PIV investigation on corner separation control in a compressor cascade based on a vortex generator
To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at...
Saved in:
Published in | Journal of visualization Vol. 27; no. 2; pp. 159 - 175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1343-8875 1875-8975 |
DOI | 10.1007/s12650-024-00962-6 |
Cover
Loading…
Abstract | To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Re
c
) of 2.1 × 10
4
and 3.1 × 10
4
. As Re
c
increases to 3.8 × 10
4
and 4.8 × 10
4
, the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle
.
Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation.
Graphic Abstract |
---|---|
AbstractList | To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Re
c
) of 2.1 × 10
4
and 3.1 × 10
4
. As Re
c
increases to 3.8 × 10
4
and 4.8 × 10
4
, the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle
.
Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation.
Graphic Abstract To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Rec) of 2.1 × 104 and 3.1 × 104. As Rec increases to 3.8 × 104 and 4.8 × 104, the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle. Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation.Graphic Abstract |
Author | Zhou, Ling Sun, Shuxian Ji, Lucheng Zhu, Yichen Meng, Tongtong Zhu, Huiling |
Author_xml | – sequence: 1 givenname: Shuxian surname: Sun fullname: Sun, Shuxian organization: School of Aerospace Engineering, Beijing Institute of Technology – sequence: 2 givenname: Ling surname: Zhou fullname: Zhou, Ling organization: School of Aerospace Engineering, Beijing Institute of Technology – sequence: 3 givenname: Yichen surname: Zhu fullname: Zhu, Yichen organization: School of Aeronautic Science and Engineering, Beihang University – sequence: 4 givenname: Huiling surname: Zhu fullname: Zhu, Huiling email: huilingzhu@bit.edu.cn organization: School of Aerospace Engineering, Beijing Institute of Technology – sequence: 5 givenname: Tongtong surname: Meng fullname: Meng, Tongtong organization: School of Aerospace Engineering, Beijing Institute of Technology – sequence: 6 givenname: Lucheng surname: Ji fullname: Ji, Lucheng organization: Institute for Aero Engine, Tsinghua University |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcB19E8J5OlFB8FQRfqNiSZpExpk5pMi_57U0dwJ1zIvZdzziXfDExiih6AS4KvCcbyphDaCIww5Qhj1VDUnIApaaVArZJiUnvGGWrr4gzMSlljTAmXZArsy_Id9vHgy9CvzNCnCGu5lKPPsPidyePSpTjktKlSaOqw3WVfSsrQmeJM56E1xXdHq4GHlAf_CVe-Rpgh5XNwGsym-Ivfdw7e7u9eF4_o6flhubh9Qo5KPCDCWhecDTIES4STzCqhpFOhZTR0livs6iXLeLCWGieokA3noVFc4M65js3B1Zi7y-ljXz-k12mfYz2pqWpaRXhFU1V0VLmcSsk-6F3utyZ_aYL1kaUeWerKUv-w1E01sdFUqjiufP6L_sf1DcbKesI |
Cites_doi | 10.1115/GT2015-42474 10.2514/6.2004-2207 10.2514/1.J057783 10.1017/jfm.2016.81 10.1115/1.2775492 10.1007/s00348-011-1054-x 10.1115/GT2002-30677 10.1115/1.4006605 10.1016/j.cja.2021.11.013 10.4271/760925 10.1088/0957-0233/27/8/084006 10.1115/1.4035876 10.1002/9781119417989.ch2 10.1115/93-GT-435 10.1115/GT2014-25329 10.1115/1.1507333 10.2514/1.B35448 10.1007/978-3-662-03637-2_2 10.1115/FEDSM2014-21593 10.1115/1.4034871 10.22261/JGPPS.JYVUQD 10.2514/1.J058488 10.2514/6.2008-4299 10.1007/s11433-015-5719-y 10.1115/1.4042990 10.1007/s00348-011-1061-y |
ContentType | Journal Article |
Copyright | The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12650-024-00962-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1875-8975 |
EndPage | 175 |
ExternalDocumentID | 10_1007_s12650_024_00962_6 |
GrantInformation_xml | – fundername: National Major Science and Technology Projects of China grantid: Nos. 2017-II-0006-0020; J2019-II-0003-0023 funderid: http://dx.doi.org/10.13039/501100013076 – fundername: National Natural Science Foundation of China grantid: 51976010 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2KG 2VQ 30V 4.4 406 408 40D 5GY 67Z 8TC 96X AAAVM AACDK AAFNC AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACPQW ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW ADZMO AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRHK AFWTZ AFZKB AGAYW AGDGC AGGDS AGIAB AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYJHY BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IOS ITM IWAJR J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MET MIO NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PT5 R89 R9I RLLFE RNI ROL RSV RZK S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-138cfcbf7ffb15c73b9597c9f832fdb490ccadb34fbb2ac5257644f69450dccd3 |
IEDL.DBID | AGYKE |
ISSN | 1343-8875 |
IngestDate | Fri Jul 25 23:48:19 EDT 2025 Tue Jul 01 04:10:07 EDT 2025 Fri Feb 21 02:39:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Vortex generator Particle image velocimetry Corner separation Compressor cascade |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-138cfcbf7ffb15c73b9597c9f832fdb490ccadb34fbb2ac5257644f69450dccd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2968914009 |
PQPubID | 2043635 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2968914009 crossref_primary_10_1007_s12650_024_00962_6 springer_journals_10_1007_s12650_024_00962_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of visualization |
PublicationTitleAbbrev | J Vis |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Tan D, Li Y, Wilkes I, Miorini RL, Katz J (2014) PIV measurements of the flow in the tip region of a compressor rotor. FEDSM2014. https://doi.org/10.1115/FEDSM2014-21593 XinqianZAnxiongLExperimental investigation of surge and stall in a high-speed centrifugal compressorJ Propul Power20153181582510.2514/1.B35448 RaffelMWillertCEKompenhansJParticle image velocimetry: a practical guide1998BerlinSpringer10.1007/978-3-662-03637-2_2 RuiyuLLiminGLeiZChiMShiyanLDominating unsteadiness flow structures in corner separation under high Mach numberAIAA J201957292329322019AIAAJ..57.2923R10.2514/1.J057783 LiJJiLEfficient design method for applying vortex generators in turbomachineryJ Turbomach201914110.1115/1.4042990 ZamboniniGOttavyXKriegseisJCorner separation dynamics in a linear compressor cascadeJ Fluids Eng201713910.1115/1.4035876 LeiVMSpakovszkyZSGreitzerEMA criterion for axial compressor hub-corner stallJ Turbomach200813010.1115/1.2775492 Denton JD (1993) Loss mechanisms in turbomachines. GT1993. https://doi.org/10.1115/93-GT-435 Siemann J, Seume JR (2015) Design of an aspirated compressor stator by means of DoE. GT2015. https://doi.org/10.1115/GT2015-42474 BrandstetterCSchifferHPPIV measurements of the transient flow structure in the tip region of a transonic compressor near stability limitJ Glob Power Propuls Soc2017130331610.22261/JGPPS.JYVUQD HeGSPanCFengLHGaoQWangJJEvolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layerJ Fluid Mech20167922743062016JFM...792..274H34821831:CAS:528:DC%2BC28XitFKqur3P10.1017/jfm.2016.81 VogesMWillertCEMönigRMüllerMWSchifferHPThe challenge of stereo PIV measurements in the tip gap of a transonic compressor rotor with casing treatmentExp Fluids20125258159010.1007/s00348-011-1061-y Thiam A, Whittlesey R, Wark C, Williams D (2008) Corner separation and the on-set of stall in an axial compressor. In: The 38th fluid dynamics conference and exhibit. https://doi.org/10.2514/6.2008-4299 HergtAMeyerREngelKEffects of vortex generator application on the performance of a compressor cascadeJ Turbomach201213510.1115/1.4006605 ChampagnatFPlyerALe BesneraisGLeclaireBDavoustSLe SantYFast and accurate PIV computation using highly parallel iterative correlation maximizationExp Fluids2011501169118210.1007/s00348-011-1054-x Chima RV (2002) Computational modeling of vortex generators for turbomachinery. GT2002. https://doi.org/10.1115/GT2002-30677 GallimoreSJBolgerJJCumpstyNATaylorMJWrightPIPlaceJMMThe use of sweep and dihedral in multistage axial flow compressor blading—part I: university research and methods developmentJ Turbomach200212452153210.1115/1.1507333 Law CH, Wennerstrom AJ, Buzzell WA (1976) The use of vortex generations as inexpensive compressor casing treatment. SAE technical paper, 760925. https://doi.org/10.4271/760925 PanCXueDXuYWangJWeiREvaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV applicationSci China Phys Mech20155810.1007/s11433-015-5719-y FuHZhouLJiLInfluence of sub-boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressorsChin J Aeronaut202235304410.1016/j.cja.2021.11.013 ColemanHWSteeleWGExperimentation, validation, and uncertainty analysis for engineers2018New YorkWiley10.1002/9781119417989.ch2 KlineSJDescribing uncertainties in single-sample experimentsMech Eng19637538 LiuYYanHLuLLiQInvestigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDESJ Fluids Eng201613910.1115/1.4034871 TangYLiuYLuLLuHWangMPassive separation control with blade-end slots in a highly loaded compressor cascadeAIAA J20205885972020AIAAJ..58...85T10.2514/1.J058488 SciacchitanoAWienekeBPIV uncertainty propagationMeas Sci Technol2016272016MeScT..27h4006S1:CAS:528:DC%2BC2sXovVyhsbg%3D10.1088/0957-0233/27/8/084006 Klinner J, Voges M, Willert C (2013) Application of tomographic PIV on a passage vortex in a transonic compressor cascade. Tagungsband Lasermethoden in Der Str-Mungsmesstechnik 21 Agarwal R, Dhamarla A, Narayanan SR, Goswami SN, Srinivasan B (2014) Numerical investigation on the effect of vortex generator on axial compressor performance. GT2014. https://doi.org/10.1115/GT2014-25329 Estevadeordal J, Koch P, Guillot S, Ng W, Car D, Puterbaugh S (2004) Benefits of suction-surface blowing in a transonic compressor stator vane. In: The 2nd AIAA flow control conference. https://doi.org/10.2514/6.2004-2207 SJ Gallimore (962_CR9) 2002; 124 H Fu (962_CR8) 2022; 35 J Li (962_CR16) 2019; 141 Y Tang (962_CR24) 2020; 58 962_CR6 M Raffel (962_CR19) 1998 962_CR7 962_CR1 962_CR4 A Sciacchitano (962_CR21) 2016; 27 L Ruiyu (962_CR20) 2019; 57 HW Coleman (962_CR5) 2018 962_CR22 962_CR23 C Pan (962_CR18) 2015; 58 962_CR25 SJ Kline (962_CR12) 1963; 75 A Hergt (962_CR11) 2012; 135 GS He (962_CR10) 2016; 792 F Champagnat (962_CR3) 2011; 50 VM Lei (962_CR15) 2008; 130 Y Liu (962_CR17) 2016; 139 Z Xinqian (962_CR27) 2015; 31 C Brandstetter (962_CR2) 2017; 1 962_CR13 962_CR14 G Zambonini (962_CR28) 2017; 139 M Voges (962_CR26) 2012; 52 |
References_xml | – reference: Thiam A, Whittlesey R, Wark C, Williams D (2008) Corner separation and the on-set of stall in an axial compressor. In: The 38th fluid dynamics conference and exhibit. https://doi.org/10.2514/6.2008-4299 – reference: RaffelMWillertCEKompenhansJParticle image velocimetry: a practical guide1998BerlinSpringer10.1007/978-3-662-03637-2_2 – reference: ZamboniniGOttavyXKriegseisJCorner separation dynamics in a linear compressor cascadeJ Fluids Eng201713910.1115/1.4035876 – reference: Klinner J, Voges M, Willert C (2013) Application of tomographic PIV on a passage vortex in a transonic compressor cascade. Tagungsband Lasermethoden in Der Str-Mungsmesstechnik 21 – reference: Siemann J, Seume JR (2015) Design of an aspirated compressor stator by means of DoE. GT2015. https://doi.org/10.1115/GT2015-42474 – reference: FuHZhouLJiLInfluence of sub-boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressorsChin J Aeronaut202235304410.1016/j.cja.2021.11.013 – reference: VogesMWillertCEMönigRMüllerMWSchifferHPThe challenge of stereo PIV measurements in the tip gap of a transonic compressor rotor with casing treatmentExp Fluids20125258159010.1007/s00348-011-1061-y – reference: Law CH, Wennerstrom AJ, Buzzell WA (1976) The use of vortex generations as inexpensive compressor casing treatment. SAE technical paper, 760925. https://doi.org/10.4271/760925 – reference: BrandstetterCSchifferHPPIV measurements of the transient flow structure in the tip region of a transonic compressor near stability limitJ Glob Power Propuls Soc2017130331610.22261/JGPPS.JYVUQD – reference: Agarwal R, Dhamarla A, Narayanan SR, Goswami SN, Srinivasan B (2014) Numerical investigation on the effect of vortex generator on axial compressor performance. GT2014. https://doi.org/10.1115/GT2014-25329 – reference: LiJJiLEfficient design method for applying vortex generators in turbomachineryJ Turbomach201914110.1115/1.4042990 – reference: Tan D, Li Y, Wilkes I, Miorini RL, Katz J (2014) PIV measurements of the flow in the tip region of a compressor rotor. FEDSM2014. https://doi.org/10.1115/FEDSM2014-21593 – reference: ChampagnatFPlyerALe BesneraisGLeclaireBDavoustSLe SantYFast and accurate PIV computation using highly parallel iterative correlation maximizationExp Fluids2011501169118210.1007/s00348-011-1054-x – reference: SciacchitanoAWienekeBPIV uncertainty propagationMeas Sci Technol2016272016MeScT..27h4006S1:CAS:528:DC%2BC2sXovVyhsbg%3D10.1088/0957-0233/27/8/084006 – reference: TangYLiuYLuLLuHWangMPassive separation control with blade-end slots in a highly loaded compressor cascadeAIAA J20205885972020AIAAJ..58...85T10.2514/1.J058488 – reference: GallimoreSJBolgerJJCumpstyNATaylorMJWrightPIPlaceJMMThe use of sweep and dihedral in multistage axial flow compressor blading—part I: university research and methods developmentJ Turbomach200212452153210.1115/1.1507333 – reference: KlineSJDescribing uncertainties in single-sample experimentsMech Eng19637538 – reference: RuiyuLLiminGLeiZChiMShiyanLDominating unsteadiness flow structures in corner separation under high Mach numberAIAA J201957292329322019AIAAJ..57.2923R10.2514/1.J057783 – reference: Estevadeordal J, Koch P, Guillot S, Ng W, Car D, Puterbaugh S (2004) Benefits of suction-surface blowing in a transonic compressor stator vane. In: The 2nd AIAA flow control conference. https://doi.org/10.2514/6.2004-2207 – reference: Chima RV (2002) Computational modeling of vortex generators for turbomachinery. GT2002. https://doi.org/10.1115/GT2002-30677 – reference: Denton JD (1993) Loss mechanisms in turbomachines. GT1993. https://doi.org/10.1115/93-GT-435 – reference: LiuYYanHLuLLiQInvestigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDESJ Fluids Eng201613910.1115/1.4034871 – reference: XinqianZAnxiongLExperimental investigation of surge and stall in a high-speed centrifugal compressorJ Propul Power20153181582510.2514/1.B35448 – reference: HergtAMeyerREngelKEffects of vortex generator application on the performance of a compressor cascadeJ Turbomach201213510.1115/1.4006605 – reference: HeGSPanCFengLHGaoQWangJJEvolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layerJ Fluid Mech20167922743062016JFM...792..274H34821831:CAS:528:DC%2BC28XitFKqur3P10.1017/jfm.2016.81 – reference: ColemanHWSteeleWGExperimentation, validation, and uncertainty analysis for engineers2018New YorkWiley10.1002/9781119417989.ch2 – reference: PanCXueDXuYWangJWeiREvaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV applicationSci China Phys Mech20155810.1007/s11433-015-5719-y – reference: LeiVMSpakovszkyZSGreitzerEMA criterion for axial compressor hub-corner stallJ Turbomach200813010.1115/1.2775492 – ident: 962_CR22 doi: 10.1115/GT2015-42474 – ident: 962_CR7 doi: 10.2514/6.2004-2207 – volume: 57 start-page: 2923 year: 2019 ident: 962_CR20 publication-title: AIAA J doi: 10.2514/1.J057783 – volume: 792 start-page: 274 year: 2016 ident: 962_CR10 publication-title: J Fluid Mech doi: 10.1017/jfm.2016.81 – volume: 130 year: 2008 ident: 962_CR15 publication-title: J Turbomach doi: 10.1115/1.2775492 – volume: 50 start-page: 1169 year: 2011 ident: 962_CR3 publication-title: Exp Fluids doi: 10.1007/s00348-011-1054-x – ident: 962_CR4 doi: 10.1115/GT2002-30677 – volume: 135 year: 2012 ident: 962_CR11 publication-title: J Turbomach doi: 10.1115/1.4006605 – volume: 35 start-page: 30 year: 2022 ident: 962_CR8 publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2021.11.013 – volume: 75 start-page: 3 year: 1963 ident: 962_CR12 publication-title: Mech Eng – ident: 962_CR14 doi: 10.4271/760925 – volume: 27 year: 2016 ident: 962_CR21 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/27/8/084006 – volume: 139 year: 2017 ident: 962_CR28 publication-title: J Fluids Eng doi: 10.1115/1.4035876 – volume-title: Experimentation, validation, and uncertainty analysis for engineers year: 2018 ident: 962_CR5 doi: 10.1002/9781119417989.ch2 – ident: 962_CR6 doi: 10.1115/93-GT-435 – ident: 962_CR1 doi: 10.1115/GT2014-25329 – volume: 124 start-page: 521 year: 2002 ident: 962_CR9 publication-title: J Turbomach doi: 10.1115/1.1507333 – volume: 31 start-page: 815 year: 2015 ident: 962_CR27 publication-title: J Propul Power doi: 10.2514/1.B35448 – volume-title: Particle image velocimetry: a practical guide year: 1998 ident: 962_CR19 doi: 10.1007/978-3-662-03637-2_2 – ident: 962_CR23 doi: 10.1115/FEDSM2014-21593 – ident: 962_CR13 – volume: 139 year: 2016 ident: 962_CR17 publication-title: J Fluids Eng doi: 10.1115/1.4034871 – volume: 1 start-page: 303 year: 2017 ident: 962_CR2 publication-title: J Glob Power Propuls Soc doi: 10.22261/JGPPS.JYVUQD – volume: 58 start-page: 85 year: 2020 ident: 962_CR24 publication-title: AIAA J doi: 10.2514/1.J058488 – ident: 962_CR25 doi: 10.2514/6.2008-4299 – volume: 58 year: 2015 ident: 962_CR18 publication-title: Sci China Phys Mech doi: 10.1007/s11433-015-5719-y – volume: 141 year: 2019 ident: 962_CR16 publication-title: J Turbomach doi: 10.1115/1.4042990 – volume: 52 start-page: 581 year: 2012 ident: 962_CR26 publication-title: Exp Fluids doi: 10.1007/s00348-011-1061-y |
SSID | ssj0021471 |
Score | 2.3154917 |
Snippet | To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 159 |
SubjectTerms | Angle of attack Classical and Continuum Physics Computer Imaging Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flow velocity Fluid flow Heat and Mass Transfer Kinetic energy Low speed wind tunnels Particle image velocimetry Passive control Pattern Recognition and Graphics Regular Paper Reynolds number Separation Trailing vortices Vision Vortex generators Vortices Vorticity |
Title | PIV investigation on corner separation control in a compressor cascade based on a vortex generator |
URI | https://link.springer.com/article/10.1007/s12650-024-00962-6 https://www.proquest.com/docview/2968914009 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH647aIHp1NxOkcO3rSjTX-sOQ7ZnIriwco8leaXiNDJuon41_vStVaHHgalhzYJbV6S933kvS8Ap8JFWKxU35KCKSQoSFiZq4RFXZ8zDwmC65hE4du7YBx51xN_UiSFZWW0e7klma_UVbIbRTRhoU-xDO6mVlCDhu-ELKxDY3D5dDP8JlpOSbQ818JJ5BfJMn-38tshVShzZWM09zejJkTlly7DTF57iznvic8VEcd1f2UHtgsASgbLEbMLGyptQbMAo6SY6lkLtn4oFe4Bv796JC-VJsc0JXghc03VjGRqKSCeP8kj37EoSYgJVzdsfjojIslMID4xTlOaqgl5N2G-H-Q5171G5r8P0Wj4cDG2iuMZLEH7tjnEPhRacN3Xmju-6LucITsRTOMioSX3mI2jQ3LX05zTRBjZVQRfOmCeb0shpHsA9XSaqkMgtsZlRiJUZUbeTGI1h_lUMLz5gbRpG85KG8VvSxWOuNJbNp0ZY2fGeWfGQRs6pRnjYkZmMWVByJBN2qwN56VVqtf_t3a0XvFj2KS5YU1wTwfq89lCnSBumfNuMUy7UIvo4AtYouP8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSwldh71WCGqFtqKoUXdoviFWFLUFMTP55wmBBAMSFGGxPZw9vm-T777DHCpOMJiY2KqlTBIUJCwCm4UZTyUIkCCwH1XKDwaR_1pcDcLZ2VRWF5lu1dHksVOXRe7MUQTFGMKdbib0WgdNhAMdNy9BVPW_aRZfkWzAk7RhcKyVOb3Mb6Hoxpj_jgWLaJNbw92SphIuqt53Yc1kzVht4SMpHTIvAnbX_QED0A-DB7Jc62cMc8IPsgvM7MguVnJfBdfivx0bEpS4pLKHeeeL4hKc5cuT1xo065rSt5cMu47eSrUqZGfH8K0dzu56dPyEgWqWOy5q-Y7yippY2ulH6qYS4EcQgmLrmy1DISHc6glD6yULFVOHBUhko1EEHpaKc2PoJHNM3MMxLO4GWgElMKJkGns5ouQKYGvMNIea8FVZcvkZaWVkdSqyM7yCVo-KSyfRC1oV-ZOSr_JEyaijkDO54kWXFdTUP_-e7ST_zW_gM3-ZDRMhoPx_SlssWJFuHScNjSWi1dzhkhjKc-LhfUBD63I_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbBCROK96rICq5VF1oKibFb8QS1o1BfHzOedBCoIBKcqQ2B7OPt_3yXefAc6lj7BY69hRkmkkKEhYma-lQ_1QsAAJgu_ZQuHHYdQfB3eTcLJUxZ9nu1dHkkVNg1VpShdXM2Wu6sI3isjCwfjiWAxOnWgV1nA79uxKH9PuF-XyKsoV-A66U1iWzfw-xvfQVOPNH0ekeeTp7cBWCRlJt5jjXVjRaRO2S_hISufMmrC5pC24B2I0eCavtYrGNCX4INdM9ZxkupD8zr_kuerYlCTEJphb_j2dE5lkNnWe2DCnbNeEvNvE3A_ykitVI1ffh3Hv9um675QXKjiSxq69dr4jjRQmNkZ4oYx9wZBPSGbQrY0SAXNxPpXwAyMETaQVSkW4ZCIWhK6SUvkH0EinqT4E4hrcGBSCS2YFyRR281hIJcNXGCmXtuCisiWfFboZvFZItpbnaHmeW55HLWhX5ualD2WcsqjDkP-5rAWX1RTUv_8e7eh_zc9gfXTT4w-D4f0xbNB8QdjMnDY0FvM3fYKgYyFO83X1CeedzTk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIV+investigation+on+corner+separation+control+in+a+compressor+cascade+based+on+a+vortex+generator&rft.jtitle=Journal+of+visualization&rft.au=Sun%2C+Shuxian&rft.au=Zhou%2C+Ling&rft.au=Zhu%2C+Yichen&rft.au=Zhu%2C+Huiling&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=27&rft.issue=2&rft.spage=159&rft.epage=175&rft_id=info:doi/10.1007%2Fs12650-024-00962-6&rft.externalDocID=10_1007_s12650_024_00962_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon |