiVZWuppsVsrVgFHn8LL7BfXszCHwYAmItdAtD93VoJQxHpSA6cV6W8GYVUt83sz3z3SNMz8kRktHU53BZaqSJG1J9Cuwowr1mC5PoWBVZNyDRa_SAquw_t156bbP2Ft9uIQBcdGxFAvhuz-ES0HI-0mxyyFzMQRKmFhpsjZJ5EIr4sJNZyRh8sZ3iCraIrhA375VLxVgxX_beQePCOBzpIyyfwrbb1twKB7etvp8eqYBW5FHIx5mCVS5so7a7QyLRFkmbQ6cCJrKUMK9dKHJoxtjkuVWEmrpNPSaC-0lZpMwiY0iqfCbQGzxijjtLIuSRB2i-YiwQVJllhho9iZJhzVXZ0-T9Q00qluMgGTIjBpCUyqm7Bbo5FWM2uUhhiQkCZZJJtwXCM0ffx3a9v_e_0A5nu3V5fp5Vn_YgcWBA2YksWyC43xy6vbw1hknO2XQ-8DXDvVRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIqH2AHTbioUCPnCj1mad2HG4rQrRAmVVFVbaW-Q4dlWpuKvdbe_8c2by0RRUDhzzZUV-45mx_eYZ4J33TtnY00JVYnmSVAnPhHdcZamwOD3AkEb1zt9majpPvizk4l4Vf81277Ykm5oGUmkKm9Gy8qO-8G2cqohjfOH1ThjXW_AY3fGY7HouJnerLFEsUt3Uw2lFWpxR3FbOPNzMn9GpTzn_2iWtg0_-HJ62WSObNDDvwSMXBvCsO5GBtQN0ALv35AX34df5yfd89oFN2MohIo6tia0eLtjlT_QijHScHLOUPhNfqIaImVCxO1IRXoeGJs4o2lUMb5CHNOHiCr-8Dret4eK_rd2VZyTWWdMnmb-hZbgDmOeffpxMeXvkArcijTY8LjMpK-WdNVqZsYjKUlodOVGOlSG1euljE6e2wmlLqqRV0mlptBfaSk3u4RC2w3VwL4BZY5RxWlmXZWgCFl1HhpOTMrPCJqkzQ3jfdXWxbJQ1il5DmYApEJiiBqbQQzjq0CjaUbYuYkxOSJ8skUM47hDqH_-7tZf_9_pbeHL2MS9OP8--voIdQfZSE1qOYHuzunGvMS3ZlG9qy_sNx73ZgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCSFN%3A+A+remote+sensing+image+scene+classification+and+recognition+network+based+on+rectangle+convolutional+self+attention+fusion&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Hou%2C+Jingjin&rft.au=Zhou%2C+Houkui&rft.au=Yu%2C+Huimin&rft.au=Hu%2C+Haoji&rft.date=2024-12-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=12&rft.spage=8739&rft.epage=8756&rft_id=info:doi/10.1007%2Fs11760-024-03511-8&rft.externalDocID=10_1007_s11760_024_03511_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |