MSDBPN: multi-column smoothed dilated convolution based back projection network for stereo image super-resolution

Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this pap...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 28; no. 2
Main Authors Zhou, Zihao, Wang, Yongfang, Lian, Junjie
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this paper, we propose a multi-column smoothed dilated convolution based back projection network (MSDBPN) for stereo SR by explicitly learning and exploiting the parallax information. In particular, we incorporate adaptive weighted multi-column smoothed dilated convolutions to rapidly expand the receptive field while maintaining excellent inter-pixel correlation. Meanwhile, we reweight different column feature with adaptive learnable parameter to distinguish contributions. Furthermore, we employ a deep back projection mechanism to calculate projection error and implement self-correction to guide precise reconstruction. Extensive experiments on benchmark datasets demonstrate that our proposed method outperforms other state-of-the-art approaches on both quantitative and qualitative evaluations.
AbstractList Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this paper, we propose a multi-column smoothed dilated convolution based back projection network (MSDBPN) for stereo SR by explicitly learning and exploiting the parallax information. In particular, we incorporate adaptive weighted multi-column smoothed dilated convolutions to rapidly expand the receptive field while maintaining excellent inter-pixel correlation. Meanwhile, we reweight different column feature with adaptive learnable parameter to distinguish contributions. Furthermore, we employ a deep back projection mechanism to calculate projection error and implement self-correction to guide precise reconstruction. Extensive experiments on benchmark datasets demonstrate that our proposed method outperforms other state-of-the-art approaches on both quantitative and qualitative evaluations.
ArticleNumber 53
Author Wang, Yongfang
Lian, Junjie
Zhou, Zihao
Author_xml – sequence: 1
  givenname: Zihao
  surname: Zhou
  fullname: Zhou, Zihao
  organization: School of Communication and Information Engineering, Shanghai University
– sequence: 2
  givenname: Yongfang
  surname: Wang
  fullname: Wang, Yongfang
  email: yfw@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai Institute for Advanced Communication and Data Science, Shanghai University
– sequence: 3
  givenname: Junjie
  surname: Lian
  fullname: Lian, Junjie
  organization: School of Communication and Information Engineering, Shanghai University
BookMark eNp9UMtOwzAQtFCRaAs_wMkS54ATO3bCDcpTKg8JkLhZtuOUtKnd2g4Vf49pKrhx2VntzuyOZgQGxhoNwHGKTlOE2JmPlZAEZXmCUoJxstkDw23D8vx98NuT9ACMvJ8jhDHOiiFYP7xcXT4_nsNl14YmUbbtlgb6pbXhQ1ewaloRIiprPuMqNNZAKXycSKEWcOXsXKvt1OiwsW4Ba-ugD9ppC5ulmGnou5V2idN-pz8E-7VovT7a4Ri83Vy_Tu6S6dPt_eRimqiMoZCktECIaspwlSlJWKZqqaQiJRWlLPOMyaIqsSK1oBIVss41qygWRVlUBFFU4zE46e9Gk-tO-8DntnMmvuQ4ZahENMcssrKepZz13umar1z07b54ivhPtLyPlsdo-TZavoki3It8JJuZdn-n_1F9A3hggIw
Cites_doi 10.1007/978-3-031-73650-6_25
10.1109/TNNLS.2025.3531987
10.1109/ICASSP49357.2023.10096174
10.1109/CVPR.2018.00185
10.1109/CVPR.2015.7298925
10.1109/LSP.2020.2973813
10.1109/CVPRW56347.2022.00061
10.1109/CVPR52733.2024.02436
10.1007/978-3-319-10593-2_13
10.1109/CVPR.2017.298
10.1109/ICCVW.2019.00478
10.1109/CVPR.2016.182
10.1007/s10044-023-01150-2
10.1109/CVPR.2018.00813
10.1109/ICASSP40776.2020.9054687
10.1109/CVPR52729.2023.00206
10.1109/CVPRW.2017.151
10.1109/CVPR.2019.01253
10.1109/ICME.2018.8486509
10.1109/CVPR.2017.618
10.1109/CVPR.2012.6248074
10.1109/CVPR.2016.181
10.1109/CVPR.2019.00402
10.1007/978-3-319-11752-2_3
10.1109/ICMLA.2017.0-136
10.18653/v1/2024.emnlp-main.218
10.1109/TPAMI.2020.3002836
10.1145/3219819.3219944
10.1109/ACCESS.2019.2960561
10.1016/j.neucom.2024.127426
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10044-025-01433-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_025_01433_w
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
N2Q
O9-
RIG
RNI
RZK
ID FETCH-LOGICAL-c270t-168006e673d2cb472cfbcbc496a9b9527b8d93c4fa6b08bf5e7d63a898d4060f3
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 09:01:52 EDT 2025
Thu Jul 10 08:31:13 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Smoothed dilation convolution
Super-resolution
Deep back projection
Stereo image processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-168006e673d2cb472cfbcbc496a9b9527b8d93c4fa6b08bf5e7d63a898d4060f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3170906537
PQPubID 2043691
ParticipantIDs proquest_journals_3170906537
crossref_primary_10_1007_s10044_025_01433_w
springer_journals_10_1007_s10044_025_01433_w
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Y Li (1433_CR9) 2023; 26
1433_CR16
1433_CR19
1433_CR18
Y Pan (1433_CR13) 2024; 580
1433_CR35
1433_CR12
1433_CR34
1433_CR37
1433_CR14
1433_CR36
1433_CR31
C Duan (1433_CR15) 2019; 7
1433_CR30
1433_CR11
1433_CR33
1433_CR10
1433_CR32
H Gao (1433_CR29) 2019; 42
M Haris (1433_CR17) 2020; 43
1433_CR28
1433_CR27
W Song (1433_CR22) 2020; 34
1433_CR8
1433_CR7
1433_CR6
1433_CR5
1433_CR4
1433_CR3
1433_CR2
1433_CR24
1433_CR1
1433_CR23
X Ying (1433_CR26) 2020; 27
1433_CR25
1433_CR20
1433_CR21
References_xml – ident: 1433_CR4
  doi: 10.1007/978-3-031-73650-6_25
– ident: 1433_CR2
  doi: 10.1109/TNNLS.2025.3531987
– ident: 1433_CR24
  doi: 10.1109/ICASSP49357.2023.10096174
– ident: 1433_CR21
  doi: 10.1109/CVPR.2018.00185
– ident: 1433_CR34
  doi: 10.1109/CVPR.2015.7298925
– volume: 27
  start-page: 496
  year: 2020
  ident: 1433_CR26
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2020.2973813
– ident: 1433_CR25
  doi: 10.1109/CVPRW56347.2022.00061
– volume: 42
  start-page: 1218
  issue: 5
  year: 2019
  ident: 1433_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 1433_CR8
  doi: 10.1109/CVPR52733.2024.02436
– ident: 1433_CR18
  doi: 10.1007/978-3-319-10593-2_13
– ident: 1433_CR37
  doi: 10.1109/CVPR.2017.298
– ident: 1433_CR31
  doi: 10.1109/ICCVW.2019.00478
– ident: 1433_CR19
  doi: 10.1109/CVPR.2016.182
– volume: 26
  start-page: 875
  issue: 3
  year: 2023
  ident: 1433_CR9
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-023-01150-2
– ident: 1433_CR23
  doi: 10.1109/CVPR.2018.00813
– ident: 1433_CR16
  doi: 10.1109/ICASSP40776.2020.9054687
– ident: 1433_CR11
  doi: 10.1109/CVPR.2016.182
– ident: 1433_CR7
  doi: 10.1109/CVPR52729.2023.00206
– ident: 1433_CR3
– ident: 1433_CR1
– ident: 1433_CR12
  doi: 10.1109/CVPRW.2017.151
– ident: 1433_CR14
  doi: 10.1109/CVPR.2019.01253
– volume: 34
  start-page: 12031
  year: 2020
  ident: 1433_CR22
  publication-title: Proceed AAAI Conf Artif Intell
– ident: 1433_CR20
  doi: 10.1109/ICME.2018.8486509
– ident: 1433_CR36
  doi: 10.1109/CVPR.2017.618
– ident: 1433_CR33
  doi: 10.1109/CVPR.2012.6248074
– ident: 1433_CR10
  doi: 10.1109/CVPR.2016.181
– ident: 1433_CR35
– ident: 1433_CR27
  doi: 10.1109/CVPR.2019.00402
– ident: 1433_CR32
  doi: 10.1007/978-3-319-11752-2_3
– ident: 1433_CR28
  doi: 10.1109/ICMLA.2017.0-136
– ident: 1433_CR5
  doi: 10.18653/v1/2024.emnlp-main.218
– volume: 43
  start-page: 4323
  issue: 12
  year: 2020
  ident: 1433_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3002836
– ident: 1433_CR30
  doi: 10.1145/3219819.3219944
– volume: 7
  start-page: 183672
  year: 2019
  ident: 1433_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960561
– ident: 1433_CR6
– volume: 580
  year: 2024
  ident: 1433_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127426
SSID ssj0033328
Score 2.3808908
Snippet Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Convolution
Error correction
Image reconstruction
Image resolution
Original Article
Parallax
Pattern Recognition
Title MSDBPN: multi-column smoothed dilated convolution based back projection network for stereo image super-resolution
URI https://link.springer.com/article/10.1007/s10044-025-01433-w
https://www.proquest.com/docview/3170906537
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlhI7sWO2Ai0VqBUSVCpTFD8iIWhamlb9-9iuowKCgSXD5ezBd777bN8DgHOFlaJBpJAKlDAHFMGQ0DxHPFchFUJkmUsX6w9obxjdj-KRTworq2j36knSWeovyW5BFCHbftXWpCNouQnqsT27Gy0e4nZlfwkhrqOq42FxFPpUmd_n-O6O1hjzx7Oo8zbdXbDtYSJsr-S6BzZ0sQ92PGSEfkOWhlR1ZahoB-Cj_3R7_Ti4gi5WEElrfgpYjic210pB9fpu4KWCNtzcqx20rkyZr3yD_mbGUotVhDg0sBbacgp6Al_HxvzAcjHVM2TO6X78IRh2O883PeQbKyCJWTBHITUwkWrKiMJSRAzLXEghI04zLniMmUgUJzLKMyqCROSxZoqSLOGJMv4_yMkRqBWTQh8DyLAgijKuE8OfYZaRJLYDDErQOpRBA1xU65tOV_Uz0nWlZCuN1EgjddJIlw3QrESQ-r1UpgbhBNyW0GUNcFmJZf3779lO_sd-Craw0wx7xdIEtflsoc8M4piLFqi3714eOi2naJ9khtHB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxbURRe_CmTZZ2t916wwdBBWIiJNw228cmRFmQhfD3bUs3qNGDlz3MTnvoTGe-tvMA4FJhpWgQKqQCJcwBRTAkNM8Qz1SdCiHS1KWLdbq01Q-fBtHAJ4UVZbR7-STpLPWXZLcgDJFtv2pr0hG0WAcbBgzENpCrjxul_SWEuI6qjodFYd2nyvw-x3d3tMKYP55Fnbdp7oJtDxNhYynXPbCm832w4yEj9BuyMKSyK0NJOwAfndf725fuDXSxgkha85PDYjS2uVYKquG7gZcK2nBzr3bQujJlvvIN-psZS82XEeLQwFpoyynoMRyOjPmBxXyip8ic0_34Q9BvPvTuWsg3VkASs2CG6tTARKopIwpLETIsMyGFDDlNueARZiJWnMgwS6kIYpFFmilK0pjHyvj_ICNHoJKPc30MIMOCKMq4jg1_illK4sgOMChB67oMquCqXN9ksqyfkawqJVtpJEYaiZNGsqiCWimCxO-lIjEIJ-C2hC6rgutSLKvff8928j_2C7DZ6nXaSfux-3wKtrDTEnvdUgOV2XSuzwz6mIlzp2yf1cDTIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECY-EuPFt3F9cvCmxBZaKN58bXztZhPdxFtTGJoYtbvuI_59gaVZNXrw0sN04MAMMx8wD4QOgQLwKAECESh7QFGCKCNLIkuIuVKqKHy6WKvNr7vJ7VP69CWL30e710-Sk5wGV6WpGp30oTz5kvgWJQlxrVhdfTpGPmbRvDXHsdPrLj2rbTFjzHdX9TwiTeKQNvP7HN9d0xRv_ngi9Z6nuYKWAmTEZxMZr6IZU62h5QAfcdicQ0uqOzTUtHX03nq4PO-0T7GPGyTamaIKD996Lu8KMDy_WqgJ2IWeBxXEzq2B_eoXHG5pHLWaRItjC3GxK61gevj5zZoiPBz3zYDYM3sYv4G6zavHi2sSmiwQTUU0IjG3kJEbLhhQrRJBdam00onkhVQypUJlIJlOyoKrKFNlagRwVmQyA4sFopJtormqV5kthAVVDLiQJrP8BRUFy1I3wCIGY2IdNdBRvb55f1JLI59WTXbSyK00ci-N_KOBdmsR5GFfDXOLdiLpyumKBjquxTL9_fds2_9jP0ALnctmfn_TvttBi9Qribt52UVzo8HY7FkgMlL7Xtc-ARDa11w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSDBPN%3A+multi-column+smoothed+dilated+convolution+based+back+projection+network+for+stereo+image+super-resolution&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhou%2C+Zihao&rft.au=Wang%2C+Yongfang&rft.au=Lian%2C+Junjie&rft.date=2025-06-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01433-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01433_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon