Operator shifting for noisy elliptic systems

In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operato...

Full description

Saved in:
Bibliographic Details
Published inResearch in the mathematical sciences Vol. 10; no. 4
Main Authors Etter, Philip A., Ying, Lexing
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2522-0144
2197-9847
DOI10.1007/s40687-023-00414-x

Cover

Loading…
Abstract In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method.
AbstractList In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method.
In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method.
ArticleNumber 48
Author Ying, Lexing
Etter, Philip A.
Author_xml – sequence: 1
  givenname: Philip A.
  orcidid: 0000-0002-6657-8230
  surname: Etter
  fullname: Etter, Philip A.
  email: paetter@meta.com
  organization: Meta Reality Labs
– sequence: 2
  givenname: Lexing
  surname: Ying
  fullname: Ying, Lexing
  organization: Mathematics Department, Stanford University
BookMark eNp9kMtOwzAQRS1UJErpD7CKxBbD2DOJ4yWqeEmVuoG1lTp2SdUmwU6l9u8xBIkdq3no3jujc8kmbdc6xq4F3AkAdR8JilJxkMgBSBA_nrGpFFpxXZKapD6XkoMgumDzGLcAIFSBhDBlt6vehWroQhY_Gj807SbzaWi7Jp4yt9s1_dDYLJ7i4Pbxip37ahfd_LfO2PvT49vihS9Xz6-LhyW3UsHAEdBiXhOtra9KBO9BE9YEilTa67zMi9yitQUQCFSS_NrVWuNa6Rq8xhm7GXP70H0eXBzMtjuENp00siw1pu9FnlRyVNnQxRicN31o9lU4GQHmG4wZwZgExvyAMcdkwtEUk7jduPAX_Y_rC7pBZmc
Cites_doi 10.1007/978-3-319-11259-6_23-1
10.1137/040615201
10.1137/0707001
10.1137/23M155712X
10.1088/0266-5611/29/2/025004
10.1109/ISIT.2009.5205567
10.1145/3341161.3342890
10.1525/9780520313880-018
10.1137/0717073
10.1146/annurev.earth.33.092203.122552
10.1109/JPROC.2009.2035722
10.1016/j.jsv.2005.07.009
10.1090/gsm/132
10.1007/978-1-4612-0919-5_30
10.1137/20M1338460
10.1088/1361-6420/abb61b
10.1609/aaai.v29i1.9277
10.1137/S1064827501387826
10.1137/16M1101830
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40687-023-00414-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2197-9847
ExternalDocumentID 10_1007_s40687_023_00414_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS1818449; DMS-2011699
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -EM
0R~
406
5VS
AAAVM
AACDK
AAHNG
AAJBT
AASML
AATNV
AATVU
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AXYYD
BGNMA
C24
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GROUPED_DOAJ
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-303c35d44bcfa830ff0943d4074735d958565c3cc604013724fbed993b79d0f93
ISSN 2522-0144
IngestDate Fri Jul 25 11:00:06 EDT 2025
Tue Jul 01 04:03:30 EDT 2025
Fri Feb 21 02:41:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Elliptic systems
Random matrices
Monte Carlo
Polynomial expansion
Operator shifting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-303c35d44bcfa830ff0943d4074735d958565c3cc604013724fbed993b79d0f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6657-8230
PQID 2889317615
PQPubID 2044439
ParticipantIDs proquest_journals_2889317615
crossref_primary_10_1007_s40687_023_00414_x
springer_journals_10_1007_s40687_023_00414_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Research in the mathematical sciences
PublicationTitleAbbrev Res Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Stein, C., et al.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956)
DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM J. Numer. Anal.19707114626445010.1137/07070010198.47201
XiuDHesthavenJSHigh-order collocation methods for differential equations with random inputsSIAM J. Sci. Comput.200527311181139219992310.1137/0406152011091.65006
Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019, pp. 65–72. ACM (2019)
Tikhonov, A.N.: On the solution of ill-posed problems and the method of regularization. In: Doklady Akademii Nauk, vol. 151, pp. 501–504. Russian Academy of Sciences (1963)
Derezinski, M., Mahoney, M.W.: Distributed estimation of the inverse hessian by determinantal averaging. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: An introduction to sampling via measure transport. arXiv preprint arXiv:1602.05023 (2016)
LunzSHauptmannATarvainenTSchonliebC-BArridgeSOn learned operator correction in inverse problemsSIAM J. Imaging Sci.202114192127420508710.1137/20M13384601474.65182
BleyerIRRamlauRA double regularization approach for inverse problems with noisy data and inexact operatorInverse Prob.2013292301196710.1088/0266-5611/29/2/0250041266.47026
CandesEJPlanYMatrix completion with noiseProc. IEEE201098692593610.1109/JPROC.2009.2035722
JamesWSteinCKotzSJohnsonNLEstimation with quadratic lossBreakthroughs in Statistics1992New YorkSpringer44346010.1007/978-1-4612-0919-5_30
BucciniADonatelliMRamlauRA semiblind regularization algorithm for inverse problems with application to image deblurringSIAM J. Sci. Comput.2018401452483376393010.1137/16M11018301383.65058
Bergou, E.H., Boucherouite, S., Dutta, A., Li, X., Ma, A.: A note on randomized Kaczmarz algorithm for solving doubly-noisy linear systems. arXiv preprint arXiv:2308.16904 (2023)
PalmerTShuttsGHagedornRDoblas-ReyesFJungTLeutbecherMRepresenting model uncertainty in weather and climate predictionAnnu. Rev. Earth Planet. Sci.200533163193215332010.1146/annurev.earth.33.092203.1225521494.86002
AspriAKorolevYScherzerOData driven regularization by projectionInverse Prob.20203612418617910.1088/1361-6420/abb61b1502.65030
GolubGHVan LoanCFAn analysis of the total least squares problemSIAM J. Numer. Anal.198017688389359545110.1137/07170730468.65011
SoizeCA comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamicsJ. Sound Vib.20052883623652217439010.1016/j.jsv.2005.07.0091243.74069
AndersonGWGuionnetAZeitouniOAn Introduction to Random Matrices2010CambridgeCambridge University Press1184.15023
SteinEMShakarchiRFourier Analysis: An Introduction2011PrincetonPrinceton University Press1026.42001
TaoTTopics in Random Matrix Theory2012ProvidenceAmerican Mathematical Society1256.15020
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com (2015)
Keshavan, R., Montanari, A., Oh, S.: Matrix completion from noisy entries. In: Advances in Neural Information Processing Systems, pp. 952–960 (2009)
XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.2002242619644195105810.1137/S10648275013878261014.65004
DerezinskiMBartanBPilanciMMahoneyMWDebiasing distributed second order optimization with surrogate sketching and scaled regularizationAdv. Neural. Inf. Process. Syst.20203366846695
D Xiu (414_CR24) 2002; 24
D Xiu (414_CR23) 2005; 27
C Soize (414_CR18) 2005; 288
IR Bleyer (414_CR4) 2013; 29
C Davis (414_CR7) 1970; 7
414_CR8
S Lunz (414_CR13) 2021; 14
T Palmer (414_CR15) 2005; 33
W James (414_CR11) 1992
GW Anderson (414_CR1) 2010
414_CR22
A Aspri (414_CR2) 2020; 36
414_CR3
T Tao (414_CR21) 2012
414_CR16
EJ Candes (414_CR6) 2010; 98
GH Golub (414_CR10) 1980; 17
414_CR17
EM Stein (414_CR20) 2011
414_CR19
M Derezinski (414_CR9) 2020; 33
414_CR12
A Buccini (414_CR5) 2018; 40
414_CR14
References_xml – reference: Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019, pp. 65–72. ACM (2019)
– reference: Tikhonov, A.N.: On the solution of ill-posed problems and the method of regularization. In: Doklady Akademii Nauk, vol. 151, pp. 501–504. Russian Academy of Sciences (1963)
– reference: XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.2002242619644195105810.1137/S10648275013878261014.65004
– reference: Bergou, E.H., Boucherouite, S., Dutta, A., Li, X., Ma, A.: A note on randomized Kaczmarz algorithm for solving doubly-noisy linear systems. arXiv preprint arXiv:2308.16904 (2023)
– reference: XiuDHesthavenJSHigh-order collocation methods for differential equations with random inputsSIAM J. Sci. Comput.200527311181139219992310.1137/0406152011091.65006
– reference: Derezinski, M., Mahoney, M.W.: Distributed estimation of the inverse hessian by determinantal averaging. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
– reference: SteinEMShakarchiRFourier Analysis: An Introduction2011PrincetonPrinceton University Press1026.42001
– reference: LunzSHauptmannATarvainenTSchonliebC-BArridgeSOn learned operator correction in inverse problemsSIAM J. Imaging Sci.202114192127420508710.1137/20M13384601474.65182
– reference: DerezinskiMBartanBPilanciMMahoneyMWDebiasing distributed second order optimization with surrogate sketching and scaled regularizationAdv. Neural. Inf. Process. Syst.20203366846695
– reference: JamesWSteinCKotzSJohnsonNLEstimation with quadratic lossBreakthroughs in Statistics1992New YorkSpringer44346010.1007/978-1-4612-0919-5_30
– reference: Keshavan, R., Montanari, A., Oh, S.: Matrix completion from noisy entries. In: Advances in Neural Information Processing Systems, pp. 952–960 (2009)
– reference: PalmerTShuttsGHagedornRDoblas-ReyesFJungTLeutbecherMRepresenting model uncertainty in weather and climate predictionAnnu. Rev. Earth Planet. Sci.200533163193215332010.1146/annurev.earth.33.092203.1225521494.86002
– reference: AspriAKorolevYScherzerOData driven regularization by projectionInverse Prob.20203612418617910.1088/1361-6420/abb61b1502.65030
– reference: BucciniADonatelliMRamlauRA semiblind regularization algorithm for inverse problems with application to image deblurringSIAM J. Sci. Comput.2018401452483376393010.1137/16M11018301383.65058
– reference: Stein, C., et al.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956)
– reference: AndersonGWGuionnetAZeitouniOAn Introduction to Random Matrices2010CambridgeCambridge University Press1184.15023
– reference: CandesEJPlanYMatrix completion with noiseProc. IEEE201098692593610.1109/JPROC.2009.2035722
– reference: Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com (2015)
– reference: TaoTTopics in Random Matrix Theory2012ProvidenceAmerican Mathematical Society1256.15020
– reference: Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: An introduction to sampling via measure transport. arXiv preprint arXiv:1602.05023 (2016)
– reference: BleyerIRRamlauRA double regularization approach for inverse problems with noisy data and inexact operatorInverse Prob.2013292301196710.1088/0266-5611/29/2/0250041266.47026
– reference: GolubGHVan LoanCFAn analysis of the total least squares problemSIAM J. Numer. Anal.198017688389359545110.1137/07170730468.65011
– reference: DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM J. Numer. Anal.19707114626445010.1137/07070010198.47201
– reference: SoizeCA comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamicsJ. Sound Vib.20052883623652217439010.1016/j.jsv.2005.07.0091243.74069
– volume: 33
  start-page: 6684
  year: 2020
  ident: 414_CR9
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 414_CR14
  doi: 10.1007/978-3-319-11259-6_23-1
– volume: 27
  start-page: 1118
  issue: 3
  year: 2005
  ident: 414_CR23
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040615201
– volume: 7
  start-page: 1
  issue: 1
  year: 1970
  ident: 414_CR7
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0707001
– ident: 414_CR3
  doi: 10.1137/23M155712X
– volume: 29
  issue: 2
  year: 2013
  ident: 414_CR4
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/29/2/025004
– volume-title: Fourier Analysis: An Introduction
  year: 2011
  ident: 414_CR20
– ident: 414_CR12
  doi: 10.1109/ISIT.2009.5205567
– ident: 414_CR17
  doi: 10.1145/3341161.3342890
– ident: 414_CR19
  doi: 10.1525/9780520313880-018
– volume: 17
  start-page: 883
  issue: 6
  year: 1980
  ident: 414_CR10
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0717073
– volume: 33
  start-page: 163
  year: 2005
  ident: 414_CR15
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.33.092203.122552
– volume: 98
  start-page: 925
  issue: 6
  year: 2010
  ident: 414_CR6
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2035722
– volume: 288
  start-page: 623
  issue: 3
  year: 2005
  ident: 414_CR18
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.07.009
– volume-title: Topics in Random Matrix Theory
  year: 2012
  ident: 414_CR21
  doi: 10.1090/gsm/132
– start-page: 443
  volume-title: Breakthroughs in Statistics
  year: 1992
  ident: 414_CR11
  doi: 10.1007/978-1-4612-0919-5_30
– volume: 14
  start-page: 92
  issue: 1
  year: 2021
  ident: 414_CR13
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/20M1338460
– volume-title: An Introduction to Random Matrices
  year: 2010
  ident: 414_CR1
– volume: 36
  issue: 12
  year: 2020
  ident: 414_CR2
  publication-title: Inverse Prob.
  doi: 10.1088/1361-6420/abb61b
– ident: 414_CR16
  doi: 10.1609/aaai.v29i1.9277
– ident: 414_CR22
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 414_CR24
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– ident: 414_CR8
– volume: 40
  start-page: 452
  issue: 1
  year: 2018
  ident: 414_CR5
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1101830
SSID ssj0001763430
ssib053846527
Score 2.2400777
Snippet In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Error reduction
Mathematical models
Mathematics
Mathematics and Statistics
Model accuracy
Parameters
Polynomials
System effectiveness
Title Operator shifting for noisy elliptic systems
URI https://link.springer.com/article/10.1007/s40687-023-00414-x
https://www.proquest.com/docview/2889317615
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnqJQUAa2EpQ6zmukqBVCpSypVCYrdhzBQKhIkAq_nrNjJ6U8BCxR5UpudJ97_ny--w6hU6kZzn0Wwdkk4TbBjNsME3CGPe4LHjjCUe3ebsb-1YRcT71p0-1NVZeU7Jy_fVlX8h9UYQxwlVWyf0C2nhQG4DPgC09AGJ6_wvh2JtQtebe4f8hKkxOZPz0Ur10ptDmTaqzFgia5UeIWTbBDEs_HWrvVlEjyJrVwUOreHVXspQl-jsRcN0S5M_ufDh9gdykVw4QPZW60vLGoy1ukB8JAzmx55Ko2i2qsFwV2FFYymbULdRaWCvnSM1fJGAXwB_Bq8j2k0hex580-ZO7ex7d0OBmNaDyYxqtoDQP_d1po7WLY74-NqwA3TXxPC5iqcBr4SaI6y9QvrUukVKHkp5_9SEOas8XSdbhiGfEW2tTHA-uiwnobrYh8B23c1PgUu-jMoG4Z1C1A3VKoWwZ1S6O-hybDQXx5ZeueFzbHgVPawCi466WEMJ4loetkmUz9TInscwDjEZzufI-7nPuOPBkHmGRMpEAyWRClTha5-6iVP-XiAFkCyEkqhEgIDkjoe4mfMEGAoIeCuBlx26hrTEBnlbQJrUWslcEoGIwqg9F5G3WMlaj-CxQUh0B3wfQ9r43OjOWar7-f7fDn2Y7QerNWO6hVPr-IYyB_JTvRC-EdAPhUOQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+shifting+for+noisy+elliptic+systems&rft.jtitle=Research+in+the+mathematical+sciences&rft.au=Etter%2C+Philip+A&rft.au=Lexing%2C+Ying&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2522-0144&rft.eissn=2197-9847&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1007%2Fs40687-023-00414-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-0144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-0144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-0144&client=summon