A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives

Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise red...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 32; no. 5; pp. 2853 - 2885
Main Authors Singh, Pallavi, Bhandari, Ashish Kumar
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images.
AbstractList Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images.
Author Bhandari, Ashish Kumar
Singh, Pallavi
Author_xml – sequence: 1
  givenname: Pallavi
  surname: Singh
  fullname: Singh, Pallavi
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Department of Electronics and Communication Engineering, Nagarjuna College of Engineering and Technology
– sequence: 2
  givenname: Ashish Kumar
  surname: Bhandari
  fullname: Bhandari, Ashish Kumar
  email: bhandari.iiitj@gmail.com
  organization: Department of Electronics and Communication Engineering, National Institute of Technology
BookMark eNp9kE9PAjEUxBuDiYB-AU9NvFrtv-3uekOCSoLRGD03pX0Li0uL2wXit7eKiTdPbw4zkze_Aer54AGhc0avGKX5dWSsEIxQnhFGOVckP0J9VhSKsLyQvaSZkERQRU_QIMYVpZksS95H1Qi_wK6GPQ4ej8N6s-1MVwdvGjwLezKrF8sOT9dmAXjil8ZbWIPv8GNw0MQbPF6apgG_gHiJb8Hb5dq070kb7_AztHEDtqt3EE_RcWWaCGe_d4je7iav4wcye7qfjkczYnlOO8JKqWzJs7lQplQmq2QOpSusZKCss0Y6ygrLnHCCzyGDLOO5qhxVLq2mcy6G6OLQu2nDxxZip1dh26Y1UQvOS1mqnMnk4geXbUOMLVR609bp80_NqP7mqQ88deKpf3jqPIXEIRSTOS1u_6r_SX0BkDl5ug
Cites_doi 10.1109/JSYST.2023.3262593
10.1109/ACCESS.2020.3001206
10.1609/aaai.v34i07.7013
10.1109/TIP.2022.3140610
10.1109/TIP.2021.3062184
10.1109/TIP.2019.2922106
10.1109/TIP.2012.2221725
10.1007/978-3-030-01234-2_10
10.1109/TIP.2013.2261309
10.1145/987657.987671
10.1109/TIP.2003.819861
10.1109/TIP.2021.3122004
10.1364/JOSA.61.000001
10.1109/TCE.2007.381734
10.1016/j.measurement.2022.112016
10.1109/TIP.2016.2639450
10.1016/j.knosys.2021.106771
10.1007/s00371-013-0875-4
10.1109/TCSVT.2021.3049940
10.1109/TPAMI.2021.3126387
10.1109/TIP.2020.3023615
10.1109/ICMEW.2019.00054
10.1109/TITS.2023.3263271
10.1111/j.1467-8659.2012.03225.x
10.1109/ACCESS.2021.3059498
10.1016/j.ijleo.2018.12.020
10.1207/s15516709cog1402_1
10.1007/s00371-020-01838-0
10.1109/EMBC.2019.8856950
10.1109/TIP.2019.2910412
10.1109/CVPR.2018.00068
10.1109/CVPR46437.2021.01042
10.1109/VCIP.2017.8305143
10.1109/CVPR42600.2020.00235
10.1109/CVPR.2016.91
10.1016/j.ijleo.2021.168251
10.1038/scientificamerican1277-108
10.1109/TMM.2017.2740025
10.1109/30.663733
10.1016/j.knosys.2021.108010
10.1109/83.557356
10.1109/TNNLS.2020.2978756
10.1109/CVPR.2018.00197
10.1109/CVPR52729.2023.00166
10.1016/j.patcog.2024.110799
10.1016/j.patrec.2018.01.010
10.1109/CVPR.2018.00347
10.1109/TCSVT.2017.2763180
10.1109/LSP.2012.2227726
10.1109/CVPR42600.2020.00185
10.1126/science.1127647
10.1109/TIP.2006.875204
10.1109/TMM.2017.2652069
10.1007/s11042-020-10310-z
10.1007/978-3-030-58452-8_13
10.1109/ICCV.2019.00742
10.3390/ma15155332
10.3390/s22166184
10.1109/TIP.2005.859389
10.1016/j.patrec.2004.09.032
10.1109/ICME46284.2020.9102962
10.1109/CVPR.2016.485
10.3390/machines10080610
10.1109/CVPRW.2018.00112
10.1007/s11263-020-01418-8
10.1109/ICCV51070.2023.01187
10.1109/ICCSE.2015.7250224
10.3390/sym11040574
10.1002/ecj.12092
10.1145/3072959.3073592
10.3390/f13010026
10.1109/TNNLS.2017.2649101
10.1109/30.754419
10.1007/s11063-018-09968-2
10.1109/ICCV.2017.355
10.1109/76.915354
10.1016/j.patcog.2016.06.008
10.1109/83.841534
10.1109/JPHOT.2016.2528122
10.1016/j.patrec.2018.02.010
10.1109/CVPR.2018.00660
10.1145/3065386
10.1016/j.cviu.2018.10.010
10.3390/s22145184
10.1109/CVPR.2017.17
10.1109/TETCI.2021.3100641
10.1109/ICCV.2019.00328
10.1109/TCE.2011.5955195
10.1016/j.ins.2019.05.015
10.1109/CVPR.2019.00701
10.1109/TMM.2020.3037526
10.1007/s10278-019-00227-x
10.1109/CVPR.2018.00465
10.1016/j.neunet.2019.04.024
10.1109/ICCVW.2017.356
10.1016/j.sigpro.2016.05.031
10.1109/ICACCI.2014.6968569
10.1023/B:VLSI.0000028529.51311.5a
10.1109/TPAMI.2010.168
10.1145/3343031.3351069
10.1016/j.cosrev.2021.100379
10.1109/TIP.2011.2109730
10.1109/TCSVT.2018.2828141
10.1109/CVPR42600.2020.00283
10.1109/TMM.2018.2880603
10.1109/ACCESS.2018.2812809
10.1109/TCSVT.2021.3073371
10.1109/TCE.2015.7064119
10.1016/S0734-189X(87)80186-X
10.1007/s11042-017-5448-5
10.1109/CISP-BMEI53629.2021.9624226
10.1109/TMM.2020.3039361
10.1049/el:20082182
10.1016/j.engappai.2012.11.011
10.1109/TCE.2003.1261234
10.1109/CVPR42600.2020.00313
10.36227/techrxiv.17198216.v1
10.1016/j.asoc.2018.05.018
10.1145/3343031.3350926
10.1109/TIP.2015.2442920
10.1109/TIP.2018.2794218
10.1109/78.650093
10.1162/neco.1997.9.8.1735
10.1109/TIP.2005.859378
10.1109/TITS.2020.2993926
10.1109/TCE.2017.014847
10.1109/TIP.2013.2284059
10.1109/FG.2018.00118
10.1109/CVPR.2016.304
10.1109/TIP.2021.3051462
10.1145/1390156.1390294
10.1117/1.3520553
10.1109/TPAMI.2021.3059968
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11831-025-10226-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 2885
ExternalDocumentID 10_1007_s11831_025_10226_7
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-1946c925b36a96a5f47e9d8c41e6cdca4d018c1d3d32be5e55276fd06d1020b23
IEDL.DBID U2A
ISSN 1134-3060
IngestDate Sat Aug 23 13:05:00 EDT 2025
Wed Jul 16 16:45:59 EDT 2025
Sat Jul 12 03:47:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-1946c925b36a96a5f47e9d8c41e6cdca4d018c1d3d32be5e55276fd06d1020b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3229496714
PQPubID 1486352
PageCount 33
ParticipantIDs proquest_journals_3229496714
crossref_primary_10_1007_s11831_025_10226_7
springer_journals_10_1007_s11831_025_10226_7
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References X Tan (10226_CR197) 2021; 30
ZY Chen (10226_CR147) 2006; 15
10226_CR79
Y Ren (10226_CR170) 2018; 29
10226_CR195
10226_CR193
10226_CR194
K Lu (10226_CR101) 2020; 23
10226_CR199
Y Huo (10226_CR69) 2012; 34
10226_CR198
10226_CR86
10226_CR88
Y Huo (10226_CR70) 2014; 30
10226_CR82
K Ma (10226_CR161) 2015; 24
10226_CR81
HR Sheikh (10226_CR142) 2006; 15
AT Celebi (10226_CR74) 2015; 61
10226_CR84
SM Pizer (10226_CR31) 1987; 39
10226_CR83
TK Kim (10226_CR38) 1998; 44
10226_CR89
W Ren (10226_CR96) 2019; 28
10226_CR184
10226_CR185
10226_CR182
S Park (10226_CR51) 2017; 63
YF Wang (10226_CR46) 2019; 28
K Gu (10226_CR149) 2018; 29
10226_CR80
10226_CR188
10226_CR189
10226_CR186
10226_CR187
10226_CR53
10226_CR52
Y Sun (10226_CR6) 2022; 22
MH Conde (10226_CR20) 2016; 8
Y Xu (10226_CR9) 2022; 10
EH Land (10226_CR15) 1971; 61
Z Zhao (10226_CR179) 2021; 32
X Yan (10226_CR7) 2022; 203
10226_CR59
10226_CR173
Y Rao (10226_CR68) 2010; 49
S Hochreiter (10226_CR111) 1997; 9
10226_CR174
10226_CR171
Y Yang (10226_CR12) 2021; 13
H Yeganeh (10226_CR150) 2013; 22
H-S Le (10226_CR71) 2008; 44
JL Elman (10226_CR109) 1990; 14
10226_CR177
10226_CR178
10226_CR175
10226_CR176
Y Zhang (10226_CR87) 2021; 5
10226_CR67
Y Zhang (10226_CR97) 2019; 41
A Mittal (10226_CR145) 2013; 20
10226_CR162
N Singh (10226_CR168) 2021; 70
J-Y Kim (10226_CR39) 2001; 11
S Wang (10226_CR48) 2013; 22
J Zhu (10226_CR61) 2018; 16
10226_CR164
C-C Leung (10226_CR27) 2005; 26
A Ng (10226_CR91) 2011; 72
J Cai (10226_CR106) 2018; 27
MH Hesamian (10226_CR154) 2019; 32
M Abdullah-Al-Wadud (10226_CR11) 2007; 53
M Fang (10226_CR2) 2016; 39
L Yan (10226_CR120) 2021; 80
Y Gao (10226_CR47) 2018; 20
X Guo (10226_CR169) 2016; 26
EH Land (10226_CR55) 1971; 61
M Yamakawa (10226_CR72) 2018; 101
P Ravirathinam (10226_CR125) 2021; 9
S-C Huang (10226_CR41) 2013; 26
X Fu (10226_CR50) 2016; 129
KG Lore (10226_CR29) 2017; 61
Z Rahman (10226_CR19) 2020; 8
X Guo (10226_CR21) 2017; 26
AM Reza (10226_CR42) 2004; 38
J Yu (10226_CR5) 2011; 37
K He (10226_CR54) 2011; 33
H Ackar (10226_CR1) 2019; 8
J Li (10226_CR124) 2021; 31
S Hao (10226_CR24) 2018; 77
Y Wang (10226_CR166) 1999; 45
A Mackin (10226_CR66) 2018; 21
10226_CR99
10226_CR98
10226_CR93
10226_CR92
Y Wang (10226_CR34) 1999; 45
10226_CR95
F Zhang (10226_CR25) 2014; 26
Y Jiang (10226_CR113) 2021; 31
C Li (10226_CR165) 2021; 44
M Schuster (10226_CR110) 1997; 45
J Wang (10226_CR159) 2019; 119
L Chen (10226_CR157) 2021; 22
10226_CR90
S Wang (10226_CR160) 2013; 22
HR Sheikh (10226_CR144) 2005; 14
S-Y Yu (10226_CR28) 2019; 29
G Algan (10226_CR85) 2021; 215
C Lee (10226_CR191) 2013; 22
Y-F Wang (10226_CR8) 2019; 28
W Ren (10226_CR112) 2019; 28
W Wang (10226_CR196) 2022; 5
10226_CR107
Y Zhang (10226_CR62) 2009; 33
B Liu (10226_CR40) 2011; 57
Y Jiang (10226_CR134) 2021; 30
A Krizhevsky (10226_CR78) 2017; 60
L Lu (10226_CR30) 2010; 7708
R Ziaur (10226_CR58) 2023; 7
X Qian (10226_CR64) 2011; 23
10226_CR115
10226_CR116
R Ma (10226_CR18) 2019; 180
H Huang (10226_CR183) 2022; 31
M Gharbi (10226_CR102) 2017; 36
P Singh (10226_CR167) 2022; 251
Z Wang (10226_CR143) 2004; 13
X Fu (10226_CR75) 2016; 129
10226_CR104
SD Chen (10226_CR33) 2003; 49
10226_CR103
10226_CR100
T Bouwmans (10226_CR158) 2019; 117
S Dong (10226_CR151) 2021; 40
W Li (10226_CR10) 2022; 15
Z Rahman (10226_CR60) 2023; 17
Y-H Shiau (10226_CR26) 2015; 16
K Aditya (10226_CR23) 2014; 14
C Li (10226_CR181) 2021; 44
Q Mu (10226_CR22) 2018; 39
K Wei (10226_CR108) 2020; 32
S Dong (10226_CR65) 2021; 40
N Sharma (10226_CR76) 2023; 24
S Park (10226_CR94) 2018; 6
Y Fu (10226_CR119) 2022; 240
10226_CR200
W Wang (10226_CR73) 2019; 496
AG Garcia (10226_CR153) 2018; 70
10226_CR35
L Zhang (10226_CR146) 2011; 20
10226_CR37
10226_CR36
Q Dai (10226_CR17) 2019; 11
10226_CR152
X Guo (10226_CR192) 2016; 26
10226_CR155
10226_CR156
W Wang (10226_CR4) 2017; 19
10226_CR44
10226_CR43
S Yang (10226_CR63) 2014; 43
C Lee (10226_CR190) 2011; 21
X Guo (10226_CR49) 2017; 26
10226_CR139
10226_CR45
10226_CR140
S Lim (10226_CR126) 2020; 23
10226_CR141
10226_CR148
GE Hinton (10226_CR77) 2006; 313
10226_CR128
10226_CR129
C Li (10226_CR172) 2018; 104
H Zhou (10226_CR13) 1896; 2022
KT Kim (10226_CR32) 1997; 48
DJ Jobson (10226_CR57) 1997; 6
10226_CR130
YP Loh (10226_CR163) 2019; 178
Y Meng (10226_CR114) 2019; 50
10226_CR137
10226_CR138
Z Ni (10226_CR135) 2020; 29
10226_CR136
C Li (10226_CR105) 2018; 104
10226_CR133
10226_CR131
JA Stark (10226_CR14) 2000; 9
10226_CR132
X Yan (10226_CR3) 2022; 22
J Liu (10226_CR16) 2021; 129
10226_CR117
10226_CR118
EH Land (10226_CR56) 1977; 237
W Yang (10226_CR180) 2021; 30
10226_CR127
10226_CR122
10226_CR123
10226_CR121
References_xml – volume: 17
  start-page: 5085
  issue: 4
  year: 2023
  ident: 10226_CR60
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2023.3262593
– volume: 8
  start-page: 109038
  year: 2020
  ident: 10226_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001206
– volume: 26
  start-page: 1981
  year: 2014
  ident: 10226_CR25
  publication-title: J Comput-Aided Des Comput Graph
– volume: 48
  start-page: 5548636
  issue: 1
  year: 1997
  ident: 10226_CR32
  publication-title: IEEE Trans Consum Electron
– ident: 10226_CR177
  doi: 10.1609/aaai.v34i07.7013
– volume: 31
  start-page: 1391
  year: 2022
  ident: 10226_CR183
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3140610
– volume: 30
  start-page: 3461
  year: 2021
  ident: 10226_CR180
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3062184
– volume: 28
  start-page: 5679
  year: 2019
  ident: 10226_CR8
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2922106
– volume: 22
  start-page: 657
  issue: 2
  year: 2013
  ident: 10226_CR150
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2221725
– ident: 10226_CR138
  doi: 10.1007/978-3-030-01234-2_10
– volume: 22
  start-page: 3538
  issue: 9
  year: 2013
  ident: 10226_CR48
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2261309
– ident: 10226_CR67
  doi: 10.1145/987657.987671
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10226_CR143
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 30
  start-page: 9085
  year: 2021
  ident: 10226_CR197
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3122004
– volume: 61
  start-page: 1
  issue: 1
  year: 1971
  ident: 10226_CR55
  publication-title: J Opt Soc Am
  doi: 10.1364/JOSA.61.000001
– volume: 53
  start-page: 593
  year: 2007
  ident: 10226_CR11
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2007.381734
– volume: 203
  start-page: 112016
  year: 2022
  ident: 10226_CR7
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112016
– volume: 26
  start-page: 982
  year: 2017
  ident: 10226_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2639450
– volume: 215
  start-page: 106771
  year: 2021
  ident: 10226_CR85
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106771
– volume: 30
  start-page: 507
  year: 2014
  ident: 10226_CR70
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0875-4
– volume: 31
  start-page: 4227
  year: 2021
  ident: 10226_CR124
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3049940
– ident: 10226_CR141
– volume: 44
  start-page: 9396
  year: 2021
  ident: 10226_CR165
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3126387
– volume: 29
  start-page: 9140
  year: 2020
  ident: 10226_CR135
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3023615
– ident: 10226_CR59
  doi: 10.1109/ICMEW.2019.00054
– volume: 24
  start-page: 8339
  issue: 8
  year: 2023
  ident: 10226_CR76
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3263271
– ident: 10226_CR189
  doi: 10.1111/j.1467-8659.2012.03225.x
– volume: 9
  start-page: 31053
  year: 2021
  ident: 10226_CR125
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059498
– ident: 10226_CR129
– volume: 180
  start-page: 997
  year: 2019
  ident: 10226_CR18
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.020
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10226_CR109
  publication-title: Cognit Sci
  doi: 10.1207/s15516709cog1402_1
– ident: 10226_CR35
  doi: 10.1007/s00371-020-01838-0
– ident: 10226_CR121
  doi: 10.1109/EMBC.2019.8856950
– volume: 28
  start-page: 4364
  year: 2019
  ident: 10226_CR96
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2910412
– volume: 28
  start-page: 5679
  issue: 11
  year: 2019
  ident: 10226_CR46
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2922106
– ident: 10226_CR148
  doi: 10.1109/CVPR.2018.00068
– volume: 41
  start-page: 1975
  issue: 8
  year: 2019
  ident: 10226_CR97
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 10226_CR178
  doi: 10.1109/CVPR46437.2021.01042
– volume: 34
  start-page: 821
  year: 2012
  ident: 10226_CR69
  publication-title: Syst Eng Electron
– ident: 10226_CR98
  doi: 10.1109/VCIP.2017.8305143
– ident: 10226_CR99
  doi: 10.1109/CVPR42600.2020.00235
– ident: 10226_CR89
– ident: 10226_CR155
  doi: 10.1109/CVPR.2016.91
– ident: 10226_CR95
– volume: 72
  start-page: 1
  year: 2011
  ident: 10226_CR91
  publication-title: Notes
– volume: 251
  start-page: 168251
  year: 2022
  ident: 10226_CR167
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168251
– volume: 237
  start-page: 108
  issue: 6
  year: 1977
  ident: 10226_CR56
  publication-title: Sci Am
  doi: 10.1038/scientificamerican1277-108
– ident: 10226_CR164
– volume: 20
  start-page: 335
  issue: 2
  year: 2018
  ident: 10226_CR47
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2017.2740025
– volume: 21
  start-page: 80
  year: 2011
  ident: 10226_CR190
  publication-title: IEEE Trans Image Process
– volume: 44
  start-page: 82
  year: 1998
  ident: 10226_CR38
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/30.663733
– volume: 240
  start-page: 108010
  year: 2022
  ident: 10226_CR119
  publication-title: Knowl -Based Syst
  doi: 10.1016/j.knosys.2021.108010
– volume: 6
  start-page: 451
  issue: 3
  year: 1997
  ident: 10226_CR57
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.557356
– volume: 32
  start-page: 363
  year: 2020
  ident: 10226_CR108
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2978756
– ident: 10226_CR107
  doi: 10.1109/CVPR.2018.00197
– volume: 22
  start-page: 3538
  year: 2013
  ident: 10226_CR160
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2261309
– ident: 10226_CR36
– ident: 10226_CR136
– ident: 10226_CR188
  doi: 10.1109/CVPR52729.2023.00166
– ident: 10226_CR187
  doi: 10.1016/j.patcog.2024.110799
– volume: 104
  start-page: 15
  year: 2018
  ident: 10226_CR105
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.01.010
– ident: 10226_CR162
  doi: 10.1109/CVPR.2018.00347
– volume: 29
  start-page: 28
  year: 2019
  ident: 10226_CR28
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2017.2763180
– volume: 20
  start-page: 209
  issue: 3
  year: 2013
  ident: 10226_CR145
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2012.2227726
– ident: 10226_CR175
  doi: 10.1109/CVPR42600.2020.00185
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10226_CR77
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 15
  start-page: 2290
  issue: 8
  year: 2006
  ident: 10226_CR147
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.875204
– volume: 19
  start-page: 1142
  year: 2017
  ident: 10226_CR4
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2652069
– volume: 80
  start-page: 14363
  year: 2021
  ident: 10226_CR120
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10310-z
– ident: 10226_CR132
  doi: 10.1007/978-3-030-58452-8_13
– volume: 61
  start-page: 1
  year: 1971
  ident: 10226_CR15
  publication-title: Josa
  doi: 10.1364/JOSA.61.000001
– ident: 10226_CR83
– ident: 10226_CR194
  doi: 10.1109/ICCV.2019.00742
– volume: 15
  start-page: 5332
  year: 2022
  ident: 10226_CR10
  publication-title: Materials
  doi: 10.3390/ma15155332
– volume: 22
  start-page: 6184
  year: 2022
  ident: 10226_CR3
  publication-title: Sensors
  doi: 10.3390/s22166184
– volume: 14
  start-page: 2117
  issue: 12
  year: 2005
  ident: 10226_CR144
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.859389
– ident: 10226_CR131
– volume: 26
  start-page: 769
  year: 2005
  ident: 10226_CR27
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2004.09.032
– ident: 10226_CR104
– ident: 10226_CR139
  doi: 10.1109/ICME46284.2020.9102962
– ident: 10226_CR88
– ident: 10226_CR84
  doi: 10.1109/CVPR.2016.485
– volume: 10
  start-page: 610
  year: 2022
  ident: 10226_CR9
  publication-title: Machines
  doi: 10.3390/machines10080610
– ident: 10226_CR116
  doi: 10.1109/CVPRW.2018.00112
– volume: 129
  start-page: 1153
  year: 2021
  ident: 10226_CR16
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-020-01418-8
– ident: 10226_CR100
  doi: 10.1609/aaai.v34i07.7013
– ident: 10226_CR82
– ident: 10226_CR186
  doi: 10.1109/ICCV51070.2023.01187
– ident: 10226_CR43
  doi: 10.1109/ICCSE.2015.7250224
– volume: 39
  start-page: 56
  year: 2016
  ident: 10226_CR2
  publication-title: J Chang Univ Sci Technol
– volume: 11
  start-page: 574
  year: 2019
  ident: 10226_CR17
  publication-title: Symmetry
  doi: 10.3390/sym11040574
– ident: 10226_CR199
– volume: 101
  start-page: 52
  year: 2018
  ident: 10226_CR72
  publication-title: Electron Commun Jpn
  doi: 10.1002/ecj.12092
– volume: 36
  start-page: 1
  year: 2017
  ident: 10226_CR102
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3072959.3073592
– volume: 13
  start-page: 26
  year: 2021
  ident: 10226_CR12
  publication-title: Forests
  doi: 10.3390/f13010026
– volume: 29
  start-page: 1301
  issue: 4
  year: 2018
  ident: 10226_CR149
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2649101
– ident: 10226_CR193
– volume: 45
  start-page: 68
  year: 1999
  ident: 10226_CR34
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/30.754419
– ident: 10226_CR37
– volume: 50
  start-page: 799
  year: 2019
  ident: 10226_CR114
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-09968-2
– ident: 10226_CR115
  doi: 10.1109/ICCV.2017.355
– volume: 11
  start-page: 475
  year: 2001
  ident: 10226_CR39
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/76.915354
– ident: 10226_CR182
– ident: 10226_CR171
  doi: 10.1016/j.patcog.2016.06.008
– ident: 10226_CR184
– volume: 9
  start-page: 889
  year: 2000
  ident: 10226_CR14
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.841534
– volume: 8
  start-page: 1
  year: 2016
  ident: 10226_CR20
  publication-title: IEEE Photon J
  doi: 10.1109/JPHOT.2016.2528122
– ident: 10226_CR93
– volume: 119
  start-page: 3
  year: 2019
  ident: 10226_CR159
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.02.010
– ident: 10226_CR117
  doi: 10.1109/CVPR.2018.00660
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10226_CR78
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 10226_CR103
– volume: 178
  start-page: 30
  year: 2019
  ident: 10226_CR163
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2018.10.010
– volume: 22
  start-page: 5184
  year: 2022
  ident: 10226_CR6
  publication-title: Sensors
  doi: 10.3390/s22145184
– ident: 10226_CR80
  doi: 10.1109/CVPR.2017.17
– volume: 45
  start-page: 68
  year: 1999
  ident: 10226_CR166
  publication-title: IEEE transac Consum Electron
  doi: 10.1109/30.754419
– volume: 14
  start-page: 236
  year: 2014
  ident: 10226_CR23
  publication-title: In Proc Int Conf Innov Autom Mechatronics Eng
– volume: 5
  start-page: 726
  year: 2021
  ident: 10226_CR87
  publication-title: IEEE Trans Emerging Top Comput Intell
  doi: 10.1109/TETCI.2021.3100641
– ident: 10226_CR195
  doi: 10.1109/ICCV.2019.00328
– ident: 10226_CR173
– volume: 57
  start-page: 583
  year: 2011
  ident: 10226_CR40
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2011.5955195
– volume: 8
  start-page: 42
  year: 2019
  ident: 10226_CR1
  publication-title: Southeast Eur J Soft Comput
– volume: 496
  start-page: 25
  year: 2019
  ident: 10226_CR73
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.015
– ident: 10226_CR174
  doi: 10.1109/CVPR.2019.00701
– volume: 26
  start-page: 982
  issue: 2
  year: 2017
  ident: 10226_CR49
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2639450
– volume: 23
  start-page: 4093
  year: 2020
  ident: 10226_CR101
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.3037526
– volume: 26
  start-page: 982
  year: 2016
  ident: 10226_CR192
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2639450
– volume: 32
  start-page: 582
  issue: 4
  year: 2019
  ident: 10226_CR154
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00227-x
– volume: 2022
  start-page: 13
  year: 1896
  ident: 10226_CR13
  publication-title: Forests
– ident: 10226_CR79
  doi: 10.1109/CVPR.2018.00465
– volume: 117
  start-page: 8
  year: 2019
  ident: 10226_CR158
  publication-title: Neural Network
  doi: 10.1016/j.neunet.2019.04.024
– ident: 10226_CR53
  doi: 10.1109/ICCVW.2017.356
– volume: 129
  start-page: 82
  year: 2016
  ident: 10226_CR75
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.05.031
– ident: 10226_CR44
  doi: 10.1109/ICACCI.2014.6968569
– volume: 38
  start-page: 5
  year: 2004
  ident: 10226_CR42
  publication-title: J VLSI Signal Process -Syst Signal Image Video Technol
  doi: 10.1023/B:VLSI.0000028529.51311.5a
– volume: 33
  start-page: 2341
  issue: 12
  year: 2011
  ident: 10226_CR54
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.168
– volume: 43
  start-page: 1654
  year: 2014
  ident: 10226_CR63
  publication-title: Infr Laser Eng
– ident: 10226_CR140
  doi: 10.1145/3343031.3351069
– ident: 10226_CR81
– volume: 40
  year: 2021
  ident: 10226_CR151
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100379
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 10226_CR146
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2109730
– volume: 29
  start-page: 968
  issue: 4
  year: 2018
  ident: 10226_CR170
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2018.2828141
– volume: 37
  start-page: 923
  year: 2011
  ident: 10226_CR5
  publication-title: Acta Autom Sin
– ident: 10226_CR133
– ident: 10226_CR198
  doi: 10.1109/CVPR42600.2020.00283
– volume: 21
  start-page: 1499
  issue: 6
  year: 2018
  ident: 10226_CR66
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2018.2880603
– volume: 6
  start-page: 22084
  year: 2018
  ident: 10226_CR94
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812809
– volume: 32
  start-page: 1076
  year: 2021
  ident: 10226_CR179
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2021.3073371
– ident: 10226_CR92
– volume: 61
  start-page: 119
  year: 2015
  ident: 10226_CR74
  publication-title: IEEE Trans Con- Sum Electron
  doi: 10.1109/TCE.2015.7064119
– ident: 10226_CR127
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 10226_CR31
  publication-title: Comput Vision Graphics Image Process
  doi: 10.1016/S0734-189X(87)80186-X
– ident: 10226_CR86
– volume: 77
  start-page: 29639
  year: 2018
  ident: 10226_CR24
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5448-5
– volume: 61
  start-page: 650
  year: 2017
  ident: 10226_CR29
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.06.008
– ident: 10226_CR137
  doi: 10.1109/CISP-BMEI53629.2021.9624226
– volume: 44
  start-page: 4225
  year: 2021
  ident: 10226_CR181
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 7
  start-page: 101635
  year: 2023
  ident: 10226_CR58
  publication-title: J King Saud Univ-Comput Inf Sci
– volume: 5
  start-page: 1250
  year: 2022
  ident: 10226_CR196
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 23
  start-page: 4272
  year: 2020
  ident: 10226_CR126
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.3039361
– volume: 44
  start-page: 19
  year: 2008
  ident: 10226_CR71
  publication-title: Electron Lett
  doi: 10.1049/el:20082182
– volume: 26
  start-page: 1487
  year: 2013
  ident: 10226_CR41
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.11.011
– ident: 10226_CR45
– ident: 10226_CR122
– volume: 49
  start-page: 1310
  issue: 4
  year: 2003
  ident: 10226_CR33
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2003.1261234
– volume: 129
  start-page: 82
  year: 2016
  ident: 10226_CR50
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.05.031
– ident: 10226_CR176
  doi: 10.1109/CVPR42600.2020.00313
– volume: 16
  start-page: 934
  year: 2015
  ident: 10226_CR26
  publication-title: IEEE Trans Intell Transp Syst
– ident: 10226_CR130
  doi: 10.36227/techrxiv.17198216.v1
– ident: 10226_CR118
– volume: 70
  start-page: 41
  year: 2018
  ident: 10226_CR153
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.018
– volume: 104
  start-page: 15
  year: 2018
  ident: 10226_CR172
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2018.01.010
– volume: 7708
  start-page: 337
  year: 2010
  ident: 10226_CR30
  publication-title: Mobile Multimed/Image Process Secur Appl
– ident: 10226_CR128
  doi: 10.1145/3343031.3350926
– volume: 24
  start-page: 3345
  year: 2015
  ident: 10226_CR161
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2442920
– volume: 27
  start-page: 2049
  year: 2018
  ident: 10226_CR106
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2794218
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10226_CR110
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.650093
– ident: 10226_CR156
– volume: 26
  start-page: 982
  issue: 2
  year: 2016
  ident: 10226_CR169
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2639450
– volume: 40
  start-page: 100379
  year: 2021
  ident: 10226_CR65
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100379
– volume: 33
  start-page: 506
  year: 2009
  ident: 10226_CR62
  publication-title: J Nanjing Univ Sci Technol
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10226_CR111
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  ident: 10226_CR142
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.859378
– volume: 39
  start-page: 1
  year: 2018
  ident: 10226_CR22
  publication-title: J Harbin Eng Univ
– volume: 22
  start-page: 3234
  issue: 6
  year: 2021
  ident: 10226_CR157
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2993926
– volume: 63
  start-page: 178
  issue: 2
  year: 2017
  ident: 10226_CR51
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2017.014847
– volume: 22
  start-page: 5372
  year: 2013
  ident: 10226_CR191
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2284059
– ident: 10226_CR123
  doi: 10.1109/FG.2018.00118
– ident: 10226_CR52
  doi: 10.1109/CVPR.2016.304
– volume: 16
  start-page: 94
  year: 2018
  ident: 10226_CR61
  publication-title: Chin Opt Lett
– volume: 31
  start-page: 2340
  year: 2021
  ident: 10226_CR113
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3051462
– volume: 23
  start-page: 1211
  year: 2011
  ident: 10226_CR64
  publication-title: J Comput -Aided Des Comput Graph
– volume: 70
  start-page: 1
  year: 2021
  ident: 10226_CR168
  publication-title: IEEE Trans Instrum Meas
– ident: 10226_CR90
  doi: 10.1145/1390156.1390294
– ident: 10226_CR200
– volume: 49
  start-page: 120501
  year: 2010
  ident: 10226_CR68
  publication-title: Opt Eng
  doi: 10.1117/1.3520553
– ident: 10226_CR185
– ident: 10226_CR152
  doi: 10.1109/TPAMI.2021.3059968
– volume: 30
  start-page: 2340
  year: 2021
  ident: 10226_CR134
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3051462
– volume: 28
  start-page: 4364
  issue: 9
  year: 2019
  ident: 10226_CR112
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2910412
SSID ssj0054992
Score 2.3888328
SecondaryResourceType review_article
Snippet Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2853
SubjectTerms Acuity
Artificial neural networks
Deep learning
Engineering
Image enhancement
Image quality
Light
Machine learning
Mathematical and Computational Engineering
Quality assessment
Review
Topology
Unsupervised learning
Title A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives
URI https://link.springer.com/article/10.1007/s11831-025-10226-7
https://www.proquest.com/docview/3229496714
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu8CBjwFiMKYcuLFIbZqkDbcybQwYiAOTxqlqk1STYB1ah_j7JF2rAoIDt0qtUsmxHT87fgY496l0tSc55pJRTAOicKJJjJXBYkwL5tGCdvH-gY8m9HbKpmVTWF7ddq9KkoWnrpvdjPYZ6Essc6YJGrC_CU1msbvR4gkJK_9rAU9R43Q9m_PnTtkq8_sa34-jOsb8URYtTpvhHuyUYSIK1_u6Dxs6a8FuGTKi0iDzFmx_4RM8gDRE61w_WmRoPa-hzPWh8eIDjy0QRzdz40LQIJvZ_ba5QWTnob3ml6hfDVbJe-jK_GA2j5cv5jnOFHqsmzLzQ5gMB0_9ES4HKWBJfGeFXUG5FIQlHo8Fj1lKfS1UIKmruVQypspxA-kqT3kk0UxbVjaeKocrIyUnId4RNLJFpo8B-anBPMRYLfO48bFaSJ5wodLAeCum4rgNF5U8o7c1X0ZUMyNb6UdG-lEh_chvQ6cSeVTaTh4ZFyOo4L5L29CrtqF-_fdqJ__7_BS2iNWEIqXSgcZq-a7PTISxSrrQDK-f7wbdQrE-AU2mxvI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN2mydW23ekMCAQXiARJuy9Z2IVGGYRj_fduxZWr04G3Jli759b1f30ffewC3PpWu9iTHXDKKaUAUjjWJsDK-GNOCeTRvuzga8_6UPs7YrCgKy8rb7mVKMmfqqtjNSJ9xfYntnGmMBuxvw44xBgJ7kWtK2iX_Wocnz3G6no35c6colfl9je_HUWVj_kiL5qdN7wgOCjMRtTf7egxbOq3DYWEyokIhszrsf-kneAJJG21i_WiZos28hiLWh4bLDzy0jjgaLAyFoG46t_ttY4PIzkN7ze5RpxyskrXQg_nBfBGtXsxzlCr0XBVlZqcw7XUnnT4uBilgSXxnjV1BuRSExR6PBI9YQn0tVCCpq7lUMqLKcQPpKk95JNZM265sPFEOVwYlJybeGdTSZarPAfmJ8XmI0VrmccOxWkgec6GSwLAVU1HUgLsSz_Bt0y8jrDojW_RDg36Yox_6DWiWkIeF7mShoRhBBfdd2oBWuQ3V679Xu_jf5zew25-MhuFwMH66hD1ipSIPrzShtl696ytjbazj61y4PgGTFMhR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBNGDH1NxOjUHbxrWpkm6eJtzY9MpHhx4K22SMtB1Y53475v0g07Rg7dCSwov7_3yPvJ-D-DSp9LVnuSYS0YxbROFI01CrEwsxrRgHs1oFx-f-GBM71_Z60oXf3bbvSxJ5j0NlqUpWbbmKm5VjW9GE00YTCyLpnEgsL8OGwaOXavXY9IpsdgGP1m90_Vs_p87RdvM72t8P5oqf_NHiTQ7efp7sFO4jKiT7_E-rOmkDruF-4gK40zrsL3CLXgAcQfleX80S1A-u6HI-6HR7BOPbFCOhlMDJ6iXTOze2zwhsrPR3tMb1C2HrKTX6Nb8YDINF2_mOUwUeq4aNNNDGPd7L90BLoYqYEl8Z4ldQbkUhEUeDwUPWUx9LVRbUldzqWRIleO2pas85ZFIM20Z2nisHK6MlJyIeEdQS2aJPgbkxyb-IcaCmccN3mohecSFitsGuZgKwwZclfIM5jl3RlCxJFvpB0b6QSb9wG9AsxR5UNhRGhi4EVRw36UNuC63oXr992on__v8Ajaf7_rBaPj0cApbxCpFlmlpQm25-NBnxvFYRueZbn0BflLMjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Computational+Low-Light+Image+Enhancement+Models%3A+Challenges%2C+Benchmarks%2C+and+Perspectives&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Singh%2C+Pallavi&rft.au=Bhandari%2C+Ashish+Kumar&rft.date=2025-06-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=32&rft.issue=5&rft.spage=2853&rft.epage=2885&rft_id=info:doi/10.1007%2Fs11831-025-10226-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_025_10226_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon