Deciphering anomalous dielectric traits of nanoconfined water and its roles in modeling crystalline swelling of bentonite
The physicochemical properties of Na-montmorillonite (Na-Mt) determine the intrinsic behaviors of bentonite, which are of great significance for its application in high-level radioactive waste disposal. The dielectric behavior of water under nanoconfinement has been the subject of numerous conjectur...
Saved in:
Published in | Acta geotechnica Vol. 20; no. 4; pp. 1571 - 1583 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1861-1125 1861-1133 |
DOI | 10.1007/s11440-024-02474-x |
Cover
Loading…
Abstract | The physicochemical properties of Na-montmorillonite (Na-Mt) determine the intrinsic behaviors of bentonite, which are of great significance for its application in high-level radioactive waste disposal. The dielectric behavior of water under nanoconfinement has been the subject of numerous conjectures due to the difficulties associated with experimental investigation. Na-Mt is modeled via molecular dynamics (MD) simulations at the nanoscale, and the dielectric responses as a function of the basal spacing and water density are studied. The results showed a heterogeneous dielectric profile of interlayer water and an unexpected local dielectric enhancement closed to Mt surface. The morphological characteristics of dielectric constant (
ε
) was consistent with the layered structure of interlayer water. The hydrogen bonding network was strengthened near the interface, resulting in a local density augmentation and dipolar mobility decline of interlayer water. This anomalous dielectric behavior was mainly derived from the interfacial effect, rather than the physical field in Na-Mt interlayer. Introducing the MD simulations results into crystalline swelling model, and a significant improvement in accuracy was observed. These results provide a clear insight into the dielectric behavior of interlayer water in Na-Mt. |
---|---|
AbstractList | The physicochemical properties of Na-montmorillonite (Na-Mt) determine the intrinsic behaviors of bentonite, which are of great significance for its application in high-level radioactive waste disposal. The dielectric behavior of water under nanoconfinement has been the subject of numerous conjectures due to the difficulties associated with experimental investigation. Na-Mt is modeled via molecular dynamics (MD) simulations at the nanoscale, and the dielectric responses as a function of the basal spacing and water density are studied. The results showed a heterogeneous dielectric profile of interlayer water and an unexpected local dielectric enhancement closed to Mt surface. The morphological characteristics of dielectric constant (
ε
) was consistent with the layered structure of interlayer water. The hydrogen bonding network was strengthened near the interface, resulting in a local density augmentation and dipolar mobility decline of interlayer water. This anomalous dielectric behavior was mainly derived from the interfacial effect, rather than the physical field in Na-Mt interlayer. Introducing the MD simulations results into crystalline swelling model, and a significant improvement in accuracy was observed. These results provide a clear insight into the dielectric behavior of interlayer water in Na-Mt. The physicochemical properties of Na-montmorillonite (Na-Mt) determine the intrinsic behaviors of bentonite, which are of great significance for its application in high-level radioactive waste disposal. The dielectric behavior of water under nanoconfinement has been the subject of numerous conjectures due to the difficulties associated with experimental investigation. Na-Mt is modeled via molecular dynamics (MD) simulations at the nanoscale, and the dielectric responses as a function of the basal spacing and water density are studied. The results showed a heterogeneous dielectric profile of interlayer water and an unexpected local dielectric enhancement closed to Mt surface. The morphological characteristics of dielectric constant (ε) was consistent with the layered structure of interlayer water. The hydrogen bonding network was strengthened near the interface, resulting in a local density augmentation and dipolar mobility decline of interlayer water. This anomalous dielectric behavior was mainly derived from the interfacial effect, rather than the physical field in Na-Mt interlayer. Introducing the MD simulations results into crystalline swelling model, and a significant improvement in accuracy was observed. These results provide a clear insight into the dielectric behavior of interlayer water in Na-Mt. |
Author | Wang, Qiong Ye, Wei-min Dai, Wen-jie Wu, Dong-bei Chen, Yong-gui Li, Yu-cheng |
Author_xml | – sequence: 1 givenname: Wen-jie surname: Dai fullname: Dai, Wen-jie organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University – sequence: 2 givenname: Yong-gui surname: Chen fullname: Chen, Yong-gui email: cyg@tongji.edu.cn organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University – sequence: 3 givenname: Yu-cheng surname: Li fullname: Li, Yu-cheng organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University – sequence: 4 givenname: Wei-min surname: Ye fullname: Ye, Wei-min organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University – sequence: 5 givenname: Qiong surname: Wang fullname: Wang, Qiong organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University – sequence: 6 givenname: Dong-bei surname: Wu fullname: Wu, Dong-bei organization: School of Chemical Science and Engineering, Tongji University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6v56m72KPUTBC96DtnsrKZsk5qktP33ZruiNw_DDPPO-w48MzRx3gFCl5RcU0Kqm0ipEKQgTAxViWJ_gqZUlrSglPPJ78wWZ2gW44qQkjNRTtHhDozdfEKw7gNr59e699uIWws9mBSswSlomyL2HXZZN9511kGLdzpByI4WD2rwPURsHV77Fvohy4RDTLrPM-C4g_64zCENuOSdTXCOTjvdR7j46XP0_nD_tnwqXl4fn5e3L4VhFUkFLbmEEjQzjFPRtFUtWNsIWUqQNeWlbipNa8lrU2omO9EZqFlTEUNb2bU143N0NeZugv_aQkxq5bfB5ZeKU8kWkoua5Cs2XpngYwzQqU2wax0OihI1IFYjYpXxqiNitc8mPpriZuAH4S_6H9c3ckiDhg |
Cites_doi | 10.1016/j.clay.2021.106301 10.1103/PhysRevLett.107.166102 10.1103/PhysRevB.25.5244 10.1016/j.clay.2021.106122 10.1346/ccmn.2016.0640401 10.1103/PhysRevE.91.032411 10.1107/s0108767305084291 10.1006/jcis.1994.1241 10.1063/1.1318773 10.1002/qua.22605 10.1016/j.enggeo.2016.09.015 10.1021/acs.jpcc.0c07597 10.1016/j.clay.2020.105497 10.1029/2018rg000597 10.1021/nl502837d 10.1002/prot.20294 10.1346/ccmn.2000.0480311 10.1063/1.1845431 10.1088/1555-6611/aa94de 10.1080/00319104.2014.900774 10.1063/1.4992001 10.1063/1.1322639 10.1016/s0167-6636(03)00073-5 10.1103/PhysRevE.88.062313 10.1007/s11440-019-00788-9 10.1063/1.4977214 10.1021/jp303963r 10.1080/00387010.2017.1304965 10.1021/j100308a038 10.1007/s11440-022-01751-x 10.1021/acs.jpcc.1c04600 10.1346/ccmn.1996.0440415 10.1016/j.enggeo.2017.04.002 10.1021/jz401108n 10.1139/cgj-2014-0309 10.1016/j.supflu.2017.08.004 10.1016/j.enggeo.2019.04.016 10.1039/c9ra02578b 10.1021/jp077341k 10.1103/PhysRevB.54.11876 10.1016/j.jenvman.2005.03.003 10.1088/2053-1591/aad108 10.1007/s11440-023-02044-7 10.1021/jp0363287 10.1021/jp036600c 10.1126/science.aat4191 10.1346/ccmn.1995.0430303 10.1016/j.enggeo.2022.106822 10.1016/j.clay.2017.05.045 10.1103/PhysRevLett.109.107801 10.1080/00387010.2021.1884576 10.1016/j.clay.2006.01.009 10.1071/sr9910829 10.1021/la050615f 10.1021/jp508427c 10.1021/acs.jpcb.5b03547 10.1016/j.enggeo.2021.106353 10.1016/j.cplett.2009.01.009 10.1016/j.clay.2019.03.017.Sci174101410.1016/j.clay.2019.03.017 10.1016/j.enggeo.2019.03.010 10.1021/ja01379a006 10.1007/s13202-020-01003-2 10.1126/science.1259437 10.1063/1.5081077 10.1039/c1ee01280k 10.1016/j.anucene.2022.109565 10.1103/PhysRevLett.117.048001 10.1016/j.jhazmat.2013.07.021 10.1021/jp011058i 10.1021/acsnano.0c03173 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
DOI | 10.1007/s11440-024-02474-x |
DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1861-1133 |
EndPage | 1583 |
ExternalDocumentID | 10_1007_s11440_024_02474_x |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42125701; 41977232 – fundername: Innovation Program of Shanghai Municipal Education Commission grantid: 2023ZKZD26 |
GroupedDBID | -Y2 .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PHGZT PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM 7TN 7UA 8FD ABRTQ C1K F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-c270t-1638e6ea2c2314bd7942db4868e89136ab7a19839c6a28f4fce92b70c1d8fd923 |
IEDL.DBID | U2A |
ISSN | 1861-1125 |
IngestDate | Fri Jul 25 19:19:56 EDT 2025 Tue Jul 01 05:13:14 EDT 2025 Sat Mar 29 01:22:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Molecular dynamics Nanoconfinement Montmorillonite Dielectric behavior |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-1638e6ea2c2314bd7942db4868e89136ab7a19839c6a28f4fce92b70c1d8fd923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3182583490 |
PQPubID | 54451 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3182583490 crossref_primary_10_1007_s11440_024_02474_x springer_journals_10_1007_s11440_024_02474_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Acta geotechnica |
PublicationTitleAbbrev | Acta Geotech |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ZR Liu (2474_CR33) 2023; 18 G Yang (2474_CR60) 2017; 147 M Abdessamad (2474_CR2) 2017; 50 KS Kanse (2474_CR26) 2014; 52 WM Ye (2474_CR62) 2017; 222 D Arthisree (2474_CR3) 2018 KI Inoue (2474_CR25) 2019 M Szczerba (2474_CR51) 2020 W Depmeier (2474_CR19) 2005; 61 G Tocci (2474_CR54) 2014; 14 BY Wang (2474_CR57) 2021; 214 HC Zhu (2474_CR71) 2012; 109 M Abdessamad (2474_CR1) 2021; 54 Y Ichikawa (2474_CR24) 2004; 36 JL Suter (2474_CR49) 2011; 4 L Zhao (2474_CR69) 2019; 9 JB Zhao (2474_CR68) 2016; 214 F Bruni (2474_CR11) 1996; 54 L Pauling (2474_CR38) 1929; 51 SR Schmidt (2474_CR43) 2005; 21 M Camara (2474_CR12) 2017; 146 SQ Zhang (2474_CR67) 2021; 294 Y Xu (2474_CR58) 2019; 253 HJC Berendsen (2474_CR7) 1987; 91 A Chaudhari (2474_CR13) 2011; 111 MH Motevaselian (2474_CR35) 2020; 14 MA Olson (2474_CR37) 2004; 57 JJ Velasco-Velez (2474_CR56) 2014; 346 AN Zhou (2474_CR70) 2023; 18 B Chen (2474_CR15) 2023; 181 I Skarmoutsos (2474_CR46) 2017; 130 M Sovago (2474_CR48) 2009; 470 ZT Zeng (2474_CR63) 2022; 308 Z Gevorkian (2474_CR23) 2018 DR Katti (2474_CR27) 2015; 52 NT Skipper (2474_CR47) 1995; 43 WJ Niu (2474_CR36) 2020; 15 A Schlaich (2474_CR42) 2016 S Senapati (2474_CR44) 2000; 113 JP Quirk (2474_CR39) 1991; 29 L Zhang (2474_CR66) 2014; 118 DA Laird (2474_CR30) 1996; 44 S Basu (2474_CR6) 1994; 165 R Richert (2474_CR41) 2013 Y Xu (2474_CR59) 2019; 174 YG Chen (2474_CR16) 2019; 255 RE Swai (2474_CR50) 2020; 10 C Zhang (2474_CR65) 2018; 56 R Renou (2474_CR40) 2015; 91 V Ballenegger (2474_CR5) 2005 M Chavez Paez (2474_CR14) 2001; 114 E Ferrage (2474_CR20) 2016; 64 DJ Bonthuis (2474_CR9) 2011; 107 F Bernachy Barbe (2474_CR8) 2021; 209 M Kharroubi (2474_CR28) 2012; 116 W Yang (2474_CR61) 2013; 261 J Thar (2474_CR53) 2008; 112 YC Li (2474_CR32) 2020; 124 DJ Bonthuis (2474_CR10) 2011 T Urbic (2474_CR55) 2017 E Garcia-Gimenez (2474_CR22) 2015; 119 AA Kornyshev (2474_CR29) 1982; 25 JB Asbury (2474_CR4) 2004; 108 RT Cygan (2474_CR18) 2004; 108 RT Cygan (2474_CR17) 2021; 125 DA Laird (2474_CR31) 2006; 34 S Senapati (2474_CR45) 2001; 105 L Fumagalli (2474_CR21) 2018; 360 C Zhang (2474_CR64) 2013; 4 HG Montes (2474_CR34) 2005; 77 K Tamura (2474_CR52) 2000; 48 |
References_xml | – volume: 214 start-page: 106301 year: 2021 ident: 2474_CR57 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2021.106301 – volume: 107 start-page: 166102 issue: 16 year: 2011 ident: 2474_CR9 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.107.166102 – volume: 25 start-page: 5244 issue: 8 year: 1982 ident: 2474_CR29 publication-title: Phys Rev B doi: 10.1103/PhysRevB.25.5244 – volume: 209 start-page: 106122 year: 2021 ident: 2474_CR8 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2021.106122 – volume: 64 start-page: 348 issue: 4 year: 2016 ident: 2474_CR20 publication-title: Clays Clay Miner doi: 10.1346/ccmn.2016.0640401 – volume: 91 start-page: 032411 issue: 3 year: 2015 ident: 2474_CR40 publication-title: Phys Rev E doi: 10.1103/PhysRevE.91.032411 – volume: 61 start-page: C370 year: 2005 ident: 2474_CR19 publication-title: Acta Crystallographica a-Foundation and Advances doi: 10.1107/s0108767305084291 – volume: 165 start-page: 355 issue: 2 year: 1994 ident: 2474_CR6 publication-title: J Colloid Interface Sci doi: 10.1006/jcis.1994.1241 – volume: 113 start-page: 8817 issue: 19 year: 2000 ident: 2474_CR44 publication-title: J Chem Phys doi: 10.1063/1.1318773 – volume: 111 start-page: 2972 issue: 12 year: 2011 ident: 2474_CR13 publication-title: Int J Quantum Chem doi: 10.1002/qua.22605 – volume: 214 start-page: 116 year: 2016 ident: 2474_CR68 publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.09.015 – volume: 124 start-page: 25557 issue: 46 year: 2020 ident: 2474_CR32 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.0c07597 – year: 2020 ident: 2474_CR51 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2020.105497 – volume: 56 start-page: 532 issue: 3 year: 2018 ident: 2474_CR65 publication-title: Rev Geophys doi: 10.1029/2018rg000597 – volume: 14 start-page: 6872 issue: 12 year: 2014 ident: 2474_CR54 publication-title: Nano Lett doi: 10.1021/nl502837d – volume: 57 start-page: 645 issue: 4 year: 2004 ident: 2474_CR37 publication-title: Proteins-Structure Function and Bioinformatics doi: 10.1002/prot.20294 – volume: 48 start-page: 400 issue: 3 year: 2000 ident: 2474_CR52 publication-title: Clays Clay Miner doi: 10.1346/ccmn.2000.0480311 – year: 2005 ident: 2474_CR5 publication-title: J Chem Phys doi: 10.1063/1.1845431 – year: 2018 ident: 2474_CR23 publication-title: Laser Phys doi: 10.1088/1555-6611/aa94de – volume: 52 start-page: 710 issue: 6 year: 2014 ident: 2474_CR26 publication-title: Phys Chem Liq doi: 10.1080/00319104.2014.900774 – volume: 147 start-page: 084705 issue: 8 year: 2017 ident: 2474_CR60 publication-title: J Chem Phys doi: 10.1063/1.4992001 – volume: 114 start-page: 1405 issue: 3 year: 2001 ident: 2474_CR14 publication-title: J Chem Phys doi: 10.1063/1.1322639 – volume: 36 start-page: 487 issue: 5–6 year: 2004 ident: 2474_CR24 publication-title: Mech Mater doi: 10.1016/s0167-6636(03)00073-5 – year: 2013 ident: 2474_CR41 publication-title: Phys Rev E doi: 10.1103/PhysRevE.88.062313 – volume: 15 start-page: 1095 issue: 5 year: 2020 ident: 2474_CR36 publication-title: Acta Geotech doi: 10.1007/s11440-019-00788-9 – year: 2017 ident: 2474_CR55 publication-title: J Chem Phys doi: 10.1063/1.4977214 – volume: 116 start-page: 14970 issue: 28 year: 2012 ident: 2474_CR28 publication-title: J Phys Chem C doi: 10.1021/jp303963r – volume: 50 start-page: 171 issue: 3 year: 2017 ident: 2474_CR2 publication-title: Spectrosc Lett doi: 10.1080/00387010.2017.1304965 – volume: 91 start-page: 6269 issue: 24 year: 1987 ident: 2474_CR7 publication-title: J Phys Chem doi: 10.1021/j100308a038 – volume: 18 start-page: 2681 issue: 5 year: 2023 ident: 2474_CR70 publication-title: Acta Geotech doi: 10.1007/s11440-022-01751-x – volume: 125 start-page: 17573 issue: 32 year: 2021 ident: 2474_CR17 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c04600 – volume: 44 start-page: 553 issue: 4 year: 1996 ident: 2474_CR30 publication-title: Clays Clay Miner doi: 10.1346/ccmn.1996.0440415 – volume: 222 start-page: 140 year: 2017 ident: 2474_CR62 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.04.002 – volume: 4 start-page: 2477 issue: 15 year: 2013 ident: 2474_CR64 publication-title: J Phys Chem Lett doi: 10.1021/jz401108n – volume: 52 start-page: 1385 issue: 9 year: 2015 ident: 2474_CR27 publication-title: Can Geotech J doi: 10.1139/cgj-2014-0309 – volume: 130 start-page: 156 year: 2017 ident: 2474_CR46 publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2017.08.004 – volume: 255 start-page: 37 year: 2019 ident: 2474_CR16 publication-title: Eng Geol doi: 10.1016/j.enggeo.2019.04.016 – volume: 9 start-page: 16423 issue: 29 year: 2019 ident: 2474_CR69 publication-title: RSC Adv doi: 10.1039/c9ra02578b – volume: 112 start-page: 1456 issue: 5 year: 2008 ident: 2474_CR53 publication-title: J Phys Chem B doi: 10.1021/jp077341k – volume: 54 start-page: 11876 issue: 17 year: 1996 ident: 2474_CR11 publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.11876 – volume: 77 start-page: 35 issue: 1 year: 2005 ident: 2474_CR34 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2005.03.003 – year: 2018 ident: 2474_CR3 publication-title: Mater Res Express doi: 10.1088/2053-1591/aad108 – volume: 18 start-page: 6097 issue: 11 year: 2023 ident: 2474_CR33 publication-title: Acta Geotech doi: 10.1007/s11440-023-02044-7 – volume: 108 start-page: 1255 issue: 4 year: 2004 ident: 2474_CR18 publication-title: J Phys Chem B doi: 10.1021/jp0363287 – volume: 108 start-page: 6544 issue: 21 year: 2004 ident: 2474_CR4 publication-title: J Phys Chem B doi: 10.1021/jp036600c – volume: 360 start-page: 1339 issue: 6395 year: 2018 ident: 2474_CR21 publication-title: Science doi: 10.1126/science.aat4191 – volume: 43 start-page: 285 issue: 3 year: 1995 ident: 2474_CR47 publication-title: Clays Clay Miner doi: 10.1346/ccmn.1995.0430303 – volume: 308 start-page: 106822 year: 2022 ident: 2474_CR63 publication-title: Eng Geol doi: 10.1016/j.enggeo.2022.106822 – volume: 146 start-page: 206 year: 2017 ident: 2474_CR12 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2017.05.045 – volume: 109 start-page: 107801 issue: 10 year: 2012 ident: 2474_CR71 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.107801 – volume: 54 start-page: 195 issue: 3 year: 2021 ident: 2474_CR1 publication-title: Spectrosc Lett doi: 10.1080/00387010.2021.1884576 – volume: 34 start-page: 74 issue: 1–4 year: 2006 ident: 2474_CR31 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2006.01.009 – volume: 29 start-page: 829 issue: 6 year: 1991 ident: 2474_CR39 publication-title: Aust J Soil Res doi: 10.1071/sr9910829 – volume: 21 start-page: 8069 issue: 17 year: 2005 ident: 2474_CR43 publication-title: Langmuir doi: 10.1021/la050615f – volume: 118 start-page: 29811 issue: 51 year: 2014 ident: 2474_CR66 publication-title: J Phys Chem C doi: 10.1021/jp508427c – volume: 119 start-page: 8475 issue: 27 year: 2015 ident: 2474_CR22 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.5b03547 – volume: 294 start-page: 106353 year: 2021 ident: 2474_CR67 publication-title: Eng Geol doi: 10.1016/j.enggeo.2021.106353 – volume: 470 start-page: 7 issue: 1–3 year: 2009 ident: 2474_CR48 publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2009.01.009 – volume: 174 start-page: 10 year: 2019 ident: 2474_CR59 publication-title: Appl Clay Sci doi: 10.1016/j.clay.2019.03.017.Sci174101410.1016/j.clay.2019.03.017 – volume: 253 start-page: 55 year: 2019 ident: 2474_CR58 publication-title: Eng Geol doi: 10.1016/j.enggeo.2019.03.010 – volume: 51 start-page: 1010 issue: 4 year: 1929 ident: 2474_CR38 publication-title: J Am Chem Soc doi: 10.1021/ja01379a006 – volume: 10 start-page: 3515 issue: 8 year: 2020 ident: 2474_CR50 publication-title: J Petroleum Explor Prod Technol doi: 10.1007/s13202-020-01003-2 – volume: 346 start-page: 831 issue: 6211 year: 2014 ident: 2474_CR56 publication-title: Science doi: 10.1126/science.1259437 – year: 2019 ident: 2474_CR25 publication-title: J Chem Phys doi: 10.1063/1.5081077 – volume: 4 start-page: 4572 issue: 11 year: 2011 ident: 2474_CR49 publication-title: Energy Environ Sci doi: 10.1039/c1ee01280k – volume: 181 start-page: 109565 year: 2023 ident: 2474_CR15 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2022.109565 – year: 2016 ident: 2474_CR42 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.117.048001 – volume: 261 start-page: 224 year: 2013 ident: 2474_CR61 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.07.021 – volume: 105 start-page: 5106 issue: 22 year: 2001 ident: 2474_CR45 publication-title: J Phys Chem B doi: 10.1021/jp011058i – year: 2011 ident: 2474_CR10 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.107.166102 – volume: 14 start-page: 12761 issue: 10 year: 2020 ident: 2474_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.0c03173 |
SSID | ssj0063246 |
Score | 2.3459215 |
Snippet | The physicochemical properties of Na-montmorillonite (Na-Mt) determine the intrinsic behaviors of bentonite, which are of great significance for its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1571 |
SubjectTerms | Bentonite Civil engineering Complex Fluids and Microfluidics Density Dielectric constant Dielectric properties Engineering Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences High level radioactive wastes Hydraulics Hydrogen bonding Interlayers Molecular dynamics Montmorillonite Montmorillonites Physical characteristics Physicochemical processes Physicochemical properties Porous materials Radioactive waste disposal Radioactive wastes Research Paper Simulation Soft and Granular Matter Soil Science & Conservation Solid Mechanics Swelling Waste disposal Water Water density |
Title | Deciphering anomalous dielectric traits of nanoconfined water and its roles in modeling crystalline swelling of bentonite |
URI | https://link.springer.com/article/10.1007/s11440-024-02474-x https://www.proquest.com/docview/3182583490 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QXOCAeIrBmHLgBpHSLG3T4wYMBIITk8apahIHTYJuWoeAf4-TtRogOHCoKtWND05if45jm5ATqTTaSegy4Lxg0krFdKEiBkrYDJLURaFY9d19cj2UN6N4VCeFVc1t9yYkGTT1MtktxCHRpvgnlQyR41rsfXdcxUPRa_Svrz8ecopUEjFEE3GdKvM7j-_maIkxf4RFg7UZbJHNGibS3mJet8kKlDtk40vxwF3ycQFmPA3pe0-0KCcvxTN68dSOF51txob69g_zik4cLZGOjq_D0Za-Ibyc4QhLPdVfL6zouKShJ47nZWYfCBl9rW6glT_b8x-RiQbfbxgh6h4ZDi4fzq9Z3UiBGZHyOfOYCxIohEE0J7XFPSislipR4KOUSaHTIsoQKpmkEMpJZyATOuUmsspZhID7ZLWclHBAqBYG1VLG0QuKJTinQXCdpTzTvJtyBy1y2sgzny7qZeTLyshe-jlKPg_Sz99bpN2IPK_3TpWjlhGx6sqMt8hZMw1L8t_cDv_3-xFZF76Zb7iG0yar89krHCPCmOsOWesN-v17_756vL3shAX2Cb5azRY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGYAB8RTl6YENLDmumzgjAqoChamVukWxfUaVIK2aIui_5-wmKiAYGLLk4hvO9t13uRch51JptJPQYsB5zqSViulcRQyUsCnEiYtCs-rHp7g7kPfD9rAqCivrbPc6JBk09bLYLcQh0ab4J5EMkeMqggHlE7kG4qrWv77_eKgpUnHEEE20q1KZ33l8N0dLjPkjLBqsTWeLbFYwkV4t9nWbrECxQza-NA_cJfMbMKNJKN97pnkxfs1f0IundrSYbDMy1I9_mJV07GiBdHR8Ha629B3h5RRXWOqpPr2wpKOChpk4npeZzhEy-l7dQEv_b8-_RCYa_LxhhKh7ZNC57V93WTVIgRmR8BnzmAtiyIVBNCe1xTsorJYqVuCjlHGukzxKESqZOBfKSWcgFTrhJrLKWYSA-6RRjAs4IFQLg2op5egFtSU4p0FwnSY81byVcAdNclHLM5ss-mVky87IXvoZSj4L0s8-muS4FnlW3Z0yQy0j2qolU94kl_U2LMl_czv83-dnZK3bf-xlvbunhyOyLvxg35CSc0was-kbnCDamOnTcLg-AbNzzPk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQgPrE-c_CmwWya7maPYi31VTxY8LZskokUdFvaFe2_d5J2aRU9eNjLZjOwk2TmSybzDSGnUmn0k9BgwHnOpJWK6VxFDJSwKcSJiwJZ9UM37vTk7XPzeSGLP9x2r0KS05wGz9JUlBdD6y7miW8hJon-xT-JZIgil9EcR35e98RlZYs9F3nIL1JxxBBZNGdpM7_L-O6a5njzR4g0eJ72BlmfQUZ6OR3jTbIExRZZWyAS3CaTFpj-MKTyvdC8GLzlr7ijp7Y_rXLTN9SXgijHdOBoge34tw57W_qBUHOEPSz1rf6q4Zj2Cxrq43hZZjRB-Oh5u4GO_Tmff4lCNPjawwhXd0ivff101WGzogrMiISXzOMviCEXBpGd1BbXo7BaqliBj1jGuU7yKEXYZOJcKCedgVTohJvIKmcRDu6SWjEoYI9QLQyaqJTjjqgpwTkNgus04anmjYQ7qJOzSp_ZcMqdkc1Zkr32M9R8FrSffdbJYaXybLaOxhlaHNFUDZnyOjmvhmHe_Le0_f99fkJWHlvt7P6me3dAVoWv8Rtu5xySWjl6hyMEHqU-DnPrC5xr0TU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+anomalous+dielectric+traits+of+nanoconfined+water+and+its+roles+in+modeling+crystalline+swelling+of+bentonite&rft.jtitle=Acta+geotechnica&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=20&rft.issue=4&rft.spage=1571&rft.epage=1583&rft_id=info:doi/10.1007%2Fs11440-024-02474-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |