Atmospheric Emissions from Electricity Generation in Southeast Asia: Development Trend and Policy Responses

Purpose of Review Rapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great pressure on the power sector in Southeast Asia (SEA) to meet energy demand. This paper reviews the past 20-year power generation in SEA countries...

Full description

Saved in:
Bibliographic Details
Published inCurrent pollution reports Vol. 10; no. 1; pp. 54 - 69
Main Authors Oanh, Nguyen Thi Kim, Huy, Lai Nguyen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose of Review Rapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great pressure on the power sector in Southeast Asia (SEA) to meet energy demand. This paper reviews the past 20-year power generation in SEA countries to analyze potential impacts on atmospheric pollution using DPSIR framework. Recent Findings In 2020, total region electricity generation reached 1050 TWh, 3.1 times above that of 2000, and is projected to further increase by 2.5 times in 2050. During the period, the annual per capita generation increased 2.4 times. Indonesia, Malaysia, Thailand, and Vietnam were the main electricity producers, sharing 83% in 2020. Coal and natural gas based thermal power plants (TPPs) were dominant with 72% of the total electricity produced, whereas low-carbon renewable energy, although increased during the period, shared only 25% in 2020. In 2018, the sectoral atmospheric emissions of different species increased by 2.4–11.5 times above 2000, contributing 55.3%, 26.8%, and 26.7% to the region’s total anthropogenic emissions of SO 2 , CO 2 , and NO x , respectively. Summary Heavy reliance on fossil fuels makes the power sector a key emission source of air pollutants and greenhouse gases. SEA governments have promulgated policies and regulations for TPPs and set net zero emissions targets. These policies, directly and/or indirectly address atmospheric pollution, once fully implemented, bring in more secure and sustainable power sources in the region, along with multiple benefits to air quality, human health, environment, ecosystem, and the climate.
AbstractList Purpose of Review Rapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great pressure on the power sector in Southeast Asia (SEA) to meet energy demand. This paper reviews the past 20-year power generation in SEA countries to analyze potential impacts on atmospheric pollution using DPSIR framework. Recent Findings In 2020, total region electricity generation reached 1050 TWh, 3.1 times above that of 2000, and is projected to further increase by 2.5 times in 2050. During the period, the annual per capita generation increased 2.4 times. Indonesia, Malaysia, Thailand, and Vietnam were the main electricity producers, sharing 83% in 2020. Coal and natural gas based thermal power plants (TPPs) were dominant with 72% of the total electricity produced, whereas low-carbon renewable energy, although increased during the period, shared only 25% in 2020. In 2018, the sectoral atmospheric emissions of different species increased by 2.4–11.5 times above 2000, contributing 55.3%, 26.8%, and 26.7% to the region’s total anthropogenic emissions of SO 2 , CO 2 , and NO x , respectively. Summary Heavy reliance on fossil fuels makes the power sector a key emission source of air pollutants and greenhouse gases. SEA governments have promulgated policies and regulations for TPPs and set net zero emissions targets. These policies, directly and/or indirectly address atmospheric pollution, once fully implemented, bring in more secure and sustainable power sources in the region, along with multiple benefits to air quality, human health, environment, ecosystem, and the climate.
Purpose of ReviewRapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great pressure on the power sector in Southeast Asia (SEA) to meet energy demand. This paper reviews the past 20-year power generation in SEA countries to analyze potential impacts on atmospheric pollution using DPSIR framework.Recent FindingsIn 2020, total region electricity generation reached 1050 TWh, 3.1 times above that of 2000, and is projected to further increase by 2.5 times in 2050. During the period, the annual per capita generation increased 2.4 times. Indonesia, Malaysia, Thailand, and Vietnam were the main electricity producers, sharing 83% in 2020. Coal and natural gas based thermal power plants (TPPs) were dominant with 72% of the total electricity produced, whereas low-carbon renewable energy, although increased during the period, shared only 25% in 2020. In 2018, the sectoral atmospheric emissions of different species increased by 2.4–11.5 times above 2000, contributing 55.3%, 26.8%, and 26.7% to the region’s total anthropogenic emissions of SO2, CO2, and NOx, respectively.SummaryHeavy reliance on fossil fuels makes the power sector a key emission source of air pollutants and greenhouse gases. SEA governments have promulgated policies and regulations for TPPs and set net zero emissions targets. These policies, directly and/or indirectly address atmospheric pollution, once fully implemented, bring in more secure and sustainable power sources in the region, along with multiple benefits to air quality, human health, environment, ecosystem, and the climate.
Author Huy, Lai Nguyen
Oanh, Nguyen Thi Kim
Author_xml – sequence: 1
  givenname: Nguyen Thi Kim
  surname: Oanh
  fullname: Oanh, Nguyen Thi Kim
  email: kimoanh@ait.ac.th
  organization: Environmental Engineering and Management, Asian Institute of Technology
– sequence: 2
  givenname: Lai Nguyen
  surname: Huy
  fullname: Huy, Lai Nguyen
  organization: Environmental Engineering and Management, Asian Institute of Technology
BookMark eNp9UMtOwzAQtBBIlNIf4GSJc8CPOE64VaUUpEogKGcrTTbUJbGD7SL173EJEpw4rHZnd2ZWmjN0bKwBhC4ouaKEyGufEsmyhDCeEMLyIiFHaMRokSeZKNjxn_kUTbzfksgiacRyhN6nobO-34DTFZ532nttjceNsx2et1CFuNdhjxdgwJUhHrE2-MXuwgZKH_DU6_IG38IntLbvwAS8cmBqXMZ6sq2u9vgZfB89wZ-jk6ZsPUx--hi93s1Xs_tk-bh4mE2XScUkCQnjWZHydQR1I2nJsxSIpCSnaQ1SZiJdlzUtqKjSZi0YpSIv4jWXUuZC5A3nY3Q5-PbOfuzAB7W1O2fiS8UKLqkULDuw2MCqnPXeQaN6p7vS7RUl6pCrGnJVMVf1nasiUcQHkY9k8wbu1_of1Rcs53wH
Cites_doi 10.1016/j.atmosenv.2006.01.050
10.1016/j.apenergy.2022.118918
10.1016/j.scitotenv.2021.147311
10.1016/j.scitotenv.2008.01.066
10.1007/s11356-021-12825-w
10.1016/j.envpol.2019.113424
10.1007/s40726-022-00220-z
10.1088/2515-7620/ab8f11
10.1029/2021EF002257
10.1080/1573062X.2010.484498
10.1016/j.atmosenv.2017.01.041
10.1038/s41597-020-0462-2
10.1080/17583004.2015.1093694
10.1080/17583004.2018.1500790
10.1007/s10661-010-1661-7
10.1016/j.apr.2023.101810
10.5194/acp-21-8709-2021
10.1016/j.scitotenv.2008.05.039
10.1016/j.apr.2019.12.021
10.5194/acp-18-2725-2018
10.1016/j.egypro.2017.12.421
10.1016/j.envint.2017.10.024
10.2172/1818877
10.1016/j.rser.2017.09.094
10.1088/1742-6596/1449/1/012001
10.3390/atmos10050227
10.1016/j.atmosenv.2018.05.061
10.3390/su11092539
10.1109/IEEECONF53624.2021.9667958
10.1016/j.apr.2016.12.007
10.1016/j.atmosenv.2016.07.018
10.1016/j.eti.2020.101241
10.1016/B978-0-12-819504-8.00004-4
10.1021/acs.est.6b03731
10.1016/j.scitotenv.2018.01.216
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40726-023-00289-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-6592
EndPage 69
ExternalDocumentID 10_1007_s40726_023_00289_0
GeographicLocations Brunei
Southeast Asia
Vietnam
Singapore
Myanmar (Burma)
Cambodia
Philippines
Timor-Leste
Malaysia
Thailand
Laos
Indonesia
GeographicLocations_xml – name: Singapore
– name: Philippines
– name: Vietnam
– name: Myanmar (Burma)
– name: Brunei
– name: Cambodia
– name: Indonesia
– name: Southeast Asia
– name: Laos
– name: Malaysia
– name: Thailand
– name: Timor-Leste
GroupedDBID -EM
203
406
AAAVM
AAFGU
AAHNG
AAIAL
AANZL
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AGAYW
AGDGC
AGGBP
AGMZJ
AGQEE
AGQMX
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVXWI
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
GQ6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
RSV
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7Y
Z7Z
ZMTXR
0R~
AACDK
AAHBH
AAJBT
AASML
AAYXX
ACDTI
AEFQL
AFBBN
AGRTI
BENPR
CITATION
HG6
ROL
SJYHP
ID FETCH-LOGICAL-c270t-236943bc27df71a364e0710814de77654bad1915c4fb521158910887778558f33
ISSN 2198-6592
IngestDate Fri Sep 13 09:30:13 EDT 2024
Thu Sep 12 18:59:36 EDT 2024
Tue Mar 05 01:17:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Power sector
Southeast Asia
Co-benefits
DPSIR
Policy landscape
Emissions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-236943bc27df71a364e0710814de77654bad1915c4fb521158910887778558f33
PQID 2937175263
PQPubID 2044259
PageCount 16
ParticipantIDs proquest_journals_2937175263
crossref_primary_10_1007_s40726_023_00289_0
springer_journals_10_1007_s40726_023_00289_0
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current pollution reports
PublicationTitleAbbrev Curr Pollution Rep
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References MONRE. QCVN 22: 2009/BTNMT. National technical regulation on emission of thermal power industry. Ministry of Natural Resources and Environment; 2009. https://www.luatmoitruong.vn/qcvn-22-2009-btnmt.
Pham TBT, Manomaiphiboon K, Vongmahadlek C. Development of an inventory and temporal allocation profiles of emissions from power plants and industrial facilities in Thailand. Sci Total Environ. 2008;397(1):103–18. https://doi.org/10.1016/j.scitotenv.2008.01.066. This study developed an emission inventory considering fuel consumption for combustion in power plants and those from both fuel consumption and industrial processes (i.e., non-combustion) for industrial facilities in Thailand.
European Commission. Global Air Pollutant Emissions - EDGAR v6.1: European Commission; 2023. https://edgar.jrc.ec.europa.eu/dataset_ap61.
DOE. Guidelines for the installation & maintenance of continuous emission monitoring systems (CEMS) for industrial premises/facilities. Department of Environment - Ministry of Energy, Science, Technology, Climate Change and Environment; 2019.
Abbas H, Ghanem S, Abahussain A. Assessing PM2.5 in Bahrain from the DPSIR framework perspective. Third International Sustainability and Resilience Conference: Climate Change. 2021. https://doi.org/10.1109/IEEECONF53624.2021.9667958.
MEE. Emission standard of air pollutants for thermal power plants (GB13223–2011) ministry of ecology and environment of the People’s Republic of China; 2011. https://english.mee.gov.cn/Resources/standards/Air_Environment/Emission_standard1/201201/t20120106_222242.shtml.
IEA. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired power plants. International Energy Agency; 2007. https://iea.blob.core.windows.net/assets/b2ae1d1f-38dd-41e1-891a-5cdea2d997cf/FossilFuel-FiredPowerGeneration.pdf.
TakHIInamAInamAEffects of urban wastewater on the growth, photosynthesis and yield of chick pea under different levels of nitrogenUrban Water J201078719510.1080/1573062X.2010.484498
Aseanstats. ASEAN Statstics. 2023. https://www.aseanstats.org/.
UNEP/WMO. Integrated assessment of black carbon and tropospheric ozone. Nairobi, Keyna: The United Nations Environment Programme and World Meteorological Organization; 2011.
NPC. Memorandum circular No.2008–005 - prescribing policies, procedures and guidelines governing the attrition system for uniformed personnel of the Philippine National Police. Republic of the Philippines - National Police Comissions; 2008. https://napolcom.gov.ph/pdf/mc_2008-005.pdf.
ASEAN. ASEAN State of Climate Change Report; 2021. https://asean.org/wp-content/uploads/2021/10/ASCCR-e-publication-Correction_8-June.pdf.
Cheewaphongphan P, Hanaoka T, Chatani S. Long-term trend of regional passenger road transport demand and emission estimation under exhaust emission regulation scenario in Thailand. Environ Res Commun. 2020;2:051009. https://doi.org/10.1088/2515-7620/ab8f11.
MOECAF. National Environmental Quality (Emission) Guidelines 2015. Ministry of Environmental Conservation and Forestry; 2015. https://www.myanmar-responsiblebusiness.org/pdf/2015-12-29-National-Environmental-Quality_Emission_Guidelines_en.pdf.
TrangTTVanHHOanhNTKTraffic emission inventory for estimation of air quality and climate co-benefits of faster vehicle technology intrusion in HanoiVietnam Carbon Manag201563–411712810.1080/17583004.2015.1093694
HEI. State of Global Air/2020. Health Effects Institute; 2020. https://www.stateofglobalair.org/.
LuongLTMDangTNThanh HuongNTPhungDTranLKVan DungDParticulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young childrenEnviron Pollut202025710.1016/j.envpol.2019.11342431672367
IEA. Southeast Asia Energy Outlook 2022. International Energy Agency; 2022. This report analyzed the insightful energy prospects for the ten member countries of the ASEAN. It also explored possible trajectories for SEA’s energy sector, differentiated primarily by the policies pursued by governments across the region.
NaritaDOanhNTKSatoKHuoMPermadiDAChiNNHPollution characteristics and policy actions on fine particulate matter in a growing Asian economy: the case of Bangkok Metropolitan RegionAtmosphere20191052272019Atmos..10..227N10.3390/atmos10050227
DuanLYuQZhangQWangZPanYLarssenTAcid deposition in Asia: emissions, deposition, and ecosystem effectsAtmos Environ201614655692016AtmEn.146...55D10.1016/j.atmosenv.2016.07.018
Kim OanhNTHuyLNPermadiDAZusmanENakanoRNugrohoSBAssessment of urban passenger fleet emissions to quantify climate and air quality co-benefits resulting from potential interventionsCarbon Manag20189436738110.1080/17583004.2018.1500790
Kim OanhNTPermadiDAHopkePKSmithKRDongNPDangANAnnual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015Atmos Environ20181871631732018AtmEn.187..163K10.1016/j.atmosenv.2018.05.061
KabirEKumarPKumarSAdelodunAAKimKHSolar energy: potential and future prospectsRenew Sust Energ Rev201882189490010.1016/j.rser.2017.09.094
Ness JE, Ravi V, Health G. An overview of policies influencing air pollution from the electricity sector in South Asia; 2021. This report provides examples of policies impacting air pollution from the fossil-fuel electricity sector in the South Asian countries of Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka. Information on policies in some countries includes (1) policies that directly regulate air quality by limiting emissions from specific point sources; and (2) indirect policies that incentivize or disincentivize polluting activities.
Akhter A, Shah NH, Inam A. Thermal power plant discharged wastewater characterization: a case study. Eco Env Cons. 2021;27(1):92–7. http://www.envirobiotechjournals.com/EEC/v27i121/EEC-12.pdf.
EIA. How much carbon dioxide is produced per kilowatthour of U.S. electricity generation? U.S. Energy Information Administration. 2021. https://www.eia.gov/tools/faqs/faq.php?id=74&t=11.
ACE. Asean clean coal technology (CCT) handbook for power plant. ASEAN Centre for Energy; 2017. https://aseanenergy.org/asean-clean-coal-technology-handbook-for-power-plants-ver-2/.
MehediTHGemechuEKumarALife cycle greenhouse gas emissions and energy footprints of utility-scale solar energy systemsAppl Energy202231410.1016/j.apenergy.2022.118918
PermadiDAKim OanhNTVautardRIntegrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast AsiaAtmos Chem Phys20182018182725274710.5194/acp-18-2725-2018
Van D-A, Vu TV, Nguyen T-HT, Vo L-HT, Le NH, Nguyen PHT, et al. A review of characteristics, causes, and formation mechanisms of haze in Southeast Asia. Curr Pollut Rep. 2022;8(2):201–20. https://doi.org/10.1007/s40726-022-00220-z.
RUEN. The National Energy General Plan (RUEN) (Presidential Regulation No. 22/2017 of 2017). National Energy General Plan (RUEN); 2017. https://www.climatepolicydatabase.org/policies/general-plan-national-energy-ruen.
DOE. Best available techniques guidance document on power generation. Department of Environment- Ministry of Environment and Water; 2021. https://www.doe.gov.my/wp-content/uploads/2021/08/BEST-AVAILABLE-TECHNIQUES-GUIDANCE-DOCUMENT-ON-POWER-GENERATION.pdf.
PhucNHKim OanhNTDetermining factors for levels of volatile organic compounds measured in different microenvironments of a heavy traffic urban areaSci Total Environ20186272903032018ScTEn.627..290P10.1016/j.scitotenv.2018.01.21629426152
MONRE. Decree No. 08/2022/ND-CP Detailing a number of articles of law on environmental protection 2020. Ministry of Natural Resources and Environment; 2022. https://lawnet.vn/en/vb/Decree-08-2022-ND-CP-elaboration-Articles-of-the-Law-on-Environmental-Protection-7BD43.html.
ACE. 4th ASEAN Energy Outlook. ASEAN Centre for Energy; 2015. https://asean.org/wp-content/uploads/2021/08/4th-ASEAN-Energy-Outlook-AEO4..pdf.
ERIA. Improving emission regulation for coal-fired power plants in ASEAN. ERIA Research Project Report 2016, No. 02. Economic Research Institute for ASEAN and East Asia; 2016. https://www.eria.org/RPR_FY2016_02.pdf.
Andres G. CNA Explains: Singapore’s energy sources and the future of its electricity supply; 2023. https://www.channelnewsasia.com/singapore/singapore-electricity-sources-natural-gas-renewable-solar-energy-import-3252076#:~:text=About%2095%20per%20cent%20of,it%20releases%20into%20the%20atmosphere.
Doi N, Barcelona E, Matsumoto T, Kan S, Zhang Y. Energy outlook for Asia and the Pacific; 2010. https://eneken.ieej.or.jp/data/3161.pdf.
Steen M. Greenhouse gas emissions from fossil fuel fired power generation systems. Joint Research Centre – European Commission; 2019. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC21207/EUR%2019754%20EN.pdf.
MOI. Notification of ministry of industry-requirement for installation of an automatic instrument or equipment to measure quality of air emissions from stacks B.E. 2544(2001). Ministry of Industry; 2001. https://www.mhm.co.th/GAdatabase/Program_IEAT/pages/en/Keyword/14.html.
EIA. Wind is an emissions-free source of energy. U.S. energy information administration. 2021. https://www.eia.gov/energyexplained/wind/wind-energy-and-the-environment.php.
ACE. The 7th ASEAN Energy Outlook 2020 - 2050. ASEAN Centre for Energy; 2022. This report updated regional energy outlooks and strategic reports on important thematic issues. It shows whether and how national and regional targets for the energy sector, for example, energy accessibility and affordability, energy efficiency, energy security, and environmental sustainability, can be achieved, and what policies, measures, and technologies are needed to help meet those targets.
LiXChalvatzisKJPappasDChina’s electricity emission intensity in 2020 – an analysis at provincial levelEnergy Procedia20171422770278510.1016/j.egypro.2017.12.421
Basu S, Debnath AK. Power plant instrumentation and control handbook. 2nd ed. Academic Press; 2019. https://ww
LN Huy (289_CR42) 2020; 11
E Kabir (289_CR99) 2018; 82
289_CR25
289_CR26
PK Hopke (289_CR19) 2008; 404
289_CR23
L Duan (289_CR52) 2016; 146
289_CR24
NTT Nhung (289_CR21) 2018; 110
LN Huy (289_CR13) 2021; 785
289_CR20
289_CR16
NH Phuc (289_CR17) 2018; 627
289_CR94
289_CR95
289_CR92
NT Kim Oanh (289_CR4) 2018; 187
289_CR93
289_CR90
289_CR91
289_CR14
289_CR12
HF Huang (289_CR28) 2011; 117
289_CR10
289_CR98
289_CR11
289_CR96
289_CR97
NT Kim Oanh (289_CR18) 2006; 40
289_CR83
LN Huy (289_CR43) 2023; 14
289_CR84
289_CR81
289_CR82
289_CR80
289_CR89
289_CR87
289_CR88
289_CR85
289_CR86
TT Trang (289_CR39) 2015; 6
NT Kim Oanh (289_CR40) 2018; 9
HI Tak (289_CR62) 2010; 7
DA Permadi (289_CR5) 2018; 2018
DA Permadi (289_CR51) 2017; 154
289_CR72
289_CR73
289_CR70
289_CR71
LTM Luong (289_CR22) 2020; 257
289_CR78
289_CR79
289_CR76
289_CR77
289_CR74
289_CR75
M Milousi (289_CR101) 2019; 11
D Narita (289_CR15) 2019; 10
289_CR61
289_CR60
289_CR69
289_CR67
289_CR68
289_CR65
289_CR66
289_CR63
289_CR50
289_CR58
289_CR59
289_CR56
289_CR57
289_CR54
289_CR55
289_CR53
X Li (289_CR64) 2017; 142
289_CR49
289_CR1
289_CR2
D Zhou (289_CR27) 2021; 28
289_CR9
289_CR47
289_CR48
289_CR7
289_CR45
289_CR8
289_CR46
TH Mehedi (289_CR100) 2022; 314
289_CR6
289_CR44
289_CR3
289_CR41
289_CR38
289_CR36
289_CR37
289_CR34
289_CR35
289_CR32
289_CR33
289_CR30
289_CR31
289_CR29
References_xml – ident: 289_CR68
– volume: 40
  start-page: 3367
  issue: 18
  year: 2006
  ident: 289_CR18
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2006.01.050
  contributor:
    fullname: NT Kim Oanh
– ident: 289_CR45
– ident: 289_CR60
– volume: 314
  year: 2022
  ident: 289_CR100
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118918
  contributor:
    fullname: TH Mehedi
– ident: 289_CR97
– volume: 785
  year: 2021
  ident: 289_CR13
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.147311
  contributor:
    fullname: LN Huy
– ident: 289_CR10
  doi: 10.1016/j.scitotenv.2008.01.066
– ident: 289_CR77
– volume: 28
  start-page: 36234
  year: 2021
  ident: 289_CR27
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12825-w
  contributor:
    fullname: D Zhou
– ident: 289_CR54
– ident: 289_CR83
– ident: 289_CR88
– ident: 289_CR36
– ident: 289_CR63
– ident: 289_CR1
– volume: 257
  year: 2020
  ident: 289_CR22
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.113424
  contributor:
    fullname: LTM Luong
– ident: 289_CR94
– ident: 289_CR9
– ident: 289_CR25
– ident: 289_CR57
– ident: 289_CR74
– ident: 289_CR80
– ident: 289_CR6
  doi: 10.1007/s40726-022-00220-z
– ident: 289_CR41
  doi: 10.1088/2515-7620/ab8f11
– ident: 289_CR56
  doi: 10.1029/2021EF002257
– ident: 289_CR66
– ident: 289_CR89
– ident: 289_CR2
– ident: 289_CR72
– ident: 289_CR24
– volume: 7
  start-page: 87
  year: 2010
  ident: 289_CR62
  publication-title: Urban Water J
  doi: 10.1080/1573062X.2010.484498
  contributor:
    fullname: HI Tak
– ident: 289_CR95
– volume: 154
  start-page: 82
  year: 2017
  ident: 289_CR51
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.01.041
  contributor:
    fullname: DA Permadi
– ident: 289_CR81
– ident: 289_CR33
– ident: 289_CR75
– ident: 289_CR47
– ident: 289_CR30
  doi: 10.1038/s41597-020-0462-2
– volume: 6
  start-page: 117
  issue: 3–4
  year: 2015
  ident: 289_CR39
  publication-title: Vietnam Carbon Manag
  doi: 10.1080/17583004.2015.1093694
  contributor:
    fullname: TT Trang
– ident: 289_CR92
– ident: 289_CR7
– volume: 9
  start-page: 367
  issue: 4
  year: 2018
  ident: 289_CR40
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2018.1500790
  contributor:
    fullname: NT Kim Oanh
– ident: 289_CR44
– volume: 117
  start-page: 623
  issue: 1–4
  year: 2011
  ident: 289_CR28
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-010-1661-7
  contributor:
    fullname: HF Huang
– volume: 14
  issue: 8
  year: 2023
  ident: 289_CR43
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2023.101810
  contributor:
    fullname: LN Huy
– ident: 289_CR61
– ident: 289_CR38
– ident: 289_CR53
  doi: 10.5194/acp-21-8709-2021
– volume: 404
  start-page: 103
  issue: 1
  year: 2008
  ident: 289_CR19
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2008.05.039
  contributor:
    fullname: PK Hopke
– ident: 289_CR55
– volume: 11
  start-page: 702
  issue: 4
  year: 2020
  ident: 289_CR42
  publication-title: Myanmar Atmos Pollut Res
  doi: 10.1016/j.apr.2019.12.021
  contributor:
    fullname: LN Huy
– volume: 2018
  start-page: 2725
  issue: 18
  year: 2018
  ident: 289_CR5
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-2725-2018
  contributor:
    fullname: DA Permadi
– volume: 142
  start-page: 2770
  year: 2017
  ident: 289_CR64
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.421
  contributor:
    fullname: X Li
– ident: 289_CR69
– ident: 289_CR86
– ident: 289_CR87
– ident: 289_CR93
– volume: 110
  start-page: 139
  year: 2018
  ident: 289_CR21
  publication-title: Environ Int
  doi: 10.1016/j.envint.2017.10.024
  contributor:
    fullname: NTT Nhung
– ident: 289_CR70
– ident: 289_CR58
– ident: 289_CR31
  doi: 10.2172/1818877
– ident: 289_CR26
– ident: 289_CR49
– ident: 289_CR50
– ident: 289_CR73
– volume: 82
  start-page: 894
  issue: 1
  year: 2018
  ident: 289_CR99
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2017.09.094
  contributor:
    fullname: E Kabir
– ident: 289_CR35
– ident: 289_CR12
– ident: 289_CR85
  doi: 10.1088/1742-6596/1449/1/012001
– ident: 289_CR90
– ident: 289_CR67
– volume: 10
  start-page: 227
  issue: 5
  year: 2019
  ident: 289_CR15
  publication-title: Atmosphere
  doi: 10.3390/atmos10050227
  contributor:
    fullname: D Narita
– ident: 289_CR46
– volume: 187
  start-page: 163
  year: 2018
  ident: 289_CR4
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.05.061
  contributor:
    fullname: NT Kim Oanh
– ident: 289_CR98
– ident: 289_CR78
– ident: 289_CR32
– volume: 11
  start-page: 2539
  year: 2019
  ident: 289_CR101
  publication-title: Sustainability
  doi: 10.3390/su11092539
  contributor:
    fullname: M Milousi
– ident: 289_CR91
– ident: 289_CR14
– ident: 289_CR29
  doi: 10.1109/IEEECONF53624.2021.9667958
– ident: 289_CR37
– ident: 289_CR8
  doi: 10.1016/j.apr.2016.12.007
– ident: 289_CR20
– ident: 289_CR79
– volume: 146
  start-page: 55
  year: 2016
  ident: 289_CR52
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.07.018
  contributor:
    fullname: L Duan
– ident: 289_CR16
  doi: 10.1016/j.eti.2020.101241
– ident: 289_CR65
– ident: 289_CR84
  doi: 10.1016/B978-0-12-819504-8.00004-4
– ident: 289_CR3
– ident: 289_CR71
– ident: 289_CR11
  doi: 10.1021/acs.est.6b03731
– ident: 289_CR23
– ident: 289_CR59
– ident: 289_CR96
– ident: 289_CR76
– ident: 289_CR82
– ident: 289_CR48
– ident: 289_CR34
– volume: 627
  start-page: 290
  year: 2018
  ident: 289_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.216
  contributor:
    fullname: NH Phuc
SSID ssj0002046597
Score 2.293877
SecondaryResourceType review_article
Snippet Purpose of Review Rapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great...
Purpose of ReviewRapid economic development accompanied by urbanization, motorization, and industrialization, together with population growth, puts great...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 54
SubjectTerms Air pollution
Air quality
Anthropogenic factors
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Carbon dioxide
Clean technology
Earth and Environmental Science
Economic development
Economic growth
Electric industries
Electric power generation
Electricity
Electricity generation
Emissions
Energy consumption
Energy demand
Energy policy
Environment
Environmental Law/Policy/Ecojustice
Fossil fuels
GDP
Greenhouse effect
Greenhouse gases
Gross Domestic Product
Human influences
Industrial development
Industrial plant emissions
Industrial Pollution Prevention
Monitoring/Environmental Analysis
Natural gas
Net zero
Outdoor air quality
Pollutants
Pollution
Population growth
Power plants
Power sources
Renewable energy
Renewable resources
Sulfur dioxide
Sustainable energy
Thermal power
Thermal power plants
Topical Collection on Air Pollution
Urban areas
Urbanization
Waste Water Technology
Water Management
Water Pollution Control
Title Atmospheric Emissions from Electricity Generation in Southeast Asia: Development Trend and Policy Responses
URI https://link.springer.com/article/10.1007/s40726-023-00289-0
https://www.proquest.com/docview/2937175263/abstract/
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYKvIwHNBhoZWzyA29dUGo7cby3MhUhpvUJJN4iJ3GmMJGiNZW2_frd2W6S0iEBL1GbWm7k-3K-O393R8gp-GcsKjV4qoUuAkCIDjQvVaBYoQTsKDzmmCj8fRZf3oir2-h2MPjdYy0tm-ws__vfvJLXSBXugVwxS_YFkm0nhRvwGeQLV5AwXJ8l40lzP19gXYAqH01BYAvLarMZI1Pb3qbK0ch2paVXrEbbNA879oBoKtuZp0ccGlmOrEshsBWDMb6PJFpPNbxbr1X6gI2S7cT-7KGN2eraxmtmP5Z_TI3dQUffqvsOQy5Oris_oB97YKIjX63FHh9FL7sAmttkrDYDzZgEeIa7pnrDDYg5PeoKS_sd2fVy2dD1jt6xwApvyKOGJ8NT0yDsdraWb9jWZraDUxic2sFpuEV2mFQRuO07k4vz81kbn2OhgKeVPs_KZltu_NO6LdM5KI_O1K2pcv2W7Hkfg04cYPbJwNQHZLdXefId-dmDDm2hQxE6tAcd2kGHVjVtoUMROl9oDzjUAocCcKgDDm2Bc0huLqbXXy8D33cjyJkMm4DxWAmewZeilGPNY2HQEE3GojBSxpHIdAFufpSLMgPrb4yNKXGzkjKJoqTk_Ihs1_PavCdUKG4y8N_iBPS-ElKFMjfKGBWWWpZSDMlotYLpgyuvkj4trCE5WS1y6l_DRcqwoqOMWMyH5PNq4bufn57t-GXDP5A33StwQrabX0vzEQzSJvvksfMPV7SLaQ
link.rule.ids 315,786,790,27957,27958
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Emissions+from+Electricity+Generation+in+Southeast+Asia%3A+Development+Trend+and+Policy+Responses&rft.jtitle=Current+pollution+reports&rft.au=Oanh%2C+Nguyen+Thi+Kim&rft.au=Huy%2C+Lai+Nguyen&rft.date=2024-03-01&rft.pub=Springer+International+Publishing&rft.eissn=2198-6592&rft.volume=10&rft.issue=1&rft.spage=54&rft.epage=69&rft_id=info:doi/10.1007%2Fs40726-023-00289-0&rft.externalDocID=10_1007_s40726_023_00289_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon