On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation

Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wal...

Full description

Saved in:
Bibliographic Details
Published inJournal of dynamics and differential equations Vol. 36; no. 3; pp. 2793 - 2825
Main Authors Lasiecka, Irena, Rodrigues, José H.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [ 1 ]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [ 2 , 3 ] and compensated compactness [ 4 ] has been developed. The geometry of the acoustic chamber plays a critical role.
AbstractList Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [1]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [2, 3] and compensated compactness [4] has been developed. The geometry of the acoustic chamber plays a critical role.
Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic environment is given by a linear 3-D wave equation subject to locally distributed boundary dissipation, while the dynamics on the (flat) structural wall is given by a 2D-Kirchhoff-Boussinesq plate equation, subject to linear dissipation and supercritical nonlinear restoring forces. It is shown that the trajectories of the dynamical system defined on finite energy phase space are attracted asymptotically to a global attractor. The main challenges of the problem are related to: (i) superlinearity of the elastic energy of the structural component, (ii) Boussinesq effects of internal forces potentially leading to a finite time blowing up solutions, (iii) partially-restricted boundary dissipation placed on the interface only. The resulting system lacks dissipativity along with the suitable compactness properties, both corner stones of PDE dynamical system theories [ 1 ]. To contend with the difficulties, a new hybrid approach based on a suitable adaptation of the so called “energy methods” [ 2 , 3 ] and compensated compactness [ 4 ] has been developed. The geometry of the acoustic chamber plays a critical role.
Author Rodrigues, José H.
Lasiecka, Irena
Author_xml – sequence: 1
  givenname: Irena
  surname: Lasiecka
  fullname: Lasiecka, Irena
  email: lasiecka@memphis.edu
  organization: Department of Mathematical Sciences, The University of Memphis, IBS, Polish Academy of Sciences
– sequence: 2
  givenname: José H.
  surname: Rodrigues
  fullname: Rodrigues, José H.
  organization: Okinawa Institute of Science and Technology
BookMark eNp9kMtKAzEUhoMoWKsv4CrgOjaXGTNZ1rtYELzgMqSZTDt1TGqSQdz5DoIP6JN4agV3Lg4J5Pv-HP4dtOmDdwjtM3rIKJWjxGhVFYRyQRgVvCTVBhqwUnKiOOebcKcFJZKrYhvtpLSglKpKqAH6vPH41Zmn0V2Owc_wOOdobA4RNzAGC3KK4am3uY-mI2Mb-pRbi698diuwDeC3eY6v22jn89A0X-8fxwCl1rv0gs8688M_mq7Dd_104WzGOeBbl3JsbXY1BtrXJr7h0xaspVll7qKtxnTJ7f2eQ_RwfnZ_ckkmNxdXJ-MJsVzSTLiVlteNEawpau4kU0dW2aIu7ZTBCAndTB035qg0yolS1gWzHNgGgEoUYogO1rnLGF562EkvQh89fKkFVbLiUlEBFF9TNoaUomv0MrbPsLJmVK_61-v-NfSvf_rXFUhiLSWA_czFv-h_rG8Q2I43
Cites_doi 10.1007/s00498-018-0211-7
10.1090/tran/7756
10.1016/S0021-7824(01)80009-X
10.3934/dcds.2008.20.459
10.3934/eect.2015.4.447
10.3934/dcds.2009.25.1041
10.1137/1.9781611970821
10.3934/dcds.1995.1.119
10.1016/j.jde.2006.09.019
10.1016/j.na.2006.06.007
10.1080/03605302.2010.484472
10.1088/0951-7715/23/9/011
10.1007/s002450010010
10.3934/eect.2020093
10.1090/qam/1672195
10.1016/S0021-7824(03)00016-3
10.1137/1.9780898717099
10.3934/cpaa.2020097
10.1109/9.508899
10.1081/PDE-120016132
10.1007/s00245-023-09998-w
10.3934/dcds.2008.22.557
10.1007/s00023-016-0480-y
10.1007/s10884-009-9132-y
10.1007/978-3-319-92783-1_4
10.1007/s00245-023-09968-2
10.3934/eect.2020020
10.3934/dcds.2004.10.473
10.1007/s00245-017-9399-z
10.1007/978-1-4612-0645-3
10.1017/CBO9780511569418
10.1137/140962346
10.1016/S0362-546X(01)00135-3
10.1002/(SICI)1099-1476(19960525)19:8<639::AID-MMA786>3.0.CO;2-C
10.1007/978-0-387-87712-9
10.1016/S1874-5717(08)00003-0
10.3934/cpaa.2007.6.113
10.1016/j.jde.2021.07.009
10.1016/j.na.2020.111803
10.1007/s10884-017-9604-4
10.1137/S0036141093258094
10.3934/cpaa.2019044
10.1007/s10884-004-4289-x
10.1090/conm/268/04315
10.1137/15M1039936
10.1017/CBO9780511662898
10.1007/978-3-319-22903-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10884-023-10325-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9222
EndPage 2825
ExternalDocumentID 10_1007_s10884_023_10325_8
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2205508
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-2c7c2dfa31f4d2e7196c9c4d5cb15cb37007be2aa65a9e357d41c2f4dfcb18343
IEDL.DBID U2A
ISSN 1040-7294
IngestDate Fri Jul 25 11:15:00 EDT 2025
Tue Jul 01 03:46:33 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Structure-acoustic dynamical system
Kirchhoff-Boussinesq plate and interface
74K20
Boundary-interface dissipation
74F99
35L05
35B41
37L30
Global attractors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-2c7c2dfa31f4d2e7196c9c4d5cb15cb37007be2aa65a9e357d41c2f4dfcb18343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3097827903
PQPubID 2043775
PageCount 33
ParticipantIDs proquest_journals_3097827903
crossref_primary_10_1007_s10884_023_10325_8
springer_journals_10_1007_s10884_023_10325_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of dynamics and differential equations
PublicationTitleAbbrev J Dyn Diff Equat
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DanielsILebiedzikCExistence and uniqueness of a structural acoustic model involving a nonlinear shellDiscrete Contin. Dyn. Syst. l2008122432522379903
MoiseIRosaRAWangXAttractors for noncompact nonautonomous systems via energy equationsDiscrete Contin. Dyn. Syst.2004104734962026206
KalantarovVSavostianovAZelikSAttractors for damped quintic wave equations in bounded domainsAnn. Henri Poincaré2016179255525843535872
LagneseJLionsJLModeling1988Analysis and Control of Thin Plates. Collection RMAMasson
FeireislEAttractors for wave equation with nonlinear dissipation and critical exponents.C.R. Acad. Sci. Paris, Ser. I19923155515551181290
ChueshovILasieckaIOn the attractor for 2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2D$$\end{document}-Kirshhoff–Boussinesq model with supercritical nonlinearityCommun. Partial Differ. Equ.2011366799
VarlamovVExistence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equationMath. Methods Appl. Sci.19961986396491385158
LiJChaiSUniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shellAppl. Math. Optim.2023457211410.1007/s00245-023-09968-2
BecklinARammahaMMohammadAHadamard well-posedness for a structure acoustic model with a supercritical source and damping termsEvol. Equ. Control Theory20211047978364338834
ChueshovILasieckaILong Time Behavior of second Order Evolution Equations with nonlinear DampingMemoires AMS200819591211832438025
YangZFengNLiYRobust attractors for a Kirchhoff-Boussinesq type equationEvol. Equ. Control Theory2020924694864097650
HoweMSAcoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics1998CambridgeCambridge University Press
LasieckaITataruDUniform boundary stabilization of semilinear wave equations with nonlinear boundary dampingDiffer. Integral Equ.1993635075331202555
ZelatiMCGlobal and exponential attractors for the singularly perturbed extensible beamDCDS200525104110602533990
LasieckaILebiedzikCDecay rates of interactive hyperbolic–parabolic PDE models with thermal effects on the interfaceAppl. Math. Optim.2000421271671784172
BanksHTSmithRFeedback control of noise in a 2-D nonlinear structural acoustic modelDiscrete Contin. Dyn. Syst.1995111191491355868
YangZDingPLiuXAttractors and their stability on Boussinesq type equations with gentle dissipationCommun. Pure Appl. Anal.20191829119303917685
SakamotoRHyperbolic Boundary Value Problems1982CambridgeCambridge University Press
ChueshovIEllerMLasieckaIOn the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipationCommun. Partial Differ. Equ.2002279 &10190119511941662
BallJMGlobal attractors for damped semilinear wave equationsDiscrete Contin. Dyn. Syst.2004101 &231522026182
Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008)
BucciFChueshovILong-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equationsDiscrete Contin. Dyn. Syst.20082235575862429854
Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269–307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018)
LasieckaIBoundary stabilization of a three dimensional structural acoustic modelJ. Math. Pures Appl.1999782033221677665
ChueshovILasieckaIAttractors for second order evolution equations with a nonlinear dampingJ. Dyn. Differ. Equ.20041624695122105786
HaleJKAsymptotoc Behavior of Dissipative Systems1988Providence, RIMathematical Surveys andMonographs. AMS
Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227–325, AMS (2000)
ChueshovILasieckaILong-time dynamics of von Karman semi-flows with non-linear boundary/interior dampingJ. Differ. Equa.200723342862290271
Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020)
BucciFToundykovDFinite-dimensional attractor for a composite system of wave/plate equations with localized dampingNonlinearity2010239227123062672645
AvalosGToundykovDBoundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plateNonlinear Anal. Real World Appl.2011126298530132832943
BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth Holland
ToundykovDOptimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditionsNonlinear Anal.2007675125442317185
KaltenbacherBMathematics of nonlinear acousticsEvol. Equ. Control Theory2015444474913461695
Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015)
Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991)
YangFYaoPChenGBoundary controllability of structural acoustic systems with variable coefficients and curved wallsMath. Control Signals Syst.2018301Art. 5, 28 pp3781465
RuizAUnique continuation for weak solutions of the wave equation plus a potentialJ. Math. Pures Appl.1992714554671191585
AvalosGLasieckaIExact controllability of structural acoustic interactionsJ. Math. Pures Appl.2003828104710732005204
ChueshovILasieckaIToundykovDGlobal attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponentJ. Dyn. Differ. Equ.20092122693142506664
LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM
LasieckaILebiedzikCAsymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interfaceNonlinear Anal.2002497037351894305
BanksHTDemetriouMSmithRH-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuatorsIEEE Trans. Autom. Control1996417943959
LasieckaIMaTFMonteiroRNGlobal smooth attractors for dynamics of thermal shallow shells without vertical dissipationTrans. Am. Math. Soc.201937111805180963955543
LiuYMohsinBHajaiejHYaoP-FChenGExact controllability of structural interactions with variable coefficientsSICON2016544213221533539887
PengQZhangZGlobal attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifoldAppl. Math. Optim.202310.1007/s00245-023-09998-w
ChueshovIDynamics of Quasi-Stable Dissipative Systems2015BerlinSpringer
FahrooFWangCA new model for acoustic-structure interaction and its exponential stabilityQuart. Appl. Math.19995711571791672195
BucciFChueshovILasieckaIGlobal attractors for a composite system of nonlinear wave and plate equationsCommun. Pure Appl. Anal.2007611131402276333
MaTFHuertasSPauloNAttractors for semilinear wave equations with localized damping and external forcesCommun. Pure Appl. Anal.2020194221922334153507
TataruDOn the regularity of boundary traces for the wave equationAnn Scuola Normale Superiore, Pisa CL SCI1998261852061633000
ChueshovILasieckaIToundykovDLong-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponentDiscrete Contin. Dyn. Syst.20082034595092373201
SimonJCompact sets in the space Lp(0, T;B)Annali di Matematica Pura ed Applicata, Ser.198741486596
LasieckaIMathematical Control Theory of Coupled PDEs2002PhiladelphiaSIAM
LiuYYaoP-FEnergy decay rate of the wave equations on Riemannian manifolds with critical potentialAppl. Math. Optim.2018781611013826712
MorsePMIngardKTheoretical Acoustics1968New YorkMcGraw-Hill
YueLInstability of solutions to a generalised Boussinesq equationSIAM H. Math. Anal.199526615271546
TemamRInfinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences1997BerlinSpringer
ChueshovILasieckaIVon Karman Evolution Equations. Well-Posedness and Long-Time Dynamics2010New YorkSpringer
LasieckaIRodriguesJHWeak and strong semigroups in structural acoustic Kirchhoff–Boussinesq interactions with boundary feedbackJ. Differ. Equa.20212983874294288248
FengBMaTFMonteiroRNRaposoCADynamics of laminated Timoshenko beamsJ. Dyn. Differ. Equ.2018304148915073871611
J Simon (10325_CR60) 1987; 4
B Kaltenbacher (10325_CR23) 2015; 4
10325_CR1
I Lasiecka (10325_CR24) 2021; 298
I Chueshov (10325_CR61) 2015
MS Howe (10325_CR6) 1998
TF Ma (10325_CR52) 2020; 19
JM Ball (10325_CR2) 2004; 10
I Chueshov (10325_CR36) 2007; 233
JK Hale (10325_CR57) 1988
V Kalantarov (10325_CR3) 2016; 17
I Daniels (10325_CR32) 2008; 1
I Lasiecka (10325_CR31) 1999; 78
I Lasiecka (10325_CR11) 2002
V Varlamov (10325_CR15) 1996; 19
10325_CR30
D Toundykov (10325_CR39) 2007; 67
I Chueshov (10325_CR53) 2008; 20
Y Liu (10325_CR48) 2018; 78
I Lasiecka (10325_CR17) 1993; 6
F Fahroo (10325_CR9) 1999; 57
I Lasiecka (10325_CR25) 2019; 371
F Bucci (10325_CR44) 2008; 22
Z Yang (10325_CR50) 2019; 18
MC Zelati (10325_CR51) 2005; 25
I Chueshov (10325_CR21) 2011; 36
J Lagnese (10325_CR20) 1988
10325_CR43
I Lasiecka (10325_CR59) 2000; 42
HT Banks (10325_CR8) 1996; 41
Q Peng (10325_CR29) 2023
I Chueshov (10325_CR37) 2004; 16
10325_CR46
Z Yang (10325_CR49) 2020; 9
B Feng (10325_CR22) 2018; 30
I Chueshov (10325_CR4) 2008; 195
G Avalos (10325_CR13) 2011; 12
R Sakamoto (10325_CR55) 1982
J Lagnese (10325_CR19) 1989
AV Babin (10325_CR41) 1992
G Avalos (10325_CR12) 2003; 82
A Becklin (10325_CR45) 2021; 10
D Tataru (10325_CR33) 1998; 26
J Li (10325_CR47) 2023
F Bucci (10325_CR10) 2007; 6
10325_CR58
I Chueshov (10325_CR54) 2009; 21
I Moise (10325_CR56) 2004; 10
R Temam (10325_CR40) 1997
F Bucci (10325_CR18) 2010; 23
I Chueshov (10325_CR42) 2010
PM Morse (10325_CR5) 1968
E Feireisl (10325_CR38) 1992; 315
HT Banks (10325_CR7) 1995; 1
F Yang (10325_CR28) 2018; 30
L Yue (10325_CR16) 1995; 26
I Lasiecka (10325_CR34) 2002; 49
A Ruiz (10325_CR27) 1992; 71
Y Liu (10325_CR14) 2016; 54
10325_CR26
I Chueshov (10325_CR35) 2002; 27
References_xml – reference: BabinAVVishikMIAttractors of Evolution Equations1992AmsterdamNorth Holland
– reference: BallJMGlobal attractors for damped semilinear wave equationsDiscrete Contin. Dyn. Syst.2004101 &231522026182
– reference: ChueshovILasieckaIToundykovDLong-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponentDiscrete Contin. Dyn. Syst.20082034595092373201
– reference: LiuYYaoP-FEnergy decay rate of the wave equations on Riemannian manifolds with critical potentialAppl. Math. Optim.2018781611013826712
– reference: VarlamovVExistence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equationMath. Methods Appl. Sci.19961986396491385158
– reference: RuizAUnique continuation for weak solutions of the wave equation plus a potentialJ. Math. Pures Appl.1992714554671191585
– reference: Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C. global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of PDE, Contemprary Mathematics, vol. 268, pp. 227–325, AMS (2000)
– reference: YueLInstability of solutions to a generalised Boussinesq equationSIAM H. Math. Anal.199526615271546
– reference: MaTFHuertasSPauloNAttractors for semilinear wave equations with localized damping and external forcesCommun. Pure Appl. Anal.2020194221922334153507
– reference: SimonJCompact sets in the space Lp(0, T;B)Annali di Matematica Pura ed Applicata, Ser.198741486596
– reference: FahrooFWangCA new model for acoustic-structure interaction and its exponential stabilityQuart. Appl. Math.19995711571791672195
– reference: LiJChaiSUniform decay rates for a variable coefficients structural acoustic model with curved interface on a shallow shellAppl. Math. Optim.2023457211410.1007/s00245-023-09968-2
– reference: MorsePMIngardKTheoretical Acoustics1968New YorkMcGraw-Hill
– reference: DanielsILebiedzikCExistence and uniqueness of a structural acoustic model involving a nonlinear shellDiscrete Contin. Dyn. Syst. l2008122432522379903
– reference: LasieckaITataruDUniform boundary stabilization of semilinear wave equations with nonlinear boundary dampingDiffer. Integral Equ.1993635075331202555
– reference: LagneseJBoundary Stabilization of Thin Plates1989PhiladelphiaSIAM
– reference: YangFYaoPChenGBoundary controllability of structural acoustic systems with variable coefficients and curved wallsMath. Control Signals Syst.2018301Art. 5, 28 pp3781465
– reference: BanksHTDemetriouMSmithRH-infinity Mini Max periodic control in a two-dimensional structural acoustic model with piezoceramic actuatorsIEEE Trans. Autom. Control1996417943959
– reference: BecklinARammahaMMohammadAHadamard well-posedness for a structure acoustic model with a supercritical source and damping termsEvol. Equ. Control Theory20211047978364338834
– reference: LiuYMohsinBHajaiejHYaoP-FChenGExact controllability of structural interactions with variable coefficientsSICON2016544213221533539887
– reference: AvalosGLasieckaIExact controllability of structural acoustic interactionsJ. Math. Pures Appl.2003828104710732005204
– reference: LasieckaIRodriguesJHWeak and strong semigroups in structural acoustic Kirchhoff–Boussinesq interactions with boundary feedbackJ. Differ. Equa.20212983874294288248
– reference: SakamotoRHyperbolic Boundary Value Problems1982CambridgeCambridge University Press
– reference: BucciFChueshovILasieckaIGlobal attractors for a composite system of nonlinear wave and plate equationsCommun. Pure Appl. Anal.2007611131402276333
– reference: AvalosGToundykovDBoundary stabilization of structural acoustic interactions with interface on a Reissner–Mindlin plateNonlinear Anal. Real World Appl.2011126298530132832943
– reference: Kaltenbacher, B.: Some aspects in nonlinear acoustics: structure-acoustic coupling and shape optimization. In: Mathematical theory of evolutionary fluid-flow structure interactions, pp. 269–307, Oberwolfach Semin, 48, Birkhäuser/Springer, Cham (2018)
– reference: YangZFengNLiYRobust attractors for a Kirchhoff-Boussinesq type equationEvol. Equ. Control Theory2020924694864097650
– reference: LasieckaILebiedzikCAsymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interfaceNonlinear Anal.2002497037351894305
– reference: ChueshovILasieckaIOn the attractor for 2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2D$$\end{document}-Kirshhoff–Boussinesq model with supercritical nonlinearityCommun. Partial Differ. Equ.2011366799
– reference: LagneseJLionsJLModeling1988Analysis and Control of Thin Plates. Collection RMAMasson
– reference: MoiseIRosaRAWangXAttractors for noncompact nonautonomous systems via energy equationsDiscrete Contin. Dyn. Syst.2004104734962026206
– reference: FeireislEAttractors for wave equation with nonlinear dissipation and critical exponents.C.R. Acad. Sci. Paris, Ser. I19923155515551181290
– reference: FengBMaTFMonteiroRNRaposoCADynamics of laminated Timoshenko beamsJ. Dyn. Differ. Equ.2018304148915073871611
– reference: TataruDOn the regularity of boundary traces for the wave equationAnn Scuola Normale Superiore, Pisa CL SCI1998261852061633000
– reference: LasieckaILebiedzikCDecay rates of interactive hyperbolic–parabolic PDE models with thermal effects on the interfaceAppl. Math. Optim.2000421271671784172
– reference: LasieckaIMaTFMonteiroRNGlobal smooth attractors for dynamics of thermal shallow shells without vertical dissipationTrans. Am. Math. Soc.201937111805180963955543
– reference: ZelatiMCGlobal and exponential attractors for the singularly perturbed extensible beamDCDS200525104110602533990
– reference: KaltenbacherBMathematics of nonlinear acousticsEvol. Equ. Control Theory2015444474913461695
– reference: TemamRInfinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences1997BerlinSpringer
– reference: ChueshovILasieckaIVon Karman Evolution Equations. Well-Posedness and Long-Time Dynamics2010New YorkSpringer
– reference: Feng, N., Yang, Z.: Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models. Nonlinear Anal. 196, 111803, 29 p (2020)
– reference: LasieckaIMathematical Control Theory of Coupled PDEs2002PhiladelphiaSIAM
– reference: LasieckaIBoundary stabilization of a three dimensional structural acoustic modelJ. Math. Pures Appl.1999782033221677665
– reference: Feng, H., Guo, B.-Z.: On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems SICON, vol 53, nr 4 (2015)
– reference: HaleJKAsymptotoc Behavior of Dissipative Systems1988Providence, RIMathematical Surveys andMonographs. AMS
– reference: ChueshovILasieckaILong-time dynamics of von Karman semi-flows with non-linear boundary/interior dampingJ. Differ. Equa.200723342862290271
– reference: ChueshovILasieckaIToundykovDGlobal attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponentJ. Dyn. Differ. Equ.20092122693142506664
– reference: BucciFToundykovDFinite-dimensional attractor for a composite system of wave/plate equations with localized dampingNonlinearity2010239227123062672645
– reference: Ladyzhenskaya, O.: Attractors of Semigroups and Evolution Equations. Cambridge University Press, Cambridge, Lezioni Lincee (1991)
– reference: BucciFChueshovILong-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equationsDiscrete Contin. Dyn. Syst.20082235575862429854
– reference: ChueshovILasieckaILong Time Behavior of second Order Evolution Equations with nonlinear DampingMemoires AMS200819591211832438025
– reference: ChueshovIDynamics of Quasi-Stable Dissipative Systems2015BerlinSpringer
– reference: ChueshovIEllerMLasieckaIOn the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipationCommun. Partial Differ. Equ.2002279 &10190119511941662
– reference: Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008)
– reference: KalantarovVSavostianovAZelikSAttractors for damped quintic wave equations in bounded domainsAnn. Henri Poincaré2016179255525843535872
– reference: YangZDingPLiuXAttractors and their stability on Boussinesq type equations with gentle dissipationCommun. Pure Appl. Anal.20191829119303917685
– reference: PengQZhangZGlobal attractor for a coupled wave and plate equation with nonlocal damping on Riemanian manifoldAppl. Math. Optim.202310.1007/s00245-023-09998-w
– reference: HoweMSAcoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics1998CambridgeCambridge University Press
– reference: ChueshovILasieckaIAttractors for second order evolution equations with a nonlinear dampingJ. Dyn. Differ. Equ.20041624695122105786
– reference: ToundykovDOptimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditionsNonlinear Anal.2007675125442317185
– reference: BanksHTSmithRFeedback control of noise in a 2-D nonlinear structural acoustic modelDiscrete Contin. Dyn. Syst.1995111191491355868
– volume-title: Theoretical Acoustics
  year: 1968
  ident: 10325_CR5
– volume: 26
  start-page: 185
  year: 1998
  ident: 10325_CR33
  publication-title: Ann Scuola Normale Superiore, Pisa CL SCI
– volume: 30
  start-page: Art. 5, 28 pp
  issue: 1
  year: 2018
  ident: 10325_CR28
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/s00498-018-0211-7
– volume: 371
  start-page: 8051
  issue: 11
  year: 2019
  ident: 10325_CR25
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7756
– volume-title: Modeling
  year: 1988
  ident: 10325_CR20
– volume: 78
  start-page: 203
  year: 1999
  ident: 10325_CR31
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(01)80009-X
– volume: 20
  start-page: 459
  issue: 3
  year: 2008
  ident: 10325_CR53
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2008.20.459
– volume: 4
  start-page: 447
  issue: 4
  year: 2015
  ident: 10325_CR23
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2015.4.447
– volume: 25
  start-page: 1041
  year: 2005
  ident: 10325_CR51
  publication-title: DCDS
  doi: 10.3934/dcds.2009.25.1041
– volume: 6
  start-page: 507
  issue: 3
  year: 1993
  ident: 10325_CR17
  publication-title: Differ. Integral Equ.
– volume-title: Boundary Stabilization of Thin Plates
  year: 1989
  ident: 10325_CR19
  doi: 10.1137/1.9781611970821
– volume: 1
  start-page: 119
  issue: 1
  year: 1995
  ident: 10325_CR7
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.1995.1.119
– volume: 233
  start-page: 42
  year: 2007
  ident: 10325_CR36
  publication-title: J. Differ. Equa.
  doi: 10.1016/j.jde.2006.09.019
– volume: 67
  start-page: 512
  year: 2007
  ident: 10325_CR39
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.06.007
– volume: 36
  start-page: 67
  year: 2011
  ident: 10325_CR21
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1080/03605302.2010.484472
– volume: 23
  start-page: 2271
  issue: 9
  year: 2010
  ident: 10325_CR18
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/23/9/011
– volume: 42
  start-page: 127
  year: 2000
  ident: 10325_CR59
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010010
– volume-title: Hyperbolic Boundary Value Problems
  year: 1982
  ident: 10325_CR55
– volume: 10
  start-page: 797
  issue: 4
  year: 2021
  ident: 10325_CR45
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2020093
– volume: 57
  start-page: 157
  issue: 1
  year: 1999
  ident: 10325_CR9
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/1672195
– volume: 82
  start-page: 1047
  issue: 8
  year: 2003
  ident: 10325_CR12
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(03)00016-3
– volume-title: Mathematical Control Theory of Coupled PDEs
  year: 2002
  ident: 10325_CR11
  doi: 10.1137/1.9780898717099
– volume: 12
  start-page: 2985
  issue: 6
  year: 2011
  ident: 10325_CR13
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 19
  start-page: 2219
  issue: 4
  year: 2020
  ident: 10325_CR52
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2020097
– volume: 41
  start-page: 943
  issue: 7
  year: 1996
  ident: 10325_CR8
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.508899
– volume: 27
  start-page: 1901
  issue: 9 &10
  year: 2002
  ident: 10325_CR35
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1081/PDE-120016132
– year: 2023
  ident: 10325_CR29
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-023-09998-w
– volume: 22
  start-page: 557
  issue: 3
  year: 2008
  ident: 10325_CR44
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2008.22.557
– volume: 17
  start-page: 2555
  issue: 9
  year: 2016
  ident: 10325_CR3
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/s00023-016-0480-y
– volume: 21
  start-page: 269
  issue: 2
  year: 2009
  ident: 10325_CR54
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-009-9132-y
– ident: 10325_CR43
  doi: 10.1007/978-3-319-92783-1_4
– year: 2023
  ident: 10325_CR47
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-023-09968-2
– volume: 9
  start-page: 469
  issue: 2
  year: 2020
  ident: 10325_CR49
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2020020
– volume-title: Asymptotoc Behavior of Dissipative Systems
  year: 1988
  ident: 10325_CR57
– volume: 10
  start-page: 31
  issue: 1 &2
  year: 2004
  ident: 10325_CR2
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 315
  start-page: 551
  year: 1992
  ident: 10325_CR38
  publication-title: C.R. Acad. Sci. Paris, Ser. I
– volume: 10
  start-page: 473
  year: 2004
  ident: 10325_CR56
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2004.10.473
– volume: 78
  start-page: 61
  issue: 1
  year: 2018
  ident: 10325_CR48
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-017-9399-z
– volume-title: Infinite Dimensional Dynamical Systems in Mechanics and PhysicsApplied Mathematical Sciences
  year: 1997
  ident: 10325_CR40
  doi: 10.1007/978-1-4612-0645-3
– ident: 10325_CR58
  doi: 10.1017/CBO9780511569418
– ident: 10325_CR26
  doi: 10.1137/140962346
– volume: 49
  start-page: 703
  year: 2002
  ident: 10325_CR34
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00135-3
– volume-title: Attractors of Evolution Equations
  year: 1992
  ident: 10325_CR41
– volume: 19
  start-page: 639
  issue: 8
  year: 1996
  ident: 10325_CR15
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/(SICI)1099-1476(19960525)19:8<639::AID-MMA786>3.0.CO;2-C
– volume-title: Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics
  year: 2010
  ident: 10325_CR42
  doi: 10.1007/978-0-387-87712-9
– ident: 10325_CR1
  doi: 10.1016/S1874-5717(08)00003-0
– volume: 6
  start-page: 113
  issue: 1
  year: 2007
  ident: 10325_CR10
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2007.6.113
– volume: 298
  start-page: 387
  year: 2021
  ident: 10325_CR24
  publication-title: J. Differ. Equa.
  doi: 10.1016/j.jde.2021.07.009
– volume: 4
  start-page: 65
  issue: 148
  year: 1987
  ident: 10325_CR60
  publication-title: Annali di Matematica Pura ed Applicata, Ser.
– volume: 1
  start-page: 243
  issue: 2
  year: 2008
  ident: 10325_CR32
  publication-title: Discrete Contin. Dyn. Syst. l
– ident: 10325_CR46
  doi: 10.1016/j.na.2020.111803
– volume: 30
  start-page: 1489
  issue: 4
  year: 2018
  ident: 10325_CR22
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-017-9604-4
– volume: 26
  start-page: 1527
  issue: 6
  year: 1995
  ident: 10325_CR16
  publication-title: SIAM H. Math. Anal.
  doi: 10.1137/S0036141093258094
– volume: 18
  start-page: 911
  issue: 2
  year: 2019
  ident: 10325_CR50
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2019044
– volume: 16
  start-page: 469
  issue: 2
  year: 2004
  ident: 10325_CR37
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-004-4289-x
– ident: 10325_CR30
  doi: 10.1090/conm/268/04315
– volume: 195
  start-page: 1
  issue: 912
  year: 2008
  ident: 10325_CR4
  publication-title: Memoires AMS
– volume: 54
  start-page: 2132
  issue: 4
  year: 2016
  ident: 10325_CR14
  publication-title: SICON
  doi: 10.1137/15M1039936
– volume-title: Acoustics of Fluid Structure Interactions. Cambridge Monographs on Mechanics
  year: 1998
  ident: 10325_CR6
  doi: 10.1017/CBO9780511662898
– volume: 71
  start-page: 455
  year: 1992
  ident: 10325_CR27
  publication-title: J. Math. Pures Appl.
– volume-title: Dynamics of Quasi-Stable Dissipative Systems
  year: 2015
  ident: 10325_CR61
  doi: 10.1007/978-3-319-22903-4
SSID ssj0009839
Score 2.3433766
Snippet Existence of global attractors for a structural-acoustic system, subject to restricted boundary dissipation, is considered. Dynamics of the acoustic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2793
SubjectTerms Acoustics
Applications of Mathematics
Attractors (mathematics)
Blowing time
Boussinesq equations
Dissipation
Dynamical systems
Energy methods
Internal forces
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
System theory
Wave equations
Title On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation
URI https://link.springer.com/article/10.1007/s10884-023-10325-8
https://www.proquest.com/docview/3097827903
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoXOihAgpiC0Vz6A0siH9i55jtLqyKlkpsV9qeosSxASFtKBup4sY7IPGAPAljb9IF1B56yCUZ-eBvxjMZz3xDyBcZOyd4EVNtEkVFUjCa8EJRy1WOrwsjI9_vPDyLB2PxbSInTVPYrK12b68kw0n9otlNa0HRx1BPAiepfkdWJP67-0KuMUsXVLs6zA-LQq0cS0TTKvP3NV67o0WM-eZaNHib4zXyoQkTIZ3juk6W7HSDvB_-4VidfSSP36fw2-bXhyOfzb6AtK5vw_AcwDgUcuC0B6PADuuZNWhqqjC4C0IOcN7OAD4LC6dXqOuXlXNP9w9dFAqV8L-gj3G1l_epdsDzxSdsoK7g3PpRHwYjVeiGmUy3d9BD-Jra7E0yPu7_-DqgzZQFapg6qikzyrDS5TxyomRWoUmaxIhSmiLChyvcuMKyPI9lnlguVSkiw1DWoYDmgm-R5Wk1tdsEpLRMlVKhh7NCl2j6znHDcbFYm7JQHbLfbnZ2MyfTyBa0yR6aDKHJAjSZ7pDdFo-sMaxZxn3fCVPJEe-Qgxajxed_r_bp_8R3yCqqlphXk-2SZYTLfsbwoy72yEp68vO0vxe07hmW-NZZ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThRBEK4gHpSDUdS4glIHPGlHpn-mew4eFheyuCwmwibcxpmebiEku8JOQrj5DiY-gU_Gk1DdO8MK0YMHDnOZqfRM-qvu-qa6fgDWVeq9FGXKjM00k1nJWSZKzZzQBd0urUpCvvNwL-2P5KdDdbgAv9tcmBjt3h5Jxp36j2Q3YyQjG8NCETjFTBNKOXAX5_SjNv2w0yNU33C-vXXwsc-aXgLMcr1RM2615ZUvROJlxZ0mxbOZlZWyZUKX0PSK0vGiSFWROaF0JRPLSdaTgBFS0Lj34D6RDxPWzoh356V9TexXlsTYPJ7JJjXn79980_zNOe2tY9ho3bYfw6OGlmJ3pkdPYMGNl2FpeF3TdfoUfn0e47krTt7vB-_5N-zW9Vls1oPEe7FAwXq4H6vRhkoerGsnsVEYRp_jLH0Cg9cXB8c0nUcT7y9__NwkoRh5f4pbxOODfHDtI-1nwUGE9QS_uNBaxBIzxs3YA-rsAnukLk0s-DMY3QkSz2FxPBm7F4BKOa4rpcmiOmkq2mq8F1bQYKmxVak78Lad7Pz7rHhHPi_THKDJCZo8QpObDqy2eOTNQp7mIuS5cJ1tiA68azGaP_73aC__T3wNHvQPhrv57s7eYAUecqJOs0i2VVgk6Nwroj51-TpqHsLXu1b1K-3ZEvc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7VpQXmACewtvFP7Bx62LJdtSwtiLJSbyFxbEBI2bYbqeqNd6jEc_BMPAljJ2EBwYFDD7kkIyfyjD2T8XzfADxRqfdSlCkzNtNMZiVnmSg1c0IXdLu0Kgl45_2DdHcmXx6poxX41mNhYrV7fyTZYhoCS1PdDI8rP_wF-GaMZORvWCCEU8x0ZZVTd35GP22Lrb0xafgp55Oddy92WddXgFmuNxvGrba88oVIvKy402SENrOyUrZM6BKaXlE6XhSpKjInlK5kYjnJehIwQgoa9wpclQF9TCtoxkdLml8Te5clsU6PZ7KD6fz9m393hcv49o8j2ejpJrfgZhei4qi1qduw4uo7cGP_J7_r4i58fV3jmSs-Dw9DJv0DjprmNDbuQYqBsUDBxngYmWkDqwcb2XlsGoYx_9hCKTBkgHH6iabz49z7718utkkoVuGf4A7F9EE-pPmR9raQLMJmjm9daDNiKUrG7dgP6vQcx2Q6XV34PZhdiibuw2o9r90aoFKO60pp8q5Omoq2He-FFTRYamxV6gE86yc7P26JPPIlZXNQTU6qyaNqcjOAjV4febeoF7kImBeus00xgOe9jpaP_z3ag_8TfwzX3own-au9g-k6XOcURbVFbRuwSppzDykKaspH0fAQ3l-2pf8Ax4sXKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+weak%2FStrong+Attractor+for+a+3-D+Structural-Acoustic+Interaction+with+Kirchhoff%E2%80%93Boussinesq+Elastic+Wall+Subject+to+Restricted+Boundary+Dissipation&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Lasiecka%2C+Irena&rft.au=Rodrigues%2C+Jos%C3%A9+H.&rft.date=2024-09-01&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=36&rft.issue=3&rft.spage=2793&rft.epage=2825&rft_id=info:doi/10.1007%2Fs10884-023-10325-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10884_023_10325_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon