Operator shifting for noisy elliptic systems
In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operato...
Saved in:
Published in | Research in the mathematical sciences Vol. 10; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2522-0144 2197-9847 |
DOI | 10.1007/s40687-023-00414-x |
Cover
Loading…
Abstract | In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the
operator shifting
framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method. |
---|---|
AbstractList | In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the
operator shifting
framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method. In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions about the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional shift term. In a similar fashion to the James–Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required shift magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator shifting. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate the effectiveness of our method. |
ArticleNumber | 48 |
Author | Ying, Lexing Etter, Philip A. |
Author_xml | – sequence: 1 givenname: Philip A. orcidid: 0000-0002-6657-8230 surname: Etter fullname: Etter, Philip A. email: paetter@meta.com organization: Meta Reality Labs – sequence: 2 givenname: Lexing surname: Ying fullname: Ying, Lexing organization: Mathematics Department, Stanford University |
BookMark | eNp9kMtOwzAQRS1UJErpD7CKxBbD2DOJ4yWqeEmVuoG1lTp2SdUmwU6l9u8xBIkdq3no3jujc8kmbdc6xq4F3AkAdR8JilJxkMgBSBA_nrGpFFpxXZKapD6XkoMgumDzGLcAIFSBhDBlt6vehWroQhY_Gj807SbzaWi7Jp4yt9s1_dDYLJ7i4Pbxip37ahfd_LfO2PvT49vihS9Xz6-LhyW3UsHAEdBiXhOtra9KBO9BE9YEilTa67zMi9yitQUQCFSS_NrVWuNa6Rq8xhm7GXP70H0eXBzMtjuENp00siw1pu9FnlRyVNnQxRicN31o9lU4GQHmG4wZwZgExvyAMcdkwtEUk7jduPAX_Y_rC7pBZmc |
Cites_doi | 10.1007/978-3-319-11259-6_23-1 10.1137/040615201 10.1137/0707001 10.1137/23M155712X 10.1088/0266-5611/29/2/025004 10.1109/ISIT.2009.5205567 10.1145/3341161.3342890 10.1525/9780520313880-018 10.1137/0717073 10.1146/annurev.earth.33.092203.122552 10.1109/JPROC.2009.2035722 10.1016/j.jsv.2005.07.009 10.1090/gsm/132 10.1007/978-1-4612-0919-5_30 10.1137/20M1338460 10.1088/1361-6420/abb61b 10.1609/aaai.v29i1.9277 10.1137/S1064827501387826 10.1137/16M1101830 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40687-023-00414-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2197-9847 |
ExternalDocumentID | 10_1007_s40687_023_00414_x |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS1818449; DMS-2011699 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -EM 0R~ 406 5VS AAAVM AACDK AAHNG AAJBT AASML AATNV AATVU AAUYE AAYZH ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AXYYD BGNMA C24 C6C CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI GROUPED_DOAJ IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y M~E NPVJJ NQJWS NU0 O9J OK1 PT4 ROL RSV SISQX SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-303c35d44bcfa830ff0943d4074735d958565c3cc604013724fbed993b79d0f93 |
ISSN | 2522-0144 |
IngestDate | Fri Jul 25 11:00:06 EDT 2025 Tue Jul 01 04:03:30 EDT 2025 Fri Feb 21 02:41:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Elliptic systems Random matrices Monte Carlo Polynomial expansion Operator shifting |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-303c35d44bcfa830ff0943d4074735d958565c3cc604013724fbed993b79d0f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6657-8230 |
PQID | 2889317615 |
PQPubID | 2044439 |
ParticipantIDs | proquest_journals_2889317615 crossref_primary_10_1007_s40687_023_00414_x springer_journals_10_1007_s40687_023_00414_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Research in the mathematical sciences |
PublicationTitleAbbrev | Res Math Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Stein, C., et al.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956) DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM J. Numer. Anal.19707114626445010.1137/07070010198.47201 XiuDHesthavenJSHigh-order collocation methods for differential equations with random inputsSIAM J. Sci. Comput.200527311181139219992310.1137/0406152011091.65006 Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019, pp. 65–72. ACM (2019) Tikhonov, A.N.: On the solution of ill-posed problems and the method of regularization. In: Doklady Akademii Nauk, vol. 151, pp. 501–504. Russian Academy of Sciences (1963) Derezinski, M., Mahoney, M.W.: Distributed estimation of the inverse hessian by determinantal averaging. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: An introduction to sampling via measure transport. arXiv preprint arXiv:1602.05023 (2016) LunzSHauptmannATarvainenTSchonliebC-BArridgeSOn learned operator correction in inverse problemsSIAM J. Imaging Sci.202114192127420508710.1137/20M13384601474.65182 BleyerIRRamlauRA double regularization approach for inverse problems with noisy data and inexact operatorInverse Prob.2013292301196710.1088/0266-5611/29/2/0250041266.47026 CandesEJPlanYMatrix completion with noiseProc. IEEE201098692593610.1109/JPROC.2009.2035722 JamesWSteinCKotzSJohnsonNLEstimation with quadratic lossBreakthroughs in Statistics1992New YorkSpringer44346010.1007/978-1-4612-0919-5_30 BucciniADonatelliMRamlauRA semiblind regularization algorithm for inverse problems with application to image deblurringSIAM J. Sci. Comput.2018401452483376393010.1137/16M11018301383.65058 Bergou, E.H., Boucherouite, S., Dutta, A., Li, X., Ma, A.: A note on randomized Kaczmarz algorithm for solving doubly-noisy linear systems. arXiv preprint arXiv:2308.16904 (2023) PalmerTShuttsGHagedornRDoblas-ReyesFJungTLeutbecherMRepresenting model uncertainty in weather and climate predictionAnnu. Rev. Earth Planet. Sci.200533163193215332010.1146/annurev.earth.33.092203.1225521494.86002 AspriAKorolevYScherzerOData driven regularization by projectionInverse Prob.20203612418617910.1088/1361-6420/abb61b1502.65030 GolubGHVan LoanCFAn analysis of the total least squares problemSIAM J. Numer. Anal.198017688389359545110.1137/07170730468.65011 SoizeCA comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamicsJ. Sound Vib.20052883623652217439010.1016/j.jsv.2005.07.0091243.74069 AndersonGWGuionnetAZeitouniOAn Introduction to Random Matrices2010CambridgeCambridge University Press1184.15023 SteinEMShakarchiRFourier Analysis: An Introduction2011PrincetonPrinceton University Press1026.42001 TaoTTopics in Random Matrix Theory2012ProvidenceAmerican Mathematical Society1256.15020 Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com (2015) Keshavan, R., Montanari, A., Oh, S.: Matrix completion from noisy entries. In: Advances in Neural Information Processing Systems, pp. 952–960 (2009) XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.2002242619644195105810.1137/S10648275013878261014.65004 DerezinskiMBartanBPilanciMMahoneyMWDebiasing distributed second order optimization with surrogate sketching and scaled regularizationAdv. Neural. Inf. Process. Syst.20203366846695 D Xiu (414_CR24) 2002; 24 D Xiu (414_CR23) 2005; 27 C Soize (414_CR18) 2005; 288 IR Bleyer (414_CR4) 2013; 29 C Davis (414_CR7) 1970; 7 414_CR8 S Lunz (414_CR13) 2021; 14 T Palmer (414_CR15) 2005; 33 W James (414_CR11) 1992 GW Anderson (414_CR1) 2010 414_CR22 A Aspri (414_CR2) 2020; 36 414_CR3 T Tao (414_CR21) 2012 414_CR16 EJ Candes (414_CR6) 2010; 98 GH Golub (414_CR10) 1980; 17 414_CR17 EM Stein (414_CR20) 2011 414_CR19 M Derezinski (414_CR9) 2020; 33 414_CR12 A Buccini (414_CR5) 2018; 40 414_CR14 |
References_xml | – reference: Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019, pp. 65–72. ACM (2019) – reference: Tikhonov, A.N.: On the solution of ill-posed problems and the method of regularization. In: Doklady Akademii Nauk, vol. 151, pp. 501–504. Russian Academy of Sciences (1963) – reference: XiuDKarniadakisGEThe Wiener–Askey polynomial chaos for stochastic differential equationsSIAM J. Sci. Comput.2002242619644195105810.1137/S10648275013878261014.65004 – reference: Bergou, E.H., Boucherouite, S., Dutta, A., Li, X., Ma, A.: A note on randomized Kaczmarz algorithm for solving doubly-noisy linear systems. arXiv preprint arXiv:2308.16904 (2023) – reference: XiuDHesthavenJSHigh-order collocation methods for differential equations with random inputsSIAM J. Sci. Comput.200527311181139219992310.1137/0406152011091.65006 – reference: Derezinski, M., Mahoney, M.W.: Distributed estimation of the inverse hessian by determinantal averaging. In: Advances in Neural Information Processing Systems, vol. 32 (2019) – reference: SteinEMShakarchiRFourier Analysis: An Introduction2011PrincetonPrinceton University Press1026.42001 – reference: LunzSHauptmannATarvainenTSchonliebC-BArridgeSOn learned operator correction in inverse problemsSIAM J. Imaging Sci.202114192127420508710.1137/20M13384601474.65182 – reference: DerezinskiMBartanBPilanciMMahoneyMWDebiasing distributed second order optimization with surrogate sketching and scaled regularizationAdv. Neural. Inf. Process. Syst.20203366846695 – reference: JamesWSteinCKotzSJohnsonNLEstimation with quadratic lossBreakthroughs in Statistics1992New YorkSpringer44346010.1007/978-1-4612-0919-5_30 – reference: Keshavan, R., Montanari, A., Oh, S.: Matrix completion from noisy entries. In: Advances in Neural Information Processing Systems, pp. 952–960 (2009) – reference: PalmerTShuttsGHagedornRDoblas-ReyesFJungTLeutbecherMRepresenting model uncertainty in weather and climate predictionAnnu. Rev. Earth Planet. Sci.200533163193215332010.1146/annurev.earth.33.092203.1225521494.86002 – reference: AspriAKorolevYScherzerOData driven regularization by projectionInverse Prob.20203612418617910.1088/1361-6420/abb61b1502.65030 – reference: BucciniADonatelliMRamlauRA semiblind regularization algorithm for inverse problems with application to image deblurringSIAM J. Sci. Comput.2018401452483376393010.1137/16M11018301383.65058 – reference: Stein, C., et al.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956) – reference: AndersonGWGuionnetAZeitouniOAn Introduction to Random Matrices2010CambridgeCambridge University Press1184.15023 – reference: CandesEJPlanYMatrix completion with noiseProc. IEEE201098692593610.1109/JPROC.2009.2035722 – reference: Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com (2015) – reference: TaoTTopics in Random Matrix Theory2012ProvidenceAmerican Mathematical Society1256.15020 – reference: Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: An introduction to sampling via measure transport. arXiv preprint arXiv:1602.05023 (2016) – reference: BleyerIRRamlauRA double regularization approach for inverse problems with noisy data and inexact operatorInverse Prob.2013292301196710.1088/0266-5611/29/2/0250041266.47026 – reference: GolubGHVan LoanCFAn analysis of the total least squares problemSIAM J. Numer. Anal.198017688389359545110.1137/07170730468.65011 – reference: DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM J. Numer. Anal.19707114626445010.1137/07070010198.47201 – reference: SoizeCA comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamicsJ. Sound Vib.20052883623652217439010.1016/j.jsv.2005.07.0091243.74069 – volume: 33 start-page: 6684 year: 2020 ident: 414_CR9 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 414_CR14 doi: 10.1007/978-3-319-11259-6_23-1 – volume: 27 start-page: 1118 issue: 3 year: 2005 ident: 414_CR23 publication-title: SIAM J. Sci. Comput. doi: 10.1137/040615201 – volume: 7 start-page: 1 issue: 1 year: 1970 ident: 414_CR7 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0707001 – ident: 414_CR3 doi: 10.1137/23M155712X – volume: 29 issue: 2 year: 2013 ident: 414_CR4 publication-title: Inverse Prob. doi: 10.1088/0266-5611/29/2/025004 – volume-title: Fourier Analysis: An Introduction year: 2011 ident: 414_CR20 – ident: 414_CR12 doi: 10.1109/ISIT.2009.5205567 – ident: 414_CR17 doi: 10.1145/3341161.3342890 – ident: 414_CR19 doi: 10.1525/9780520313880-018 – volume: 17 start-page: 883 issue: 6 year: 1980 ident: 414_CR10 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0717073 – volume: 33 start-page: 163 year: 2005 ident: 414_CR15 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.33.092203.122552 – volume: 98 start-page: 925 issue: 6 year: 2010 ident: 414_CR6 publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2035722 – volume: 288 start-page: 623 issue: 3 year: 2005 ident: 414_CR18 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.07.009 – volume-title: Topics in Random Matrix Theory year: 2012 ident: 414_CR21 doi: 10.1090/gsm/132 – start-page: 443 volume-title: Breakthroughs in Statistics year: 1992 ident: 414_CR11 doi: 10.1007/978-1-4612-0919-5_30 – volume: 14 start-page: 92 issue: 1 year: 2021 ident: 414_CR13 publication-title: SIAM J. Imaging Sci. doi: 10.1137/20M1338460 – volume-title: An Introduction to Random Matrices year: 2010 ident: 414_CR1 – volume: 36 issue: 12 year: 2020 ident: 414_CR2 publication-title: Inverse Prob. doi: 10.1088/1361-6420/abb61b – ident: 414_CR16 doi: 10.1609/aaai.v29i1.9277 – ident: 414_CR22 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 414_CR24 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – ident: 414_CR8 – volume: 40 start-page: 452 issue: 1 year: 2018 ident: 414_CR5 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1101830 |
SSID | ssj0001763430 ssib053846527 |
Score | 2.2400777 |
Snippet | In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Applications of Mathematics Computational Mathematics and Numerical Analysis Error reduction Mathematical models Mathematics Mathematics and Statistics Model accuracy Parameters Polynomials System effectiveness |
Title | Operator shifting for noisy elliptic systems |
URI | https://link.springer.com/article/10.1007/s40687-023-00414-x https://www.proquest.com/docview/2889317615 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnqJQUAa2EpQ6zmukqBVCpSypVCYrdhzBQKhIkAq_nrNjJ6U8BCxR5UpudJ97_ny--w6hU6kZzn0Wwdkk4TbBjNsME3CGPe4LHjjCUe3ebsb-1YRcT71p0-1NVZeU7Jy_fVlX8h9UYQxwlVWyf0C2nhQG4DPgC09AGJ6_wvh2JtQtebe4f8hKkxOZPz0Ur10ptDmTaqzFgia5UeIWTbBDEs_HWrvVlEjyJrVwUOreHVXspQl-jsRcN0S5M_ufDh9gdykVw4QPZW60vLGoy1ukB8JAzmx55Ko2i2qsFwV2FFYymbULdRaWCvnSM1fJGAXwB_Bq8j2k0hex580-ZO7ex7d0OBmNaDyYxqtoDQP_d1po7WLY74-NqwA3TXxPC5iqcBr4SaI6y9QvrUukVKHkp5_9SEOas8XSdbhiGfEW2tTHA-uiwnobrYh8B23c1PgUu-jMoG4Z1C1A3VKoWwZ1S6O-hybDQXx5ZeueFzbHgVPawCi466WEMJ4loetkmUz9TInscwDjEZzufI-7nPuOPBkHmGRMpEAyWRClTha5-6iVP-XiAFkCyEkqhEgIDkjoe4mfMEGAoIeCuBlx26hrTEBnlbQJrUWslcEoGIwqg9F5G3WMlaj-CxQUh0B3wfQ9r43OjOWar7-f7fDn2Y7QerNWO6hVPr-IYyB_JTvRC-EdAPhUOQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+shifting+for+noisy+elliptic+systems&rft.jtitle=Research+in+the+mathematical+sciences&rft.au=Etter%2C+Philip+A&rft.au=Lexing%2C+Ying&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2522-0144&rft.eissn=2197-9847&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1007%2Fs40687-023-00414-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-0144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-0144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-0144&client=summon |