MSDBPN: multi-column smoothed dilated convolution based back projection network for stereo image super-resolution
Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this pap...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 28; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this paper, we propose a multi-column smoothed dilated convolution based back projection network (MSDBPN) for stereo SR by explicitly learning and exploiting the parallax information. In particular, we incorporate adaptive weighted multi-column smoothed dilated convolutions to rapidly expand the receptive field while maintaining excellent inter-pixel correlation. Meanwhile, we reweight different column feature with adaptive learnable parameter to distinguish contributions. Furthermore, we employ a deep back projection mechanism to calculate projection error and implement self-correction to guide precise reconstruction. Extensive experiments on benchmark datasets demonstrate that our proposed method outperforms other state-of-the-art approaches on both quantitative and qualitative evaluations. |
---|---|
AbstractList | Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo image SR is how to capture complementary correlation information between the stereo image pair to accurately guide reconstruction. In this paper, we propose a multi-column smoothed dilated convolution based back projection network (MSDBPN) for stereo SR by explicitly learning and exploiting the parallax information. In particular, we incorporate adaptive weighted multi-column smoothed dilated convolutions to rapidly expand the receptive field while maintaining excellent inter-pixel correlation. Meanwhile, we reweight different column feature with adaptive learnable parameter to distinguish contributions. Furthermore, we employ a deep back projection mechanism to calculate projection error and implement self-correction to guide precise reconstruction. Extensive experiments on benchmark datasets demonstrate that our proposed method outperforms other state-of-the-art approaches on both quantitative and qualitative evaluations. |
ArticleNumber | 53 |
Author | Wang, Yongfang Lian, Junjie Zhou, Zihao |
Author_xml | – sequence: 1 givenname: Zihao surname: Zhou fullname: Zhou, Zihao organization: School of Communication and Information Engineering, Shanghai University – sequence: 2 givenname: Yongfang surname: Wang fullname: Wang, Yongfang email: yfw@shu.edu.cn organization: School of Communication and Information Engineering, Shanghai University, Shanghai Institute for Advanced Communication and Data Science, Shanghai University – sequence: 3 givenname: Junjie surname: Lian fullname: Lian, Junjie organization: School of Communication and Information Engineering, Shanghai University |
BookMark | eNp9UMtOwzAQtFCRaAs_wMkS54ATO3bCDcpTKg8JkLhZtuOUtKnd2g4Vf49pKrhx2VntzuyOZgQGxhoNwHGKTlOE2JmPlZAEZXmCUoJxstkDw23D8vx98NuT9ACMvJ8jhDHOiiFYP7xcXT4_nsNl14YmUbbtlgb6pbXhQ1ewaloRIiprPuMqNNZAKXycSKEWcOXsXKvt1OiwsW4Ba-ugD9ppC5ulmGnou5V2idN-pz8E-7VovT7a4Ri83Vy_Tu6S6dPt_eRimqiMoZCktECIaspwlSlJWKZqqaQiJRWlLPOMyaIqsSK1oBIVss41qygWRVlUBFFU4zE46e9Gk-tO-8DntnMmvuQ4ZahENMcssrKepZz13umar1z07b54ivhPtLyPlsdo-TZavoki3It8JJuZdn-n_1F9A3hggIw |
Cites_doi | 10.1007/978-3-031-73650-6_25 10.1109/TNNLS.2025.3531987 10.1109/ICASSP49357.2023.10096174 10.1109/CVPR.2018.00185 10.1109/CVPR.2015.7298925 10.1109/LSP.2020.2973813 10.1109/CVPRW56347.2022.00061 10.1109/CVPR52733.2024.02436 10.1007/978-3-319-10593-2_13 10.1109/CVPR.2017.298 10.1109/ICCVW.2019.00478 10.1109/CVPR.2016.182 10.1007/s10044-023-01150-2 10.1109/CVPR.2018.00813 10.1109/ICASSP40776.2020.9054687 10.1109/CVPR52729.2023.00206 10.1109/CVPRW.2017.151 10.1109/CVPR.2019.01253 10.1109/ICME.2018.8486509 10.1109/CVPR.2017.618 10.1109/CVPR.2012.6248074 10.1109/CVPR.2016.181 10.1109/CVPR.2019.00402 10.1007/978-3-319-11752-2_3 10.1109/ICMLA.2017.0-136 10.18653/v1/2024.emnlp-main.218 10.1109/TPAMI.2020.3002836 10.1145/3219819.3219944 10.1109/ACCESS.2019.2960561 10.1016/j.neucom.2024.127426 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-025-01433-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_025_01433_w |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AARHV AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AGGDS AGJBK AGQPQ AHSBF AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 N2Q O9- RIG RNI RZK |
ID | FETCH-LOGICAL-c270t-168006e673d2cb472cfbcbc496a9b9527b8d93c4fa6b08bf5e7d63a898d4060f3 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 09:01:52 EDT 2025 Thu Jul 10 08:31:13 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Smoothed dilation convolution Super-resolution Deep back projection Stereo image processing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-168006e673d2cb472cfbcbc496a9b9527b8d93c4fa6b08bf5e7d63a898d4060f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3170906537 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3170906537 crossref_primary_10_1007_s10044_025_01433_w springer_journals_10_1007_s10044_025_01433_w |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Y Li (1433_CR9) 2023; 26 1433_CR16 1433_CR19 1433_CR18 Y Pan (1433_CR13) 2024; 580 1433_CR35 1433_CR12 1433_CR34 1433_CR37 1433_CR14 1433_CR36 1433_CR31 C Duan (1433_CR15) 2019; 7 1433_CR30 1433_CR11 1433_CR33 1433_CR10 1433_CR32 H Gao (1433_CR29) 2019; 42 M Haris (1433_CR17) 2020; 43 1433_CR28 1433_CR27 W Song (1433_CR22) 2020; 34 1433_CR8 1433_CR7 1433_CR6 1433_CR5 1433_CR4 1433_CR3 1433_CR2 1433_CR24 1433_CR1 1433_CR23 X Ying (1433_CR26) 2020; 27 1433_CR25 1433_CR20 1433_CR21 |
References_xml | – ident: 1433_CR4 doi: 10.1007/978-3-031-73650-6_25 – ident: 1433_CR2 doi: 10.1109/TNNLS.2025.3531987 – ident: 1433_CR24 doi: 10.1109/ICASSP49357.2023.10096174 – ident: 1433_CR21 doi: 10.1109/CVPR.2018.00185 – ident: 1433_CR34 doi: 10.1109/CVPR.2015.7298925 – volume: 27 start-page: 496 year: 2020 ident: 1433_CR26 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2020.2973813 – ident: 1433_CR25 doi: 10.1109/CVPRW56347.2022.00061 – volume: 42 start-page: 1218 issue: 5 year: 2019 ident: 1433_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 1433_CR8 doi: 10.1109/CVPR52733.2024.02436 – ident: 1433_CR18 doi: 10.1007/978-3-319-10593-2_13 – ident: 1433_CR37 doi: 10.1109/CVPR.2017.298 – ident: 1433_CR31 doi: 10.1109/ICCVW.2019.00478 – ident: 1433_CR19 doi: 10.1109/CVPR.2016.182 – volume: 26 start-page: 875 issue: 3 year: 2023 ident: 1433_CR9 publication-title: Pattern Anal Appl doi: 10.1007/s10044-023-01150-2 – ident: 1433_CR23 doi: 10.1109/CVPR.2018.00813 – ident: 1433_CR16 doi: 10.1109/ICASSP40776.2020.9054687 – ident: 1433_CR11 doi: 10.1109/CVPR.2016.182 – ident: 1433_CR7 doi: 10.1109/CVPR52729.2023.00206 – ident: 1433_CR3 – ident: 1433_CR1 – ident: 1433_CR12 doi: 10.1109/CVPRW.2017.151 – ident: 1433_CR14 doi: 10.1109/CVPR.2019.01253 – volume: 34 start-page: 12031 year: 2020 ident: 1433_CR22 publication-title: Proceed AAAI Conf Artif Intell – ident: 1433_CR20 doi: 10.1109/ICME.2018.8486509 – ident: 1433_CR36 doi: 10.1109/CVPR.2017.618 – ident: 1433_CR33 doi: 10.1109/CVPR.2012.6248074 – ident: 1433_CR10 doi: 10.1109/CVPR.2016.181 – ident: 1433_CR35 – ident: 1433_CR27 doi: 10.1109/CVPR.2019.00402 – ident: 1433_CR32 doi: 10.1007/978-3-319-11752-2_3 – ident: 1433_CR28 doi: 10.1109/ICMLA.2017.0-136 – ident: 1433_CR5 doi: 10.18653/v1/2024.emnlp-main.218 – volume: 43 start-page: 4323 issue: 12 year: 2020 ident: 1433_CR17 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3002836 – ident: 1433_CR30 doi: 10.1145/3219819.3219944 – volume: 7 start-page: 183672 year: 2019 ident: 1433_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960561 – ident: 1433_CR6 – volume: 580 year: 2024 ident: 1433_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127426 |
SSID | ssj0033328 |
Score | 2.3808908 |
Snippet | Fully exploiting the parallax information of stereo images for super-resolution (SR) can obtain remarkable performance. The most challenging issue for stereo... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Computer Science Convolution Error correction Image reconstruction Image resolution Original Article Parallax Pattern Recognition |
Title | MSDBPN: multi-column smoothed dilated convolution based back projection network for stereo image super-resolution |
URI | https://link.springer.com/article/10.1007/s10044-025-01433-w https://www.proquest.com/docview/3170906537 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlhI7sWO2Ai0VqBUSVCpTFD8iIWhamlb9-9iuowKCgSXD5ezBd777bN8DgHOFlaJBpJAKlDAHFMGQ0DxHPFchFUJkmUsX6w9obxjdj-KRTworq2j36knSWeovyW5BFCHbftXWpCNouQnqsT27Gy0e4nZlfwkhrqOq42FxFPpUmd_n-O6O1hjzx7Oo8zbdXbDtYSJsr-S6BzZ0sQ92PGSEfkOWhlR1ZahoB-Cj_3R7_Ti4gi5WEElrfgpYjic210pB9fpu4KWCNtzcqx20rkyZr3yD_mbGUotVhDg0sBbacgp6Al_HxvzAcjHVM2TO6X78IRh2O883PeQbKyCJWTBHITUwkWrKiMJSRAzLXEghI04zLniMmUgUJzLKMyqCROSxZoqSLOGJMv4_yMkRqBWTQh8DyLAgijKuE8OfYZaRJLYDDErQOpRBA1xU65tOV_Uz0nWlZCuN1EgjddJIlw3QrESQ-r1UpgbhBNyW0GUNcFmJZf3779lO_sd-Craw0wx7xdIEtflsoc8M4piLFqi3714eOi2naJ9khtHB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxbURRe_CmTZZ2t916wwdBBWIiJNw228cmRFmQhfD3bUs3qNGDlz3MTnvoTGe-tvMA4FJhpWgQKqQCJcwBRTAkNM8Qz1SdCiHS1KWLdbq01Q-fBtHAJ4UVZbR7-STpLPWXZLcgDJFtv2pr0hG0WAcbBgzENpCrjxul_SWEuI6qjodFYd2nyvw-x3d3tMKYP55Fnbdp7oJtDxNhYynXPbCm832w4yEj9BuyMKSyK0NJOwAfndf725fuDXSxgkha85PDYjS2uVYKquG7gZcK2nBzr3bQujJlvvIN-psZS82XEeLQwFpoyynoMRyOjPmBxXyip8ic0_34Q9BvPvTuWsg3VkASs2CG6tTARKopIwpLETIsMyGFDDlNueARZiJWnMgwS6kIYpFFmilK0pjHyvj_ICNHoJKPc30MIMOCKMq4jg1_illK4sgOMChB67oMquCqXN9ksqyfkawqJVtpJEYaiZNGsqiCWimCxO-lIjEIJ-C2hC6rgutSLKvff8928j_2C7DZ6nXaSfux-3wKtrDTEnvdUgOV2XSuzwz6mIlzp2yf1cDTIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECY-EuPFt3F9cvCmxBZaKN58bXztZhPdxFtTGJoYtbvuI_59gaVZNXrw0sN04MAMMx8wD4QOgQLwKAECESh7QFGCKCNLIkuIuVKqKHy6WKvNr7vJ7VP69CWL30e710-Sk5wGV6WpGp30oTz5kvgWJQlxrVhdfTpGPmbRvDXHsdPrLj2rbTFjzHdX9TwiTeKQNvP7HN9d0xRv_ngi9Z6nuYKWAmTEZxMZr6IZU62h5QAfcdicQ0uqOzTUtHX03nq4PO-0T7GPGyTamaIKD996Lu8KMDy_WqgJ2IWeBxXEzq2B_eoXHG5pHLWaRItjC3GxK61gevj5zZoiPBz3zYDYM3sYv4G6zavHi2sSmiwQTUU0IjG3kJEbLhhQrRJBdam00onkhVQypUJlIJlOyoKrKFNlagRwVmQyA4sFopJtormqV5kthAVVDLiQJrP8BRUFy1I3wCIGY2IdNdBRvb55f1JLI59WTXbSyK00ci-N_KOBdmsR5GFfDXOLdiLpyumKBjquxTL9_fds2_9jP0ALnctmfn_TvttBi9Qribt52UVzo8HY7FkgMlL7Xtc-ARDa11w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSDBPN%3A+multi-column+smoothed+dilated+convolution+based+back+projection+network+for+stereo+image+super-resolution&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Zhou%2C+Zihao&rft.au=Wang%2C+Yongfang&rft.au=Lian%2C+Junjie&rft.date=2025-06-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10044-025-01433-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_025_01433_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |