A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives
Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise red...
Saved in:
Published in | Archives of computational methods in engineering Vol. 32; no. 5; pp. 2853 - 2885 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images. |
---|---|
AbstractList | Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken in low-light are the objectives. Techniques for improving low-light images simultaneously boost the brightness, contrast, as well as noise reduction of the image. Self-learning tools, however, have accelerated a lot of this field advancements. Many deep neural networks have been created or put into use as a result. As such, this paper gives a quick summary of the state of the art in low-light image improvement, encompassing techniques related to the controversial open subject. We present a summary of deep learning techniques that are currently carried out to low-light settings. A clear overview of traditional methods for improving low-light primary images. We provide enhanced techniques based on deep learning algorithms and neural structure topologies. Specifically, the current state of deep learning -based low-light picture improvement technologies may be broadly categorized into four sections: visually-based approaches, unobserved learning, unsupervised learning, and observational learning technologies. After then, a database of dimly lit photos is gathered and examined. Furthermore, we present an overview of several quality evaluation standards for enhancing low-light images. |
Author | Bhandari, Ashish Kumar Singh, Pallavi |
Author_xml | – sequence: 1 givenname: Pallavi surname: Singh fullname: Singh, Pallavi organization: Department of Electronics and Communication Engineering, National Institute of Technology, Department of Electronics and Communication Engineering, Nagarjuna College of Engineering and Technology – sequence: 2 givenname: Ashish Kumar surname: Bhandari fullname: Bhandari, Ashish Kumar email: bhandari.iiitj@gmail.com organization: Department of Electronics and Communication Engineering, National Institute of Technology |
BookMark | eNp9kE9PAjEUxBuDiYB-AU9NvFrtv-3uekOCSoLRGD03pX0Li0uL2wXit7eKiTdPbw4zkze_Aer54AGhc0avGKX5dWSsEIxQnhFGOVckP0J9VhSKsLyQvaSZkERQRU_QIMYVpZksS95H1Qi_wK6GPQ4ej8N6s-1MVwdvGjwLezKrF8sOT9dmAXjil8ZbWIPv8GNw0MQbPF6apgG_gHiJb8Hb5dq070kb7_AztHEDtqt3EE_RcWWaCGe_d4je7iav4wcye7qfjkczYnlOO8JKqWzJs7lQplQmq2QOpSusZKCss0Y6ygrLnHCCzyGDLOO5qhxVLq2mcy6G6OLQu2nDxxZip1dh26Y1UQvOS1mqnMnk4geXbUOMLVR609bp80_NqP7mqQ88deKpf3jqPIXEIRSTOS1u_6r_SX0BkDl5ug |
Cites_doi | 10.1109/JSYST.2023.3262593 10.1109/ACCESS.2020.3001206 10.1609/aaai.v34i07.7013 10.1109/TIP.2022.3140610 10.1109/TIP.2021.3062184 10.1109/TIP.2019.2922106 10.1109/TIP.2012.2221725 10.1007/978-3-030-01234-2_10 10.1109/TIP.2013.2261309 10.1145/987657.987671 10.1109/TIP.2003.819861 10.1109/TIP.2021.3122004 10.1364/JOSA.61.000001 10.1109/TCE.2007.381734 10.1016/j.measurement.2022.112016 10.1109/TIP.2016.2639450 10.1016/j.knosys.2021.106771 10.1007/s00371-013-0875-4 10.1109/TCSVT.2021.3049940 10.1109/TPAMI.2021.3126387 10.1109/TIP.2020.3023615 10.1109/ICMEW.2019.00054 10.1109/TITS.2023.3263271 10.1111/j.1467-8659.2012.03225.x 10.1109/ACCESS.2021.3059498 10.1016/j.ijleo.2018.12.020 10.1207/s15516709cog1402_1 10.1007/s00371-020-01838-0 10.1109/EMBC.2019.8856950 10.1109/TIP.2019.2910412 10.1109/CVPR.2018.00068 10.1109/CVPR46437.2021.01042 10.1109/VCIP.2017.8305143 10.1109/CVPR42600.2020.00235 10.1109/CVPR.2016.91 10.1016/j.ijleo.2021.168251 10.1038/scientificamerican1277-108 10.1109/TMM.2017.2740025 10.1109/30.663733 10.1016/j.knosys.2021.108010 10.1109/83.557356 10.1109/TNNLS.2020.2978756 10.1109/CVPR.2018.00197 10.1109/CVPR52729.2023.00166 10.1016/j.patcog.2024.110799 10.1016/j.patrec.2018.01.010 10.1109/CVPR.2018.00347 10.1109/TCSVT.2017.2763180 10.1109/LSP.2012.2227726 10.1109/CVPR42600.2020.00185 10.1126/science.1127647 10.1109/TIP.2006.875204 10.1109/TMM.2017.2652069 10.1007/s11042-020-10310-z 10.1007/978-3-030-58452-8_13 10.1109/ICCV.2019.00742 10.3390/ma15155332 10.3390/s22166184 10.1109/TIP.2005.859389 10.1016/j.patrec.2004.09.032 10.1109/ICME46284.2020.9102962 10.1109/CVPR.2016.485 10.3390/machines10080610 10.1109/CVPRW.2018.00112 10.1007/s11263-020-01418-8 10.1109/ICCV51070.2023.01187 10.1109/ICCSE.2015.7250224 10.3390/sym11040574 10.1002/ecj.12092 10.1145/3072959.3073592 10.3390/f13010026 10.1109/TNNLS.2017.2649101 10.1109/30.754419 10.1007/s11063-018-09968-2 10.1109/ICCV.2017.355 10.1109/76.915354 10.1016/j.patcog.2016.06.008 10.1109/83.841534 10.1109/JPHOT.2016.2528122 10.1016/j.patrec.2018.02.010 10.1109/CVPR.2018.00660 10.1145/3065386 10.1016/j.cviu.2018.10.010 10.3390/s22145184 10.1109/CVPR.2017.17 10.1109/TETCI.2021.3100641 10.1109/ICCV.2019.00328 10.1109/TCE.2011.5955195 10.1016/j.ins.2019.05.015 10.1109/CVPR.2019.00701 10.1109/TMM.2020.3037526 10.1007/s10278-019-00227-x 10.1109/CVPR.2018.00465 10.1016/j.neunet.2019.04.024 10.1109/ICCVW.2017.356 10.1016/j.sigpro.2016.05.031 10.1109/ICACCI.2014.6968569 10.1023/B:VLSI.0000028529.51311.5a 10.1109/TPAMI.2010.168 10.1145/3343031.3351069 10.1016/j.cosrev.2021.100379 10.1109/TIP.2011.2109730 10.1109/TCSVT.2018.2828141 10.1109/CVPR42600.2020.00283 10.1109/TMM.2018.2880603 10.1109/ACCESS.2018.2812809 10.1109/TCSVT.2021.3073371 10.1109/TCE.2015.7064119 10.1016/S0734-189X(87)80186-X 10.1007/s11042-017-5448-5 10.1109/CISP-BMEI53629.2021.9624226 10.1109/TMM.2020.3039361 10.1049/el:20082182 10.1016/j.engappai.2012.11.011 10.1109/TCE.2003.1261234 10.1109/CVPR42600.2020.00313 10.36227/techrxiv.17198216.v1 10.1016/j.asoc.2018.05.018 10.1145/3343031.3350926 10.1109/TIP.2015.2442920 10.1109/TIP.2018.2794218 10.1109/78.650093 10.1162/neco.1997.9.8.1735 10.1109/TIP.2005.859378 10.1109/TITS.2020.2993926 10.1109/TCE.2017.014847 10.1109/TIP.2013.2284059 10.1109/FG.2018.00118 10.1109/CVPR.2016.304 10.1109/TIP.2021.3051462 10.1145/1390156.1390294 10.1117/1.3520553 10.1109/TPAMI.2021.3059968 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025. |
Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s11831-025-10226-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1886-1784 |
EndPage | 2885 |
ExternalDocumentID | 10_1007_s11831_025_10226_7 |
GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c270t-1946c925b36a96a5f47e9d8c41e6cdca4d018c1d3d32be5e55276fd06d1020b23 |
IEDL.DBID | U2A |
ISSN | 1134-3060 |
IngestDate | Sat Aug 23 13:05:00 EDT 2025 Wed Jul 16 16:45:59 EDT 2025 Sat Jul 12 03:47:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-1946c925b36a96a5f47e9d8c41e6cdca4d018c1d3d32be5e55276fd06d1020b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3229496714 |
PQPubID | 1486352 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3229496714 crossref_primary_10_1007_s11831_025_10226_7 springer_journals_10_1007_s11831_025_10226_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | State of the Art Reviews |
PublicationTitle | Archives of computational methods in engineering |
PublicationTitleAbbrev | Arch Computat Methods Eng |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | X Tan (10226_CR197) 2021; 30 ZY Chen (10226_CR147) 2006; 15 10226_CR79 Y Ren (10226_CR170) 2018; 29 10226_CR195 10226_CR193 10226_CR194 K Lu (10226_CR101) 2020; 23 10226_CR199 Y Huo (10226_CR69) 2012; 34 10226_CR198 10226_CR86 10226_CR88 Y Huo (10226_CR70) 2014; 30 10226_CR82 K Ma (10226_CR161) 2015; 24 10226_CR81 HR Sheikh (10226_CR142) 2006; 15 AT Celebi (10226_CR74) 2015; 61 10226_CR84 SM Pizer (10226_CR31) 1987; 39 10226_CR83 TK Kim (10226_CR38) 1998; 44 10226_CR89 W Ren (10226_CR96) 2019; 28 10226_CR184 10226_CR185 10226_CR182 S Park (10226_CR51) 2017; 63 YF Wang (10226_CR46) 2019; 28 K Gu (10226_CR149) 2018; 29 10226_CR80 10226_CR188 10226_CR189 10226_CR186 10226_CR187 10226_CR53 10226_CR52 Y Sun (10226_CR6) 2022; 22 MH Conde (10226_CR20) 2016; 8 Y Xu (10226_CR9) 2022; 10 EH Land (10226_CR15) 1971; 61 Z Zhao (10226_CR179) 2021; 32 X Yan (10226_CR7) 2022; 203 10226_CR59 10226_CR173 Y Rao (10226_CR68) 2010; 49 S Hochreiter (10226_CR111) 1997; 9 10226_CR174 10226_CR171 Y Yang (10226_CR12) 2021; 13 H Yeganeh (10226_CR150) 2013; 22 H-S Le (10226_CR71) 2008; 44 JL Elman (10226_CR109) 1990; 14 10226_CR177 10226_CR178 10226_CR175 10226_CR176 Y Zhang (10226_CR87) 2021; 5 10226_CR67 Y Zhang (10226_CR97) 2019; 41 A Mittal (10226_CR145) 2013; 20 10226_CR162 N Singh (10226_CR168) 2021; 70 J-Y Kim (10226_CR39) 2001; 11 S Wang (10226_CR48) 2013; 22 J Zhu (10226_CR61) 2018; 16 10226_CR164 C-C Leung (10226_CR27) 2005; 26 A Ng (10226_CR91) 2011; 72 J Cai (10226_CR106) 2018; 27 MH Hesamian (10226_CR154) 2019; 32 M Abdullah-Al-Wadud (10226_CR11) 2007; 53 M Fang (10226_CR2) 2016; 39 L Yan (10226_CR120) 2021; 80 Y Gao (10226_CR47) 2018; 20 X Guo (10226_CR169) 2016; 26 EH Land (10226_CR55) 1971; 61 M Yamakawa (10226_CR72) 2018; 101 P Ravirathinam (10226_CR125) 2021; 9 S-C Huang (10226_CR41) 2013; 26 X Fu (10226_CR50) 2016; 129 KG Lore (10226_CR29) 2017; 61 Z Rahman (10226_CR19) 2020; 8 X Guo (10226_CR21) 2017; 26 AM Reza (10226_CR42) 2004; 38 J Yu (10226_CR5) 2011; 37 K He (10226_CR54) 2011; 33 H Ackar (10226_CR1) 2019; 8 J Li (10226_CR124) 2021; 31 S Hao (10226_CR24) 2018; 77 Y Wang (10226_CR166) 1999; 45 A Mackin (10226_CR66) 2018; 21 10226_CR99 10226_CR98 10226_CR93 10226_CR92 Y Wang (10226_CR34) 1999; 45 10226_CR95 F Zhang (10226_CR25) 2014; 26 Y Jiang (10226_CR113) 2021; 31 C Li (10226_CR165) 2021; 44 M Schuster (10226_CR110) 1997; 45 J Wang (10226_CR159) 2019; 119 L Chen (10226_CR157) 2021; 22 10226_CR90 S Wang (10226_CR160) 2013; 22 HR Sheikh (10226_CR144) 2005; 14 S-Y Yu (10226_CR28) 2019; 29 G Algan (10226_CR85) 2021; 215 C Lee (10226_CR191) 2013; 22 Y-F Wang (10226_CR8) 2019; 28 W Ren (10226_CR112) 2019; 28 W Wang (10226_CR196) 2022; 5 10226_CR107 Y Zhang (10226_CR62) 2009; 33 B Liu (10226_CR40) 2011; 57 Y Jiang (10226_CR134) 2021; 30 A Krizhevsky (10226_CR78) 2017; 60 L Lu (10226_CR30) 2010; 7708 R Ziaur (10226_CR58) 2023; 7 X Qian (10226_CR64) 2011; 23 10226_CR115 10226_CR116 R Ma (10226_CR18) 2019; 180 H Huang (10226_CR183) 2022; 31 M Gharbi (10226_CR102) 2017; 36 P Singh (10226_CR167) 2022; 251 Z Wang (10226_CR143) 2004; 13 X Fu (10226_CR75) 2016; 129 10226_CR104 SD Chen (10226_CR33) 2003; 49 10226_CR103 10226_CR100 T Bouwmans (10226_CR158) 2019; 117 S Dong (10226_CR151) 2021; 40 W Li (10226_CR10) 2022; 15 Z Rahman (10226_CR60) 2023; 17 Y-H Shiau (10226_CR26) 2015; 16 K Aditya (10226_CR23) 2014; 14 C Li (10226_CR181) 2021; 44 Q Mu (10226_CR22) 2018; 39 K Wei (10226_CR108) 2020; 32 S Dong (10226_CR65) 2021; 40 N Sharma (10226_CR76) 2023; 24 S Park (10226_CR94) 2018; 6 Y Fu (10226_CR119) 2022; 240 10226_CR200 W Wang (10226_CR73) 2019; 496 AG Garcia (10226_CR153) 2018; 70 10226_CR35 L Zhang (10226_CR146) 2011; 20 10226_CR37 10226_CR36 Q Dai (10226_CR17) 2019; 11 10226_CR152 X Guo (10226_CR192) 2016; 26 10226_CR155 10226_CR156 W Wang (10226_CR4) 2017; 19 10226_CR44 10226_CR43 S Yang (10226_CR63) 2014; 43 C Lee (10226_CR190) 2011; 21 X Guo (10226_CR49) 2017; 26 10226_CR139 10226_CR45 10226_CR140 S Lim (10226_CR126) 2020; 23 10226_CR141 10226_CR148 GE Hinton (10226_CR77) 2006; 313 10226_CR128 10226_CR129 C Li (10226_CR172) 2018; 104 H Zhou (10226_CR13) 1896; 2022 KT Kim (10226_CR32) 1997; 48 DJ Jobson (10226_CR57) 1997; 6 10226_CR130 YP Loh (10226_CR163) 2019; 178 Y Meng (10226_CR114) 2019; 50 10226_CR137 10226_CR138 Z Ni (10226_CR135) 2020; 29 10226_CR136 C Li (10226_CR105) 2018; 104 10226_CR133 10226_CR131 JA Stark (10226_CR14) 2000; 9 10226_CR132 X Yan (10226_CR3) 2022; 22 J Liu (10226_CR16) 2021; 129 10226_CR117 10226_CR118 EH Land (10226_CR56) 1977; 237 W Yang (10226_CR180) 2021; 30 10226_CR127 10226_CR122 10226_CR123 10226_CR121 |
References_xml | – volume: 17 start-page: 5085 issue: 4 year: 2023 ident: 10226_CR60 publication-title: IEEE Syst J doi: 10.1109/JSYST.2023.3262593 – volume: 8 start-page: 109038 year: 2020 ident: 10226_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001206 – volume: 26 start-page: 1981 year: 2014 ident: 10226_CR25 publication-title: J Comput-Aided Des Comput Graph – volume: 48 start-page: 5548636 issue: 1 year: 1997 ident: 10226_CR32 publication-title: IEEE Trans Consum Electron – ident: 10226_CR177 doi: 10.1609/aaai.v34i07.7013 – volume: 31 start-page: 1391 year: 2022 ident: 10226_CR183 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3140610 – volume: 30 start-page: 3461 year: 2021 ident: 10226_CR180 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3062184 – volume: 28 start-page: 5679 year: 2019 ident: 10226_CR8 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2922106 – volume: 22 start-page: 657 issue: 2 year: 2013 ident: 10226_CR150 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2221725 – ident: 10226_CR138 doi: 10.1007/978-3-030-01234-2_10 – volume: 22 start-page: 3538 issue: 9 year: 2013 ident: 10226_CR48 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2261309 – ident: 10226_CR67 doi: 10.1145/987657.987671 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10226_CR143 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 30 start-page: 9085 year: 2021 ident: 10226_CR197 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3122004 – volume: 61 start-page: 1 issue: 1 year: 1971 ident: 10226_CR55 publication-title: J Opt Soc Am doi: 10.1364/JOSA.61.000001 – volume: 53 start-page: 593 year: 2007 ident: 10226_CR11 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2007.381734 – volume: 203 start-page: 112016 year: 2022 ident: 10226_CR7 publication-title: Measurement doi: 10.1016/j.measurement.2022.112016 – volume: 26 start-page: 982 year: 2017 ident: 10226_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2639450 – volume: 215 start-page: 106771 year: 2021 ident: 10226_CR85 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106771 – volume: 30 start-page: 507 year: 2014 ident: 10226_CR70 publication-title: Vis Comput doi: 10.1007/s00371-013-0875-4 – volume: 31 start-page: 4227 year: 2021 ident: 10226_CR124 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3049940 – ident: 10226_CR141 – volume: 44 start-page: 9396 year: 2021 ident: 10226_CR165 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3126387 – volume: 29 start-page: 9140 year: 2020 ident: 10226_CR135 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3023615 – ident: 10226_CR59 doi: 10.1109/ICMEW.2019.00054 – volume: 24 start-page: 8339 issue: 8 year: 2023 ident: 10226_CR76 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2023.3263271 – ident: 10226_CR189 doi: 10.1111/j.1467-8659.2012.03225.x – volume: 9 start-page: 31053 year: 2021 ident: 10226_CR125 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059498 – ident: 10226_CR129 – volume: 180 start-page: 997 year: 2019 ident: 10226_CR18 publication-title: Optik doi: 10.1016/j.ijleo.2018.12.020 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10226_CR109 publication-title: Cognit Sci doi: 10.1207/s15516709cog1402_1 – ident: 10226_CR35 doi: 10.1007/s00371-020-01838-0 – ident: 10226_CR121 doi: 10.1109/EMBC.2019.8856950 – volume: 28 start-page: 4364 year: 2019 ident: 10226_CR96 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2910412 – volume: 28 start-page: 5679 issue: 11 year: 2019 ident: 10226_CR46 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2922106 – ident: 10226_CR148 doi: 10.1109/CVPR.2018.00068 – volume: 41 start-page: 1975 issue: 8 year: 2019 ident: 10226_CR97 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 10226_CR178 doi: 10.1109/CVPR46437.2021.01042 – volume: 34 start-page: 821 year: 2012 ident: 10226_CR69 publication-title: Syst Eng Electron – ident: 10226_CR98 doi: 10.1109/VCIP.2017.8305143 – ident: 10226_CR99 doi: 10.1109/CVPR42600.2020.00235 – ident: 10226_CR89 – ident: 10226_CR155 doi: 10.1109/CVPR.2016.91 – ident: 10226_CR95 – volume: 72 start-page: 1 year: 2011 ident: 10226_CR91 publication-title: Notes – volume: 251 start-page: 168251 year: 2022 ident: 10226_CR167 publication-title: Optik doi: 10.1016/j.ijleo.2021.168251 – volume: 237 start-page: 108 issue: 6 year: 1977 ident: 10226_CR56 publication-title: Sci Am doi: 10.1038/scientificamerican1277-108 – ident: 10226_CR164 – volume: 20 start-page: 335 issue: 2 year: 2018 ident: 10226_CR47 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2017.2740025 – volume: 21 start-page: 80 year: 2011 ident: 10226_CR190 publication-title: IEEE Trans Image Process – volume: 44 start-page: 82 year: 1998 ident: 10226_CR38 publication-title: IEEE Trans Consum Electron doi: 10.1109/30.663733 – volume: 240 start-page: 108010 year: 2022 ident: 10226_CR119 publication-title: Knowl -Based Syst doi: 10.1016/j.knosys.2021.108010 – volume: 6 start-page: 451 issue: 3 year: 1997 ident: 10226_CR57 publication-title: IEEE Trans Image Process doi: 10.1109/83.557356 – volume: 32 start-page: 363 year: 2020 ident: 10226_CR108 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978756 – ident: 10226_CR107 doi: 10.1109/CVPR.2018.00197 – volume: 22 start-page: 3538 year: 2013 ident: 10226_CR160 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2261309 – ident: 10226_CR36 – ident: 10226_CR136 – ident: 10226_CR188 doi: 10.1109/CVPR52729.2023.00166 – ident: 10226_CR187 doi: 10.1016/j.patcog.2024.110799 – volume: 104 start-page: 15 year: 2018 ident: 10226_CR105 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.01.010 – ident: 10226_CR162 doi: 10.1109/CVPR.2018.00347 – volume: 29 start-page: 28 year: 2019 ident: 10226_CR28 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2017.2763180 – volume: 20 start-page: 209 issue: 3 year: 2013 ident: 10226_CR145 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2012.2227726 – ident: 10226_CR175 doi: 10.1109/CVPR42600.2020.00185 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10226_CR77 publication-title: Science doi: 10.1126/science.1127647 – volume: 15 start-page: 2290 issue: 8 year: 2006 ident: 10226_CR147 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.875204 – volume: 19 start-page: 1142 year: 2017 ident: 10226_CR4 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2652069 – volume: 80 start-page: 14363 year: 2021 ident: 10226_CR120 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10310-z – ident: 10226_CR132 doi: 10.1007/978-3-030-58452-8_13 – volume: 61 start-page: 1 year: 1971 ident: 10226_CR15 publication-title: Josa doi: 10.1364/JOSA.61.000001 – ident: 10226_CR83 – ident: 10226_CR194 doi: 10.1109/ICCV.2019.00742 – volume: 15 start-page: 5332 year: 2022 ident: 10226_CR10 publication-title: Materials doi: 10.3390/ma15155332 – volume: 22 start-page: 6184 year: 2022 ident: 10226_CR3 publication-title: Sensors doi: 10.3390/s22166184 – volume: 14 start-page: 2117 issue: 12 year: 2005 ident: 10226_CR144 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2005.859389 – ident: 10226_CR131 – volume: 26 start-page: 769 year: 2005 ident: 10226_CR27 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2004.09.032 – ident: 10226_CR104 – ident: 10226_CR139 doi: 10.1109/ICME46284.2020.9102962 – ident: 10226_CR88 – ident: 10226_CR84 doi: 10.1109/CVPR.2016.485 – volume: 10 start-page: 610 year: 2022 ident: 10226_CR9 publication-title: Machines doi: 10.3390/machines10080610 – ident: 10226_CR116 doi: 10.1109/CVPRW.2018.00112 – volume: 129 start-page: 1153 year: 2021 ident: 10226_CR16 publication-title: Int J Comput Vis doi: 10.1007/s11263-020-01418-8 – ident: 10226_CR100 doi: 10.1609/aaai.v34i07.7013 – ident: 10226_CR82 – ident: 10226_CR186 doi: 10.1109/ICCV51070.2023.01187 – ident: 10226_CR43 doi: 10.1109/ICCSE.2015.7250224 – volume: 39 start-page: 56 year: 2016 ident: 10226_CR2 publication-title: J Chang Univ Sci Technol – volume: 11 start-page: 574 year: 2019 ident: 10226_CR17 publication-title: Symmetry doi: 10.3390/sym11040574 – ident: 10226_CR199 – volume: 101 start-page: 52 year: 2018 ident: 10226_CR72 publication-title: Electron Commun Jpn doi: 10.1002/ecj.12092 – volume: 36 start-page: 1 year: 2017 ident: 10226_CR102 publication-title: ACM Trans Graph (TOG) doi: 10.1145/3072959.3073592 – volume: 13 start-page: 26 year: 2021 ident: 10226_CR12 publication-title: Forests doi: 10.3390/f13010026 – volume: 29 start-page: 1301 issue: 4 year: 2018 ident: 10226_CR149 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2649101 – ident: 10226_CR193 – volume: 45 start-page: 68 year: 1999 ident: 10226_CR34 publication-title: IEEE Trans Consum Electron doi: 10.1109/30.754419 – ident: 10226_CR37 – volume: 50 start-page: 799 year: 2019 ident: 10226_CR114 publication-title: Neural Process Lett doi: 10.1007/s11063-018-09968-2 – ident: 10226_CR115 doi: 10.1109/ICCV.2017.355 – volume: 11 start-page: 475 year: 2001 ident: 10226_CR39 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/76.915354 – ident: 10226_CR182 – ident: 10226_CR171 doi: 10.1016/j.patcog.2016.06.008 – ident: 10226_CR184 – volume: 9 start-page: 889 year: 2000 ident: 10226_CR14 publication-title: IEEE Trans Image Process doi: 10.1109/83.841534 – volume: 8 start-page: 1 year: 2016 ident: 10226_CR20 publication-title: IEEE Photon J doi: 10.1109/JPHOT.2016.2528122 – ident: 10226_CR93 – volume: 119 start-page: 3 year: 2019 ident: 10226_CR159 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.02.010 – ident: 10226_CR117 doi: 10.1109/CVPR.2018.00660 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10226_CR78 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 10226_CR103 – volume: 178 start-page: 30 year: 2019 ident: 10226_CR163 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2018.10.010 – volume: 22 start-page: 5184 year: 2022 ident: 10226_CR6 publication-title: Sensors doi: 10.3390/s22145184 – ident: 10226_CR80 doi: 10.1109/CVPR.2017.17 – volume: 45 start-page: 68 year: 1999 ident: 10226_CR166 publication-title: IEEE transac Consum Electron doi: 10.1109/30.754419 – volume: 14 start-page: 236 year: 2014 ident: 10226_CR23 publication-title: In Proc Int Conf Innov Autom Mechatronics Eng – volume: 5 start-page: 726 year: 2021 ident: 10226_CR87 publication-title: IEEE Trans Emerging Top Comput Intell doi: 10.1109/TETCI.2021.3100641 – ident: 10226_CR195 doi: 10.1109/ICCV.2019.00328 – ident: 10226_CR173 – volume: 57 start-page: 583 year: 2011 ident: 10226_CR40 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2011.5955195 – volume: 8 start-page: 42 year: 2019 ident: 10226_CR1 publication-title: Southeast Eur J Soft Comput – volume: 496 start-page: 25 year: 2019 ident: 10226_CR73 publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.015 – ident: 10226_CR174 doi: 10.1109/CVPR.2019.00701 – volume: 26 start-page: 982 issue: 2 year: 2017 ident: 10226_CR49 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2639450 – volume: 23 start-page: 4093 year: 2020 ident: 10226_CR101 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.3037526 – volume: 26 start-page: 982 year: 2016 ident: 10226_CR192 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2639450 – volume: 32 start-page: 582 issue: 4 year: 2019 ident: 10226_CR154 publication-title: J Digit Imaging doi: 10.1007/s10278-019-00227-x – volume: 2022 start-page: 13 year: 1896 ident: 10226_CR13 publication-title: Forests – ident: 10226_CR79 doi: 10.1109/CVPR.2018.00465 – volume: 117 start-page: 8 year: 2019 ident: 10226_CR158 publication-title: Neural Network doi: 10.1016/j.neunet.2019.04.024 – ident: 10226_CR53 doi: 10.1109/ICCVW.2017.356 – volume: 129 start-page: 82 year: 2016 ident: 10226_CR75 publication-title: Signal Process doi: 10.1016/j.sigpro.2016.05.031 – ident: 10226_CR44 doi: 10.1109/ICACCI.2014.6968569 – volume: 38 start-page: 5 year: 2004 ident: 10226_CR42 publication-title: J VLSI Signal Process -Syst Signal Image Video Technol doi: 10.1023/B:VLSI.0000028529.51311.5a – volume: 33 start-page: 2341 issue: 12 year: 2011 ident: 10226_CR54 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.168 – volume: 43 start-page: 1654 year: 2014 ident: 10226_CR63 publication-title: Infr Laser Eng – ident: 10226_CR140 doi: 10.1145/3343031.3351069 – ident: 10226_CR81 – volume: 40 year: 2021 ident: 10226_CR151 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100379 – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 10226_CR146 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2109730 – volume: 29 start-page: 968 issue: 4 year: 2018 ident: 10226_CR170 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2018.2828141 – volume: 37 start-page: 923 year: 2011 ident: 10226_CR5 publication-title: Acta Autom Sin – ident: 10226_CR133 – ident: 10226_CR198 doi: 10.1109/CVPR42600.2020.00283 – volume: 21 start-page: 1499 issue: 6 year: 2018 ident: 10226_CR66 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2880603 – volume: 6 start-page: 22084 year: 2018 ident: 10226_CR94 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812809 – volume: 32 start-page: 1076 year: 2021 ident: 10226_CR179 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3073371 – ident: 10226_CR92 – volume: 61 start-page: 119 year: 2015 ident: 10226_CR74 publication-title: IEEE Trans Con- Sum Electron doi: 10.1109/TCE.2015.7064119 – ident: 10226_CR127 – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 10226_CR31 publication-title: Comput Vision Graphics Image Process doi: 10.1016/S0734-189X(87)80186-X – ident: 10226_CR86 – volume: 77 start-page: 29639 year: 2018 ident: 10226_CR24 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5448-5 – volume: 61 start-page: 650 year: 2017 ident: 10226_CR29 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.06.008 – ident: 10226_CR137 doi: 10.1109/CISP-BMEI53629.2021.9624226 – volume: 44 start-page: 4225 year: 2021 ident: 10226_CR181 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 7 start-page: 101635 year: 2023 ident: 10226_CR58 publication-title: J King Saud Univ-Comput Inf Sci – volume: 5 start-page: 1250 year: 2022 ident: 10226_CR196 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 23 start-page: 4272 year: 2020 ident: 10226_CR126 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.3039361 – volume: 44 start-page: 19 year: 2008 ident: 10226_CR71 publication-title: Electron Lett doi: 10.1049/el:20082182 – volume: 26 start-page: 1487 year: 2013 ident: 10226_CR41 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.11.011 – ident: 10226_CR45 – ident: 10226_CR122 – volume: 49 start-page: 1310 issue: 4 year: 2003 ident: 10226_CR33 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2003.1261234 – volume: 129 start-page: 82 year: 2016 ident: 10226_CR50 publication-title: Signal Process doi: 10.1016/j.sigpro.2016.05.031 – ident: 10226_CR176 doi: 10.1109/CVPR42600.2020.00313 – volume: 16 start-page: 934 year: 2015 ident: 10226_CR26 publication-title: IEEE Trans Intell Transp Syst – ident: 10226_CR130 doi: 10.36227/techrxiv.17198216.v1 – ident: 10226_CR118 – volume: 70 start-page: 41 year: 2018 ident: 10226_CR153 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.018 – volume: 104 start-page: 15 year: 2018 ident: 10226_CR172 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2018.01.010 – volume: 7708 start-page: 337 year: 2010 ident: 10226_CR30 publication-title: Mobile Multimed/Image Process Secur Appl – ident: 10226_CR128 doi: 10.1145/3343031.3350926 – volume: 24 start-page: 3345 year: 2015 ident: 10226_CR161 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2015.2442920 – volume: 27 start-page: 2049 year: 2018 ident: 10226_CR106 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2794218 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10226_CR110 publication-title: IEEE Trans Signal Process doi: 10.1109/78.650093 – ident: 10226_CR156 – volume: 26 start-page: 982 issue: 2 year: 2016 ident: 10226_CR169 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2639450 – volume: 40 start-page: 100379 year: 2021 ident: 10226_CR65 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100379 – volume: 33 start-page: 506 year: 2009 ident: 10226_CR62 publication-title: J Nanjing Univ Sci Technol – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10226_CR111 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 15 start-page: 430 issue: 2 year: 2006 ident: 10226_CR142 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2005.859378 – volume: 39 start-page: 1 year: 2018 ident: 10226_CR22 publication-title: J Harbin Eng Univ – volume: 22 start-page: 3234 issue: 6 year: 2021 ident: 10226_CR157 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2993926 – volume: 63 start-page: 178 issue: 2 year: 2017 ident: 10226_CR51 publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2017.014847 – volume: 22 start-page: 5372 year: 2013 ident: 10226_CR191 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2284059 – ident: 10226_CR123 doi: 10.1109/FG.2018.00118 – ident: 10226_CR52 doi: 10.1109/CVPR.2016.304 – volume: 16 start-page: 94 year: 2018 ident: 10226_CR61 publication-title: Chin Opt Lett – volume: 31 start-page: 2340 year: 2021 ident: 10226_CR113 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3051462 – volume: 23 start-page: 1211 year: 2011 ident: 10226_CR64 publication-title: J Comput -Aided Des Comput Graph – volume: 70 start-page: 1 year: 2021 ident: 10226_CR168 publication-title: IEEE Trans Instrum Meas – ident: 10226_CR90 doi: 10.1145/1390156.1390294 – ident: 10226_CR200 – volume: 49 start-page: 120501 year: 2010 ident: 10226_CR68 publication-title: Opt Eng doi: 10.1117/1.3520553 – ident: 10226_CR185 – ident: 10226_CR152 doi: 10.1109/TPAMI.2021.3059968 – volume: 30 start-page: 2340 year: 2021 ident: 10226_CR134 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3051462 – volume: 28 start-page: 4364 issue: 9 year: 2019 ident: 10226_CR112 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2910412 |
SSID | ssj0054992 |
Score | 2.3888328 |
SecondaryResourceType | review_article |
Snippet | Pre-processing techniques such as low-light image improvement have a wide variety of practical uses. Enhancing optical acuity and the caliber of photos taken... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2853 |
SubjectTerms | Acuity Artificial neural networks Deep learning Engineering Image enhancement Image quality Light Machine learning Mathematical and Computational Engineering Quality assessment Review Topology Unsupervised learning |
Title | A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives |
URI | https://link.springer.com/article/10.1007/s11831-025-10226-7 https://www.proquest.com/docview/3229496714 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVgu8CBjwFiMKYcuLFIbZqkDbcybQwYiAOTxqlqk1STYB1ah_j7JF2rAoIDt0qtUsmxHT87fgY496l0tSc55pJRTAOicKJJjJXBYkwL5tGCdvH-gY8m9HbKpmVTWF7ddq9KkoWnrpvdjPYZ6Essc6YJGrC_CU1msbvR4gkJK_9rAU9R43Q9m_PnTtkq8_sa34-jOsb8URYtTpvhHuyUYSIK1_u6Dxs6a8FuGTKi0iDzFmx_4RM8gDRE61w_WmRoPa-hzPWh8eIDjy0QRzdz40LQIJvZ_ba5QWTnob3ml6hfDVbJe-jK_GA2j5cv5jnOFHqsmzLzQ5gMB0_9ES4HKWBJfGeFXUG5FIQlHo8Fj1lKfS1UIKmruVQypspxA-kqT3kk0UxbVjaeKocrIyUnId4RNLJFpo8B-anBPMRYLfO48bFaSJ5wodLAeCum4rgNF5U8o7c1X0ZUMyNb6UdG-lEh_chvQ6cSeVTaTh4ZFyOo4L5L29CrtqF-_fdqJ__7_BS2iNWEIqXSgcZq-a7PTISxSrrQDK-f7wbdQrE-AU2mxvI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN2mydW23ekMCAQXiARJuy9Z2IVGGYRj_fduxZWr04G3Jli759b1f30ffewC3PpWu9iTHXDKKaUAUjjWJsDK-GNOCeTRvuzga8_6UPs7YrCgKy8rb7mVKMmfqqtjNSJ9xfYntnGmMBuxvw44xBgJ7kWtK2iX_Wocnz3G6no35c6colfl9je_HUWVj_kiL5qdN7wgOCjMRtTf7egxbOq3DYWEyokIhszrsf-kneAJJG21i_WiZos28hiLWh4bLDzy0jjgaLAyFoG46t_ttY4PIzkN7ze5RpxyskrXQg_nBfBGtXsxzlCr0XBVlZqcw7XUnnT4uBilgSXxnjV1BuRSExR6PBI9YQn0tVCCpq7lUMqLKcQPpKk95JNZM265sPFEOVwYlJybeGdTSZarPAfmJ8XmI0VrmccOxWkgec6GSwLAVU1HUgLsSz_Bt0y8jrDojW_RDg36Yox_6DWiWkIeF7mShoRhBBfdd2oBWuQ3V679Xu_jf5zew25-MhuFwMH66hD1ipSIPrzShtl696ytjbazj61y4PgGTFMhR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oBNGDH1NxOjUHbxrWpkm6eJtzY9MpHhx4K22SMtB1Y53475v0g07Rg7dCSwov7_3yPvJ-D-DSp9LVnuSYS0YxbROFI01CrEwsxrRgHs1oFx-f-GBM71_Z60oXf3bbvSxJ5j0NlqUpWbbmKm5VjW9GE00YTCyLpnEgsL8OGwaOXavXY9IpsdgGP1m90_Vs_p87RdvM72t8P5oqf_NHiTQ7efp7sFO4jKiT7_E-rOmkDruF-4gK40zrsL3CLXgAcQfleX80S1A-u6HI-6HR7BOPbFCOhlMDJ6iXTOze2zwhsrPR3tMb1C2HrKTX6Nb8YDINF2_mOUwUeq4aNNNDGPd7L90BLoYqYEl8Z4ldQbkUhEUeDwUPWUx9LVRbUldzqWRIleO2pas85ZFIM20Z2nisHK6MlJyIeEdQS2aJPgbkxyb-IcaCmccN3mohecSFitsGuZgKwwZclfIM5jl3RlCxJFvpB0b6QSb9wG9AsxR5UNhRGhi4EVRw36UNuC63oXr992on__v8Ajaf7_rBaPj0cApbxCpFlmlpQm25-NBnxvFYRueZbn0BflLMjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Computational+Low-Light+Image+Enhancement+Models%3A+Challenges%2C+Benchmarks%2C+and+Perspectives&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Singh%2C+Pallavi&rft.au=Bhandari%2C+Ashish+Kumar&rft.date=2025-06-01&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=32&rft.issue=5&rft.spage=2853&rft.epage=2885&rft_id=info:doi/10.1007%2Fs11831-025-10226-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11831_025_10226_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |