On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation
Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wal...
Saved in:
Published in | Journal of dynamics and differential equations Vol. 36; no. 3; pp. 2793 - 2825 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [
1
]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [
2
,
3
] and compensated compactness [
4
] has been developed. The geometry of the acoustic chamber plays a critical role. |
---|---|
AbstractList | Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [1]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [2, 3] and compensated compactness [4] has been developed. The geometry of the acoustic chamber plays a critical role. Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [ 1 ]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [ 2 , 3 ] and compensated compactness [ 4 ] has been developed. The geometry of the acoustic chamber plays a critical role. |
Author | Rodrigues, José H. Lasiecka, Irena |
Author_xml | – sequence: 1 givenname: Irena surname: Lasiecka fullname: Lasiecka, Irena email: lasiecka@memphis.edu organization: Department of Mathematical Sciences, The University of Memphis, IBS, Polish Academy of Sciences – sequence: 2 givenname: José H. surname: Rodrigues fullname: Rodrigues, José H. organization: Okinawa Institute of Science and Technology |
BookMark | eNp9kMtKAzEUhoMoWKsv4CrgOjaXGTNZ1rtYELzgMqSZTDt1TGqSQdz5DoIP6JN4agV3Lg4J5Pv-HP4dtOmDdwjtM3rIKJWjxGhVFYRyQRgVvCTVBhqwUnKiOOebcKcFJZKrYhvtpLSglKpKqAH6vPH41Zmn0V2Owc_wOOdobA4RNzAGC3KK4am3uY-mI2Mb-pRbi698diuwDeC3eY6v22jn89A0X-8fxwCl1rv0gs8688M_mq7Dd_104WzGOeBbl3JsbXY1BtrXJr7h0xaspVll7qKtxnTJ7f2eQ_RwfnZ_ckkmNxdXJ-MJsVzSTLiVlteNEawpau4kU0dW2aIu7ZTBCAndTB035qg0yolS1gWzHNgGgEoUYogO1rnLGF562EkvQh89fKkFVbLiUlEBFF9TNoaUomv0MrbPsLJmVK_61-v-NfSvf_rXFUhiLSWA_czFv-h_rG8Q2I43 |
Cites_doi | 10.1007/s00498-018-0211-7 10.1090/tran/7756 10.1016/S0021-7824(01)80009-X 10.3934/dcds.2008.20.459 10.3934/eect.2015.4.447 10.3934/dcds.2009.25.1041 10.1137/1.9781611970821 10.3934/dcds.1995.1.119 10.1016/j.jde.2006.09.019 10.1016/j.na.2006.06.007 10.1080/03605302.2010.484472 10.1088/0951-7715/23/9/011 10.1007/s002450010010 10.3934/eect.2020093 10.1090/qam/1672195 10.1016/S0021-7824(03)00016-3 10.1137/1.9780898717099 10.3934/cpaa.2020097 10.1109/9.508899 10.1081/PDE-120016132 10.1007/s00245-023-09998-w 10.3934/dcds.2008.22.557 10.1007/s00023-016-0480-y 10.1007/s10884-009-9132-y 10.1007/978-3-319-92783-1_4 10.1007/s00245-023-09968-2 10.3934/eect.2020020 10.3934/dcds.2004.10.473 10.1007/s00245-017-9399-z 10.1007/978-1-4612-0645-3 10.1017/CBO9780511569418 10.1137/140962346 10.1016/S0362-546X(01)00135-3 10.1002/(SICI)1099-1476(19960525)19:8<639::AID-MMA786>3.0.CO;2-C 10.1007/978-0-387-87712-9 10.1016/S1874-5717(08)00003-0 10.3934/cpaa.2007.6.113 10.1016/j.jde.2021.07.009 10.1016/j.na.2020.111803 10.1007/s10884-017-9604-4 10.1137/S0036141093258094 10.3934/cpaa.2019044 10.1007/s10884-004-4289-x 10.1090/conm/268/04315 10.1137/15M1039936 10.1017/CBO9780511662898 10.1007/978-3-319-22903-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10884-023-10325-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9222 |
EndPage | 2825 |
ExternalDocumentID | 10_1007_s10884_023_10325_8 |
GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2205508 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-2c7c2dfa31f4d2e7196c9c4d5cb15cb37007be2aa65a9e357d41c2f4dfcb18343 |
IEDL.DBID | U2A |
ISSN | 1040-7294 |
IngestDate | Fri Jul 25 11:15:00 EDT 2025 Tue Jul 01 03:46:33 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Structure-acoustic dynamical system Kirchhoff-Boussinesq plate and interface 74K20 Boundary-interface dissipation 74F99 35L05 35B41 37L30 Global attractors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-2c7c2dfa31f4d2e7196c9c4d5cb15cb37007be2aa65a9e357d41c2f4dfcb18343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3097827903 |
PQPubID | 2043775 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3097827903 crossref_primary_10_1007_s10884_023_10325_8 springer_journals_10_1007_s10884_023_10325_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of dynamics and differential equations |
PublicationTitleAbbrev | J Dyn Diff Equat |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DanielsILebiedzikCExistence and uniqueness of a structural acoustic model involving a nonlinear shellDiscrete Contin. Dyn. Syst. l2008122432522379903 MoiseIRosaRAWangXAttractors for noncompact nonautonomous systems via energy equationsDiscrete Contin. Dyn. Syst.2004104734962026206 KalantarovVSavostianovAZelikSAttractors for damped quintic wave equations in bounded domainsAnn. Henri Poincaré2016179255525843535872 LagneseJLionsJLModeling1988Analysis and Control of Thin Plates. Collection RMAMasson FeireislEAttractors for wave equation with nonlinear dissipation and critical exponents.C.R. Acad. Sci. Paris, Ser. I19923155515551181290 ChueshovILasieckaIOn the attractor for 2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2D$$\end{document}-Kirshhoff–Boussinesq model with supercritical nonlinearityCommun. Partial Differ. Equ.2011366799 VarlamovVExistence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equationMath. Methods Appl. Sci.19961986396491385158 LiJChaiSUniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shellAppl. Math. Optim.2023457211410.1007/s00245-023-09968-2 BecklinARammahaMMohammadAHadamard well-posedness for a structure acoustic model with a supercritical source and damping termsEvol. Equ. Control Theory20211047978364338834 ChueshovILasieckaILong Time Behavior of second Order Evolution Equations with nonlinear DampingMemoires AMS200819591211832438025 YangZFengNLiYRobust attractors for a Kirchhoff-Boussinesq type equationEvol. Equ. Control Theory2020924694864097650 HoweMSAcoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics1998CambridgeCambridge University Press LasieckaITataruDUniform boundary stabilization of semilinear wave equations with nonlinear boundary dampingDiffer. Integral Equ.1993635075331202555 ZelatiMCGlobal and exponential attractors for the singularly perturbed extensible beamDCDS200525104110602533990 LasieckaILebiedzikCDecay rates of interactive hyperbolic–parabolic PDE models with thermal effects on the interfaceAppl. Math. Optim.2000421271671784172 BanksHTSmithRFeedback control of noise in a 2-D nonlinear structural acoustic modelDiscrete Contin. Dyn. Syst.1995111191491355868 YangZDingPLiuXAttractors and their stability on Boussinesq type equations with gentle dissipationCommun. Pure Appl. Anal.20191829119303917685 SakamotoRHyperbolic Boundary Value Problems1982CambridgeCambridge University Press ChueshovIEllerMLasieckaIOn the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipationCommun. Partial Differ. Equ.2002279 &10190119511941662 BallJMGlobal attractors for damped semilinear wave equationsDiscrete Contin. Dyn. Syst.2004101 &231522026182 Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008) BucciFChueshovILong-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equationsDiscrete Contin. Dyn. Syst.20082235575862429854 Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269–307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018) LasieckaIBoundary stabilization of a three dimensional structural acoustic modelJ. Math. Pures Appl.1999782033221677665 ChueshovILasieckaIAttractors for second order evolution equations with a nonlinear dampingJ. Dyn. Differ. Equ.20041624695122105786 HaleJKAsymptotoc Behavior of Dissipative Systems1988Providence, RIMathematical Surveys andMonographs. AMS Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227–325, AMS (2000) ChueshovILasieckaILong-time dynamics of von Karman semi-flows with non-linear boundary/interior dampingJ. Differ. Equa.200723342862290271 Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020) BucciFToundykovDFinite-dimensional attractor for a composite system of wave/plate equations with localized dampingNonlinearity2010239227123062672645 AvalosGToundykovDBoundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plateNonlinear Anal. Real World Appl.2011126298530132832943 BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth Holland ToundykovDOptimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditionsNonlinear Anal.2007675125442317185 KaltenbacherBMathematics of nonlinear acousticsEvol. Equ. Control Theory2015444474913461695 Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015) Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991) YangFYaoPChenGBoundary controllability of structural acoustic systems with variable coefficients and curved wallsMath. Control Signals Syst.2018301Art. 5, 28 pp3781465 RuizAUnique continuation for weak solutions of the wave equation plus a potentialJ. Math. Pures Appl.1992714554671191585 AvalosGLasieckaIExact controllability of structural acoustic interactionsJ. Math. Pures Appl.2003828104710732005204 ChueshovILasieckaIToundykovDGlobal attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponentJ. Dyn. Differ. Equ.20092122693142506664 LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM LasieckaILebiedzikCAsymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interfaceNonlinear Anal.2002497037351894305 BanksHTDemetriouMSmithRH-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuatorsIEEE Trans. Autom. Control1996417943959 LasieckaIMaTFMonteiroRNGlobal smooth attractors for dynamics of thermal shallow shells without vertical dissipationTrans. Am. Math. Soc.201937111805180963955543 LiuYMohsinBHajaiejHYaoP-FChenGExact controllability of structural interactions with variable coefficientsSICON2016544213221533539887 PengQZhangZGlobal attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifoldAppl. Math. Optim.202310.1007/s00245-023-09998-w ChueshovIDynamics of Quasi-Stable Dissipative Systems2015BerlinSpringer FahrooFWangCA new model for acoustic-structure interaction and its exponential stabilityQuart. Appl. Math.19995711571791672195 BucciFChueshovILasieckaIGlobal attractors for a composite system of nonlinear wave and plate equationsCommun. Pure Appl. Anal.2007611131402276333 MaTFHuertasSPauloNAttractors for semilinear wave equations with localized damping and external forcesCommun. Pure Appl. Anal.2020194221922334153507 TataruDOn the regularity of boundary traces for the wave equationAnn Scuola Normale Superiore, Pisa CL SCI1998261852061633000 ChueshovILasieckaIToundykovDLong-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponentDiscrete Contin. Dyn. Syst.20082034595092373201 SimonJCompact sets in the space Lp(0, T;B)Annali di Matematica Pura ed Applicata, Ser.198741486596 LasieckaIMathematical Control Theory of Coupled PDEs2002PhiladelphiaSIAM LiuYYaoP-FEnergy decay rate of the wave equations on Riemannian manifolds with critical potentialAppl. Math. Optim.2018781611013826712 MorsePMIngardKTheoretical Acoustics1968New YorkMcGraw-Hill YueLInstability of solutions to a generalised Boussinesq equationSIAM H. Math. Anal.199526615271546 TemamRInfinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences1997BerlinSpringer ChueshovILasieckaIVon Karman Evolution Equations. Well-Posedness and Long-Time Dynamics2010New YorkSpringer LasieckaIRodriguesJHWeak and strong semigroups in structural acoustic Kirchhoff–Boussinesq interactions with boundary feedbackJ. Differ. Equa.20212983874294288248 FengBMaTFMonteiroRNRaposoCADynamics of laminated Timoshenko beamsJ. Dyn. Differ. Equ.2018304148915073871611 J Simon (10325_CR60) 1987; 4 B Kaltenbacher (10325_CR23) 2015; 4 10325_CR1 I Lasiecka (10325_CR24) 2021; 298 I Chueshov (10325_CR61) 2015 MS Howe (10325_CR6) 1998 TF Ma (10325_CR52) 2020; 19 JM Ball (10325_CR2) 2004; 10 I Chueshov (10325_CR36) 2007; 233 JK Hale (10325_CR57) 1988 V Kalantarov (10325_CR3) 2016; 17 I Daniels (10325_CR32) 2008; 1 I Lasiecka (10325_CR31) 1999; 78 I Lasiecka (10325_CR11) 2002 V Varlamov (10325_CR15) 1996; 19 10325_CR30 D Toundykov (10325_CR39) 2007; 67 I Chueshov (10325_CR53) 2008; 20 Y Liu (10325_CR48) 2018; 78 I Lasiecka (10325_CR17) 1993; 6 F Fahroo (10325_CR9) 1999; 57 I Lasiecka (10325_CR25) 2019; 371 F Bucci (10325_CR44) 2008; 22 Z Yang (10325_CR50) 2019; 18 MC Zelati (10325_CR51) 2005; 25 I Chueshov (10325_CR21) 2011; 36 J Lagnese (10325_CR20) 1988 10325_CR43 I Lasiecka (10325_CR59) 2000; 42 HT Banks (10325_CR8) 1996; 41 Q Peng (10325_CR29) 2023 I Chueshov (10325_CR37) 2004; 16 10325_CR46 Z Yang (10325_CR49) 2020; 9 B Feng (10325_CR22) 2018; 30 I Chueshov (10325_CR4) 2008; 195 G Avalos (10325_CR13) 2011; 12 R Sakamoto (10325_CR55) 1982 J Lagnese (10325_CR19) 1989 AV Babin (10325_CR41) 1992 G Avalos (10325_CR12) 2003; 82 A Becklin (10325_CR45) 2021; 10 D Tataru (10325_CR33) 1998; 26 J Li (10325_CR47) 2023 F Bucci (10325_CR10) 2007; 6 10325_CR58 I Chueshov (10325_CR54) 2009; 21 I Moise (10325_CR56) 2004; 10 R Temam (10325_CR40) 1997 F Bucci (10325_CR18) 2010; 23 I Chueshov (10325_CR42) 2010 PM Morse (10325_CR5) 1968 E Feireisl (10325_CR38) 1992; 315 HT Banks (10325_CR7) 1995; 1 F Yang (10325_CR28) 2018; 30 L Yue (10325_CR16) 1995; 26 I Lasiecka (10325_CR34) 2002; 49 A Ruiz (10325_CR27) 1992; 71 Y Liu (10325_CR14) 2016; 54 10325_CR26 I Chueshov (10325_CR35) 2002; 27 |
References_xml | – reference: BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth Holland – reference: BallJMGlobal attractors for damped semilinear wave equationsDiscrete Contin. Dyn. Syst.2004101 &231522026182 – reference: ChueshovILasieckaIToundykovDLong-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponentDiscrete Contin. Dyn. Syst.20082034595092373201 – reference: LiuYYaoP-FEnergy decay rate of the wave equations on Riemannian manifolds with critical potentialAppl. Math. Optim.2018781611013826712 – reference: VarlamovVExistence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equationMath. Methods Appl. Sci.19961986396491385158 – reference: RuizAUnique continuation for weak solutions of the wave equation plus a potentialJ. Math. Pures Appl.1992714554671191585 – reference: Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227–325, AMS (2000) – reference: YueLInstability of solutions to a generalised Boussinesq equationSIAM H. Math. Anal.199526615271546 – reference: MaTFHuertasSPauloNAttractors for semilinear wave equations with localized damping and external forcesCommun. Pure Appl. Anal.2020194221922334153507 – reference: SimonJCompact sets in the space Lp(0, T;B)Annali di Matematica Pura ed Applicata, Ser.198741486596 – reference: FahrooFWangCA new model for acoustic-structure interaction and its exponential stabilityQuart. Appl. Math.19995711571791672195 – reference: LiJChaiSUniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shellAppl. Math. Optim.2023457211410.1007/s00245-023-09968-2 – reference: MorsePMIngardKTheoretical Acoustics1968New YorkMcGraw-Hill – reference: DanielsILebiedzikCExistence and uniqueness of a structural acoustic model involving a nonlinear shellDiscrete Contin. Dyn. Syst. l2008122432522379903 – reference: LasieckaITataruDUniform boundary stabilization of semilinear wave equations with nonlinear boundary dampingDiffer. Integral Equ.1993635075331202555 – reference: LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM – reference: YangFYaoPChenGBoundary controllability of structural acoustic systems with variable coefficients and curved wallsMath. Control Signals Syst.2018301Art. 5, 28 pp3781465 – reference: BanksHTDemetriouMSmithRH-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuatorsIEEE Trans. Autom. Control1996417943959 – reference: BecklinARammahaMMohammadAHadamard well-posedness for a structure acoustic model with a supercritical source and damping termsEvol. Equ. Control Theory20211047978364338834 – reference: LiuYMohsinBHajaiejHYaoP-FChenGExact controllability of structural interactions with variable coefficientsSICON2016544213221533539887 – reference: AvalosGLasieckaIExact controllability of structural acoustic interactionsJ. Math. Pures Appl.2003828104710732005204 – reference: LasieckaIRodriguesJHWeak and strong semigroups in structural acoustic Kirchhoff–Boussinesq interactions with boundary feedbackJ. Differ. Equa.20212983874294288248 – reference: SakamotoRHyperbolic Boundary Value Problems1982CambridgeCambridge University Press – reference: BucciFChueshovILasieckaIGlobal attractors for a composite system of nonlinear wave and plate equationsCommun. Pure Appl. Anal.2007611131402276333 – reference: AvalosGToundykovDBoundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plateNonlinear Anal. Real World Appl.2011126298530132832943 – reference: Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269–307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018) – reference: YangZFengNLiYRobust attractors for a Kirchhoff-Boussinesq type equationEvol. Equ. Control Theory2020924694864097650 – reference: LasieckaILebiedzikCAsymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interfaceNonlinear Anal.2002497037351894305 – reference: ChueshovILasieckaIOn the attractor for 2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2D$$\end{document}-Kirshhoff–Boussinesq model with supercritical nonlinearityCommun. Partial Differ. Equ.2011366799 – reference: LagneseJLionsJLModeling1988Analysis and Control of Thin Plates. Collection RMAMasson – reference: MoiseIRosaRAWangXAttractors for noncompact nonautonomous systems via energy equationsDiscrete Contin. Dyn. Syst.2004104734962026206 – reference: FeireislEAttractors for wave equation with nonlinear dissipation and critical exponents.C.R. Acad. Sci. Paris, Ser. I19923155515551181290 – reference: FengBMaTFMonteiroRNRaposoCADynamics of laminated Timoshenko beamsJ. Dyn. Differ. Equ.2018304148915073871611 – reference: TataruDOn the regularity of boundary traces for the wave equationAnn Scuola Normale Superiore, Pisa CL SCI1998261852061633000 – reference: LasieckaILebiedzikCDecay rates of interactive hyperbolic–parabolic PDE models with thermal effects on the interfaceAppl. Math. Optim.2000421271671784172 – reference: LasieckaIMaTFMonteiroRNGlobal smooth attractors for dynamics of thermal shallow shells without vertical dissipationTrans. Am. Math. Soc.201937111805180963955543 – reference: ZelatiMCGlobal and exponential attractors for the singularly perturbed extensible beamDCDS200525104110602533990 – reference: KaltenbacherBMathematics of nonlinear acousticsEvol. Equ. Control Theory2015444474913461695 – reference: TemamRInfinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences1997BerlinSpringer – reference: ChueshovILasieckaIVon Karman Evolution Equations. Well-Posedness and Long-Time Dynamics2010New YorkSpringer – reference: Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020) – reference: LasieckaIMathematical Control Theory of Coupled PDEs2002PhiladelphiaSIAM – reference: LasieckaIBoundary stabilization of a three dimensional structural acoustic modelJ. Math. Pures Appl.1999782033221677665 – reference: Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015) – reference: HaleJKAsymptotoc Behavior of Dissipative Systems1988Providence, RIMathematical Surveys andMonographs. AMS – reference: ChueshovILasieckaILong-time dynamics of von Karman semi-flows with non-linear boundary/interior dampingJ. Differ. Equa.200723342862290271 – reference: ChueshovILasieckaIToundykovDGlobal attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponentJ. Dyn. Differ. Equ.20092122693142506664 – reference: BucciFToundykovDFinite-dimensional attractor for a composite system of wave/plate equations with localized dampingNonlinearity2010239227123062672645 – reference: Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991) – reference: BucciFChueshovILong-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equationsDiscrete Contin. Dyn. Syst.20082235575862429854 – reference: ChueshovILasieckaILong Time Behavior of second Order Evolution Equations with nonlinear DampingMemoires AMS200819591211832438025 – reference: ChueshovIDynamics of Quasi-Stable Dissipative Systems2015BerlinSpringer – reference: ChueshovIEllerMLasieckaIOn the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipationCommun. Partial Differ. Equ.2002279 &10190119511941662 – reference: Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008) – reference: KalantarovVSavostianovAZelikSAttractors for damped quintic wave equations in bounded domainsAnn. Henri Poincaré2016179255525843535872 – reference: YangZDingPLiuXAttractors and their stability on Boussinesq type equations with gentle dissipationCommun. Pure Appl. Anal.20191829119303917685 – reference: PengQZhangZGlobal attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifoldAppl. Math. Optim.202310.1007/s00245-023-09998-w – reference: HoweMSAcoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics1998CambridgeCambridge University Press – reference: ChueshovILasieckaIAttractors for second order evolution equations with a nonlinear dampingJ. Dyn. Differ. Equ.20041624695122105786 – reference: ToundykovDOptimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditionsNonlinear Anal.2007675125442317185 – reference: BanksHTSmithRFeedback control of noise in a 2-D nonlinear structural acoustic modelDiscrete Contin. Dyn. Syst.1995111191491355868 – volume-title: Theoretical Acoustics year: 1968 ident: 10325_CR5 – volume: 26 start-page: 185 year: 1998 ident: 10325_CR33 publication-title: Ann Scuola Normale Superiore, Pisa CL SCI – volume: 30 start-page: Art. 5, 28 pp issue: 1 year: 2018 ident: 10325_CR28 publication-title: Math. Control Signals Syst. doi: 10.1007/s00498-018-0211-7 – volume: 371 start-page: 8051 issue: 11 year: 2019 ident: 10325_CR25 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/7756 – volume-title: Modeling year: 1988 ident: 10325_CR20 – volume: 78 start-page: 203 year: 1999 ident: 10325_CR31 publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(01)80009-X – volume: 20 start-page: 459 issue: 3 year: 2008 ident: 10325_CR53 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2008.20.459 – volume: 4 start-page: 447 issue: 4 year: 2015 ident: 10325_CR23 publication-title: Evol. Equ. Control Theory doi: 10.3934/eect.2015.4.447 – volume: 25 start-page: 1041 year: 2005 ident: 10325_CR51 publication-title: DCDS doi: 10.3934/dcds.2009.25.1041 – volume: 6 start-page: 507 issue: 3 year: 1993 ident: 10325_CR17 publication-title: Differ. Integral Equ. – volume-title: Boundary Stabilization of Thin Plates year: 1989 ident: 10325_CR19 doi: 10.1137/1.9781611970821 – volume: 1 start-page: 119 issue: 1 year: 1995 ident: 10325_CR7 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.1995.1.119 – volume: 233 start-page: 42 year: 2007 ident: 10325_CR36 publication-title: J. Differ. Equa. doi: 10.1016/j.jde.2006.09.019 – volume: 67 start-page: 512 year: 2007 ident: 10325_CR39 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.06.007 – volume: 36 start-page: 67 year: 2011 ident: 10325_CR21 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2010.484472 – volume: 23 start-page: 2271 issue: 9 year: 2010 ident: 10325_CR18 publication-title: Nonlinearity doi: 10.1088/0951-7715/23/9/011 – volume: 42 start-page: 127 year: 2000 ident: 10325_CR59 publication-title: Appl. Math. Optim. doi: 10.1007/s002450010010 – volume-title: Hyperbolic Boundary Value Problems year: 1982 ident: 10325_CR55 – volume: 10 start-page: 797 issue: 4 year: 2021 ident: 10325_CR45 publication-title: Evol. Equ. Control Theory doi: 10.3934/eect.2020093 – volume: 57 start-page: 157 issue: 1 year: 1999 ident: 10325_CR9 publication-title: Quart. Appl. Math. doi: 10.1090/qam/1672195 – volume: 82 start-page: 1047 issue: 8 year: 2003 ident: 10325_CR12 publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(03)00016-3 – volume-title: Mathematical Control Theory of Coupled PDEs year: 2002 ident: 10325_CR11 doi: 10.1137/1.9780898717099 – volume: 12 start-page: 2985 issue: 6 year: 2011 ident: 10325_CR13 publication-title: Nonlinear Anal. Real World Appl. – volume: 19 start-page: 2219 issue: 4 year: 2020 ident: 10325_CR52 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2020097 – volume: 41 start-page: 943 issue: 7 year: 1996 ident: 10325_CR8 publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.508899 – volume: 27 start-page: 1901 issue: 9 &10 year: 2002 ident: 10325_CR35 publication-title: Commun. Partial Differ. Equ. doi: 10.1081/PDE-120016132 – year: 2023 ident: 10325_CR29 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-023-09998-w – volume: 22 start-page: 557 issue: 3 year: 2008 ident: 10325_CR44 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2008.22.557 – volume: 17 start-page: 2555 issue: 9 year: 2016 ident: 10325_CR3 publication-title: Ann. Henri Poincaré doi: 10.1007/s00023-016-0480-y – volume: 21 start-page: 269 issue: 2 year: 2009 ident: 10325_CR54 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-009-9132-y – ident: 10325_CR43 doi: 10.1007/978-3-319-92783-1_4 – year: 2023 ident: 10325_CR47 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-023-09968-2 – volume: 9 start-page: 469 issue: 2 year: 2020 ident: 10325_CR49 publication-title: Evol. Equ. Control Theory doi: 10.3934/eect.2020020 – volume-title: Asymptotoc Behavior of Dissipative Systems year: 1988 ident: 10325_CR57 – volume: 10 start-page: 31 issue: 1 &2 year: 2004 ident: 10325_CR2 publication-title: Discrete Contin. Dyn. Syst. – volume: 315 start-page: 551 year: 1992 ident: 10325_CR38 publication-title: C.R. Acad. Sci. Paris, Ser. I – volume: 10 start-page: 473 year: 2004 ident: 10325_CR56 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2004.10.473 – volume: 78 start-page: 61 issue: 1 year: 2018 ident: 10325_CR48 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-017-9399-z – volume-title: Infinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences year: 1997 ident: 10325_CR40 doi: 10.1007/978-1-4612-0645-3 – ident: 10325_CR58 doi: 10.1017/CBO9780511569418 – ident: 10325_CR26 doi: 10.1137/140962346 – volume: 49 start-page: 703 year: 2002 ident: 10325_CR34 publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(01)00135-3 – volume-title: Attractors of Evolution Equations year: 1992 ident: 10325_CR41 – volume: 19 start-page: 639 issue: 8 year: 1996 ident: 10325_CR15 publication-title: Math. Methods Appl. Sci. doi: 10.1002/(SICI)1099-1476(19960525)19:8<639::AID-MMA786>3.0.CO;2-C – volume-title: Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics year: 2010 ident: 10325_CR42 doi: 10.1007/978-0-387-87712-9 – ident: 10325_CR1 doi: 10.1016/S1874-5717(08)00003-0 – volume: 6 start-page: 113 issue: 1 year: 2007 ident: 10325_CR10 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2007.6.113 – volume: 298 start-page: 387 year: 2021 ident: 10325_CR24 publication-title: J. Differ. Equa. doi: 10.1016/j.jde.2021.07.009 – volume: 4 start-page: 65 issue: 148 year: 1987 ident: 10325_CR60 publication-title: Annali di Matematica Pura ed Applicata, Ser. – volume: 1 start-page: 243 issue: 2 year: 2008 ident: 10325_CR32 publication-title: Discrete Contin. Dyn. Syst. l – ident: 10325_CR46 doi: 10.1016/j.na.2020.111803 – volume: 30 start-page: 1489 issue: 4 year: 2018 ident: 10325_CR22 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-017-9604-4 – volume: 26 start-page: 1527 issue: 6 year: 1995 ident: 10325_CR16 publication-title: SIAM H. Math. Anal. doi: 10.1137/S0036141093258094 – volume: 18 start-page: 911 issue: 2 year: 2019 ident: 10325_CR50 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2019044 – volume: 16 start-page: 469 issue: 2 year: 2004 ident: 10325_CR37 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-004-4289-x – ident: 10325_CR30 doi: 10.1090/conm/268/04315 – volume: 195 start-page: 1 issue: 912 year: 2008 ident: 10325_CR4 publication-title: Memoires AMS – volume: 54 start-page: 2132 issue: 4 year: 2016 ident: 10325_CR14 publication-title: SICON doi: 10.1137/15M1039936 – volume-title: Acoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics year: 1998 ident: 10325_CR6 doi: 10.1017/CBO9780511662898 – volume: 71 start-page: 455 year: 1992 ident: 10325_CR27 publication-title: J. Math. Pures Appl. – volume-title: Dynamics of Quasi-Stable Dissipative Systems year: 2015 ident: 10325_CR61 doi: 10.1007/978-3-319-22903-4 |
SSID | ssj0009839 |
Score | 2.3433766 |
Snippet | Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2793 |
SubjectTerms | Acoustics Applications of Mathematics Attractors (mathematics) Blowing time Boussinesq equations Dissipation Dynamical systems Energy methods Internal forces Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations System theory Wave equations |
Title | On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation |
URI | https://link.springer.com/article/10.1007/s10884-023-10325-8 https://www.proquest.com/docview/3097827903 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoXOihAgpiC0Vz6A0siH9i55jtLqyKlkpsV9qeosSxASFtKBup4sY7IPGAPAljb9IF1B56yCUZ-eBvxjMZz3xDyBcZOyd4EVNtEkVFUjCa8EJRy1WOrwsjI9_vPDyLB2PxbSInTVPYrK12b68kw0n9otlNa0HRx1BPAiepfkdWJP67-0KuMUsXVLs6zA-LQq0cS0TTKvP3NV67o0WM-eZaNHib4zXyoQkTIZ3juk6W7HSDvB_-4VidfSSP36fw2-bXhyOfzb6AtK5vw_AcwDgUcuC0B6PADuuZNWhqqjC4C0IOcN7OAD4LC6dXqOuXlXNP9w9dFAqV8L-gj3G1l_epdsDzxSdsoK7g3PpRHwYjVeiGmUy3d9BD-Jra7E0yPu7_-DqgzZQFapg6qikzyrDS5TxyomRWoUmaxIhSmiLChyvcuMKyPI9lnlguVSkiw1DWoYDmgm-R5Wk1tdsEpLRMlVKhh7NCl2j6znHDcbFYm7JQHbLfbnZ2MyfTyBa0yR6aDKHJAjSZ7pDdFo-sMaxZxn3fCVPJEe-Qgxajxed_r_bp_8R3yCqqlphXk-2SZYTLfsbwoy72yEp68vO0vxe07hmW-NZZ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThRBEK4gHpSDUdS4glIHPGlHpn-mew4eFheyuCwmwibcxpmebiEku8JOQrj5DiY-gU_Gk1DdO8MK0YMHDnOZqfRM-qvu-qa6fgDWVeq9FGXKjM00k1nJWSZKzZzQBd0urUpCvvNwL-2P5KdDdbgAv9tcmBjt3h5Jxp36j2Q3YyQjG8NCETjFTBNKOXAX5_SjNv2w0yNU33C-vXXwsc-aXgLMcr1RM2615ZUvROJlxZ0mxbOZlZWyZUKX0PSK0vGiSFWROaF0JRPLSdaTgBFS0Lj34D6RDxPWzoh356V9TexXlsTYPJ7JJjXn79980_zNOe2tY9ho3bYfw6OGlmJ3pkdPYMGNl2FpeF3TdfoUfn0e47krTt7vB-_5N-zW9Vls1oPEe7FAwXq4H6vRhkoerGsnsVEYRp_jLH0Cg9cXB8c0nUcT7y9__NwkoRh5f4pbxOODfHDtI-1nwUGE9QS_uNBaxBIzxs3YA-rsAnukLk0s-DMY3QkSz2FxPBm7F4BKOa4rpcmiOmkq2mq8F1bQYKmxVak78Lad7Pz7rHhHPi_THKDJCZo8QpObDqy2eOTNQp7mIuS5cJ1tiA68azGaP_73aC__T3wNHvQPhrv57s7eYAUecqJOs0i2VVgk6Nwroj51-TpqHsLXu1b1K-3ZEvc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7VpQXmACewtvFP7Bx62LJdtSwtiLJSbyFxbEBI2bYbqeqNd6jEc_BMPAljJ2EBwYFDD7kkIyfyjD2T8XzfADxRqfdSlCkzNtNMZiVnmSg1c0IXdLu0Kgl45_2DdHcmXx6poxX41mNhYrV7fyTZYhoCS1PdDI8rP_wF-GaMZORvWCCEU8x0ZZVTd35GP22Lrb0xafgp55Oddy92WddXgFmuNxvGrba88oVIvKy402SENrOyUrZM6BKaXlE6XhSpKjInlK5kYjnJehIwQgoa9wpclQF9TCtoxkdLml8Te5clsU6PZ7KD6fz9m393hcv49o8j2ejpJrfgZhei4qi1qduw4uo7cGP_J7_r4i58fV3jmSs-Dw9DJv0DjprmNDbuQYqBsUDBxngYmWkDqwcb2XlsGoYx_9hCKTBkgHH6iabz49z7718utkkoVuGf4A7F9EE-pPmR9raQLMJmjm9daDNiKUrG7dgP6vQcx2Q6XV34PZhdiibuw2o9r90aoFKO60pp8q5Omoq2He-FFTRYamxV6gE86yc7P26JPPIlZXNQTU6qyaNqcjOAjV4febeoF7kImBeus00xgOe9jpaP_z3ag_8TfwzX3own-au9g-k6XOcURbVFbRuwSppzDykKaspH0fAQ3l-2pf8Ax4sXKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+weak%2FStrong+Attractor+for+a+3-D+Structural-Acoustic+Interaction+with+Kirchhoff%E2%80%93Boussinesq+Elastic+Wall+Subject+to+Restricted+Boundary+Dissipation&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Lasiecka%2C+Irena&rft.au=Rodrigues%2C+Jos%C3%A9+H.&rft.date=2024-09-01&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=36&rft.issue=3&rft.spage=2793&rft.epage=2825&rft_id=info:doi/10.1007%2Fs10884-023-10325-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10884_023_10325_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon |