PIV investigation on corner separation control in a compressor cascade based on a vortex generator

To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualization Vol. 27; no. 2; pp. 159 - 175
Main Authors Sun, Shuxian, Zhou, Ling, Zhu, Yichen, Zhu, Huiling, Meng, Tongtong, Ji, Lucheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1343-8875
1875-8975
DOI10.1007/s12650-024-00962-6

Cover

Loading…
Abstract To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Re c ) of 2.1 × 10 4 and 3.1 × 10 4 . As Re c increases to 3.8 × 10 4 and 4.8 × 10 4 , the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle . Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation. Graphic Abstract
AbstractList To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Re c ) of 2.1 × 10 4 and 3.1 × 10 4 . As Re c increases to 3.8 × 10 4 and 4.8 × 10 4 , the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle . Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation. Graphic Abstract
To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex generator (VG) installed on the end wall of the cascade passage was adopted. Detailed particle image velocimetry investigations were performed at different attack angles and flow velocities in a low-speed wind tunnel. At a 5° attack angle, the VG control cascade can effectively suppress the corner separation for chord Reynolds numbers (Rec) of 2.1 × 104 and 3.1 × 104. As Rec increases to 3.8 × 104 and 4.8 × 104, the original separation zone is relatively small, and the strong trailing vortex generated by the VG fails to intersect it, instead producing excessive interference to the main flow, resulting in additional flow loss. The separation zone is generally small at a 0° attack angle, and the VG control cascade performs similarly to that at the 5° attack angle. Through analysis of the instantaneous velocity and vorticity, it is discovered that the primary mechanism by which the VG suppresses corner separation is the unsteady disturbance of the trailing vortex to the separation, which increases the kinetic energy in the separation zone, lowers the accumulation of low-energy fluid, thereby suppressing the corner separation.Graphic Abstract
Author Zhou, Ling
Sun, Shuxian
Ji, Lucheng
Zhu, Yichen
Meng, Tongtong
Zhu, Huiling
Author_xml – sequence: 1
  givenname: Shuxian
  surname: Sun
  fullname: Sun, Shuxian
  organization: School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Ling
  surname: Zhou
  fullname: Zhou, Ling
  organization: School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: Yichen
  surname: Zhu
  fullname: Zhu, Yichen
  organization: School of Aeronautic Science and Engineering, Beihang University
– sequence: 4
  givenname: Huiling
  surname: Zhu
  fullname: Zhu, Huiling
  email: huilingzhu@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 5
  givenname: Tongtong
  surname: Meng
  fullname: Meng, Tongtong
  organization: School of Aerospace Engineering, Beijing Institute of Technology
– sequence: 6
  givenname: Lucheng
  surname: Ji
  fullname: Ji, Lucheng
  organization: Institute for Aero Engine, Tsinghua University
BookMark eNp9kEtLAzEUhYNUsK3-AVcB19E8J5OlFB8FQRfqNiSZpExpk5pMi_57U0dwJ1zIvZdzziXfDExiih6AS4KvCcbyphDaCIww5Qhj1VDUnIApaaVArZJiUnvGGWrr4gzMSlljTAmXZArsy_Id9vHgy9CvzNCnCGu5lKPPsPidyePSpTjktKlSaOqw3WVfSsrQmeJM56E1xXdHq4GHlAf_CVe-Rpgh5XNwGsym-Ivfdw7e7u9eF4_o6flhubh9Qo5KPCDCWhecDTIES4STzCqhpFOhZTR0livs6iXLeLCWGieokA3noVFc4M65js3B1Zi7y-ljXz-k12mfYz2pqWpaRXhFU1V0VLmcSsk-6F3utyZ_aYL1kaUeWerKUv-w1E01sdFUqjiufP6L_sf1DcbKesI
Cites_doi 10.1115/GT2015-42474
10.2514/6.2004-2207
10.2514/1.J057783
10.1017/jfm.2016.81
10.1115/1.2775492
10.1007/s00348-011-1054-x
10.1115/GT2002-30677
10.1115/1.4006605
10.1016/j.cja.2021.11.013
10.4271/760925
10.1088/0957-0233/27/8/084006
10.1115/1.4035876
10.1002/9781119417989.ch2
10.1115/93-GT-435
10.1115/GT2014-25329
10.1115/1.1507333
10.2514/1.B35448
10.1007/978-3-662-03637-2_2
10.1115/FEDSM2014-21593
10.1115/1.4034871
10.22261/JGPPS.JYVUQD
10.2514/1.J058488
10.2514/6.2008-4299
10.1007/s11433-015-5719-y
10.1115/1.4042990
10.1007/s00348-011-1061-y
ContentType Journal Article
Copyright The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12650-024-00962-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8975
EndPage 175
ExternalDocumentID 10_1007_s12650_024_00962_6
GrantInformation_xml – fundername: National Major Science and Technology Projects of China
  grantid: Nos. 2017-II-0006-0020; J2019-II-0003-0023
  funderid: http://dx.doi.org/10.13039/501100013076
– fundername: National Natural Science Foundation of China
  grantid: 51976010
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2KG
2VQ
30V
4.4
406
408
40D
5GY
67Z
8TC
96X
AAAVM
AACDK
AAFNC
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPQW
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
ADZMO
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRHK
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGIAB
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IOS
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MET
MIO
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PT5
R89
R9I
RLLFE
RNI
ROL
RSV
RZK
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-138cfcbf7ffb15c73b9597c9f832fdb490ccadb34fbb2ac5257644f69450dccd3
IEDL.DBID AGYKE
ISSN 1343-8875
IngestDate Fri Jul 25 23:48:19 EDT 2025
Tue Jul 01 04:10:07 EDT 2025
Fri Feb 21 02:39:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Vortex generator
Particle image velocimetry
Corner separation
Compressor cascade
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-138cfcbf7ffb15c73b9597c9f832fdb490ccadb34fbb2ac5257644f69450dccd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2968914009
PQPubID 2043635
PageCount 17
ParticipantIDs proquest_journals_2968914009
crossref_primary_10_1007_s12650_024_00962_6
springer_journals_10_1007_s12650_024_00962_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of visualization
PublicationTitleAbbrev J Vis
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tan D, Li Y, Wilkes I, Miorini RL, Katz J (2014) PIV measurements of the flow in the tip region of a compressor rotor. FEDSM2014. https://doi.org/10.1115/FEDSM2014-21593
XinqianZAnxiongLExperimental investigation of surge and stall in a high-speed centrifugal compressorJ Propul Power20153181582510.2514/1.B35448
RaffelMWillertCEKompenhansJParticle image velocimetry: a practical guide1998BerlinSpringer10.1007/978-3-662-03637-2_2
RuiyuLLiminGLeiZChiMShiyanLDominating unsteadiness flow structures in corner separation under high Mach numberAIAA J201957292329322019AIAAJ..57.2923R10.2514/1.J057783
LiJJiLEfficient design method for applying vortex generators in turbomachineryJ Turbomach201914110.1115/1.4042990
ZamboniniGOttavyXKriegseisJCorner separation dynamics in a linear compressor cascadeJ Fluids Eng201713910.1115/1.4035876
LeiVMSpakovszkyZSGreitzerEMA criterion for axial compressor hub-corner stallJ Turbomach200813010.1115/1.2775492
Denton JD (1993) Loss mechanisms in turbomachines. GT1993. https://doi.org/10.1115/93-GT-435
Siemann J, Seume JR (2015) Design of an aspirated compressor stator by means of DoE. GT2015. https://doi.org/10.1115/GT2015-42474
BrandstetterCSchifferHPPIV measurements of the transient flow structure in the tip region of a transonic compressor near stability limitJ Glob Power Propuls Soc2017130331610.22261/JGPPS.JYVUQD
HeGSPanCFengLHGaoQWangJJEvolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layerJ Fluid Mech20167922743062016JFM...792..274H34821831:CAS:528:DC%2BC28XitFKqur3P10.1017/jfm.2016.81
VogesMWillertCEMönigRMüllerMWSchifferHPThe challenge of stereo PIV measurements in the tip gap of a transonic compressor rotor with casing treatmentExp Fluids20125258159010.1007/s00348-011-1061-y
Thiam A, Whittlesey R, Wark C, Williams D (2008) Corner separation and the on-set of stall in an axial compressor. In: The 38th fluid dynamics conference and exhibit. https://doi.org/10.2514/6.2008-4299
HergtAMeyerREngelKEffects of vortex generator application on the performance of a compressor cascadeJ Turbomach201213510.1115/1.4006605
ChampagnatFPlyerALe BesneraisGLeclaireBDavoustSLe SantYFast and accurate PIV computation using highly parallel iterative correlation maximizationExp Fluids2011501169118210.1007/s00348-011-1054-x
Chima RV (2002) Computational modeling of vortex generators for turbomachinery. GT2002. https://doi.org/10.1115/GT2002-30677
GallimoreSJBolgerJJCumpstyNATaylorMJWrightPIPlaceJMMThe use of sweep and dihedral in multistage axial flow compressor blading—part I: university research and methods developmentJ Turbomach200212452153210.1115/1.1507333
Law CH, Wennerstrom AJ, Buzzell WA (1976) The use of vortex generations as inexpensive compressor casing treatment. SAE technical paper, 760925. https://doi.org/10.4271/760925
PanCXueDXuYWangJWeiREvaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV applicationSci China Phys Mech20155810.1007/s11433-015-5719-y
FuHZhouLJiLInfluence of sub-boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressorsChin J Aeronaut202235304410.1016/j.cja.2021.11.013
ColemanHWSteeleWGExperimentation, validation, and uncertainty analysis for engineers2018New YorkWiley10.1002/9781119417989.ch2
KlineSJDescribing uncertainties in single-sample experimentsMech Eng19637538
LiuYYanHLuLLiQInvestigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDESJ Fluids Eng201613910.1115/1.4034871
TangYLiuYLuLLuHWangMPassive separation control with blade-end slots in a highly loaded compressor cascadeAIAA J20205885972020AIAAJ..58...85T10.2514/1.J058488
SciacchitanoAWienekeBPIV uncertainty propagationMeas Sci Technol2016272016MeScT..27h4006S1:CAS:528:DC%2BC2sXovVyhsbg%3D10.1088/0957-0233/27/8/084006
Klinner J, Voges M, Willert C (2013) Application of tomographic PIV on a passage vortex in a transonic compressor cascade. Tagungsband Lasermethoden in Der Str-Mungsmesstechnik 21
Agarwal R, Dhamarla A, Narayanan SR, Goswami SN, Srinivasan B (2014) Numerical investigation on the effect of vortex generator on axial compressor performance. GT2014. https://doi.org/10.1115/GT2014-25329
Estevadeordal J, Koch P, Guillot S, Ng W, Car D, Puterbaugh S (2004) Benefits of suction-surface blowing in a transonic compressor stator vane. In: The 2nd AIAA flow control conference. https://doi.org/10.2514/6.2004-2207
SJ Gallimore (962_CR9) 2002; 124
H Fu (962_CR8) 2022; 35
J Li (962_CR16) 2019; 141
Y Tang (962_CR24) 2020; 58
962_CR6
M Raffel (962_CR19) 1998
962_CR7
962_CR1
962_CR4
A Sciacchitano (962_CR21) 2016; 27
L Ruiyu (962_CR20) 2019; 57
HW Coleman (962_CR5) 2018
962_CR22
962_CR23
C Pan (962_CR18) 2015; 58
962_CR25
SJ Kline (962_CR12) 1963; 75
A Hergt (962_CR11) 2012; 135
GS He (962_CR10) 2016; 792
F Champagnat (962_CR3) 2011; 50
VM Lei (962_CR15) 2008; 130
Y Liu (962_CR17) 2016; 139
Z Xinqian (962_CR27) 2015; 31
C Brandstetter (962_CR2) 2017; 1
962_CR13
962_CR14
G Zambonini (962_CR28) 2017; 139
M Voges (962_CR26) 2012; 52
References_xml – reference: Thiam A, Whittlesey R, Wark C, Williams D (2008) Corner separation and the on-set of stall in an axial compressor. In: The 38th fluid dynamics conference and exhibit. https://doi.org/10.2514/6.2008-4299
– reference: RaffelMWillertCEKompenhansJParticle image velocimetry: a practical guide1998BerlinSpringer10.1007/978-3-662-03637-2_2
– reference: ZamboniniGOttavyXKriegseisJCorner separation dynamics in a linear compressor cascadeJ Fluids Eng201713910.1115/1.4035876
– reference: Klinner J, Voges M, Willert C (2013) Application of tomographic PIV on a passage vortex in a transonic compressor cascade. Tagungsband Lasermethoden in Der Str-Mungsmesstechnik 21
– reference: Siemann J, Seume JR (2015) Design of an aspirated compressor stator by means of DoE. GT2015. https://doi.org/10.1115/GT2015-42474
– reference: FuHZhouLJiLInfluence of sub-boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressorsChin J Aeronaut202235304410.1016/j.cja.2021.11.013
– reference: VogesMWillertCEMönigRMüllerMWSchifferHPThe challenge of stereo PIV measurements in the tip gap of a transonic compressor rotor with casing treatmentExp Fluids20125258159010.1007/s00348-011-1061-y
– reference: Law CH, Wennerstrom AJ, Buzzell WA (1976) The use of vortex generations as inexpensive compressor casing treatment. SAE technical paper, 760925. https://doi.org/10.4271/760925
– reference: BrandstetterCSchifferHPPIV measurements of the transient flow structure in the tip region of a transonic compressor near stability limitJ Glob Power Propuls Soc2017130331610.22261/JGPPS.JYVUQD
– reference: Agarwal R, Dhamarla A, Narayanan SR, Goswami SN, Srinivasan B (2014) Numerical investigation on the effect of vortex generator on axial compressor performance. GT2014. https://doi.org/10.1115/GT2014-25329
– reference: LiJJiLEfficient design method for applying vortex generators in turbomachineryJ Turbomach201914110.1115/1.4042990
– reference: Tan D, Li Y, Wilkes I, Miorini RL, Katz J (2014) PIV measurements of the flow in the tip region of a compressor rotor. FEDSM2014. https://doi.org/10.1115/FEDSM2014-21593
– reference: ChampagnatFPlyerALe BesneraisGLeclaireBDavoustSLe SantYFast and accurate PIV computation using highly parallel iterative correlation maximizationExp Fluids2011501169118210.1007/s00348-011-1054-x
– reference: SciacchitanoAWienekeBPIV uncertainty propagationMeas Sci Technol2016272016MeScT..27h4006S1:CAS:528:DC%2BC2sXovVyhsbg%3D10.1088/0957-0233/27/8/084006
– reference: TangYLiuYLuLLuHWangMPassive separation control with blade-end slots in a highly loaded compressor cascadeAIAA J20205885972020AIAAJ..58...85T10.2514/1.J058488
– reference: GallimoreSJBolgerJJCumpstyNATaylorMJWrightPIPlaceJMMThe use of sweep and dihedral in multistage axial flow compressor blading—part I: university research and methods developmentJ Turbomach200212452153210.1115/1.1507333
– reference: KlineSJDescribing uncertainties in single-sample experimentsMech Eng19637538
– reference: RuiyuLLiminGLeiZChiMShiyanLDominating unsteadiness flow structures in corner separation under high Mach numberAIAA J201957292329322019AIAAJ..57.2923R10.2514/1.J057783
– reference: Estevadeordal J, Koch P, Guillot S, Ng W, Car D, Puterbaugh S (2004) Benefits of suction-surface blowing in a transonic compressor stator vane. In: The 2nd AIAA flow control conference. https://doi.org/10.2514/6.2004-2207
– reference: Chima RV (2002) Computational modeling of vortex generators for turbomachinery. GT2002. https://doi.org/10.1115/GT2002-30677
– reference: Denton JD (1993) Loss mechanisms in turbomachines. GT1993. https://doi.org/10.1115/93-GT-435
– reference: LiuYYanHLuLLiQInvestigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDESJ Fluids Eng201613910.1115/1.4034871
– reference: XinqianZAnxiongLExperimental investigation of surge and stall in a high-speed centrifugal compressorJ Propul Power20153181582510.2514/1.B35448
– reference: HergtAMeyerREngelKEffects of vortex generator application on the performance of a compressor cascadeJ Turbomach201213510.1115/1.4006605
– reference: HeGSPanCFengLHGaoQWangJJEvolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layerJ Fluid Mech20167922743062016JFM...792..274H34821831:CAS:528:DC%2BC28XitFKqur3P10.1017/jfm.2016.81
– reference: ColemanHWSteeleWGExperimentation, validation, and uncertainty analysis for engineers2018New YorkWiley10.1002/9781119417989.ch2
– reference: PanCXueDXuYWangJWeiREvaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV applicationSci China Phys Mech20155810.1007/s11433-015-5719-y
– reference: LeiVMSpakovszkyZSGreitzerEMA criterion for axial compressor hub-corner stallJ Turbomach200813010.1115/1.2775492
– ident: 962_CR22
  doi: 10.1115/GT2015-42474
– ident: 962_CR7
  doi: 10.2514/6.2004-2207
– volume: 57
  start-page: 2923
  year: 2019
  ident: 962_CR20
  publication-title: AIAA J
  doi: 10.2514/1.J057783
– volume: 792
  start-page: 274
  year: 2016
  ident: 962_CR10
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.81
– volume: 130
  year: 2008
  ident: 962_CR15
  publication-title: J Turbomach
  doi: 10.1115/1.2775492
– volume: 50
  start-page: 1169
  year: 2011
  ident: 962_CR3
  publication-title: Exp Fluids
  doi: 10.1007/s00348-011-1054-x
– ident: 962_CR4
  doi: 10.1115/GT2002-30677
– volume: 135
  year: 2012
  ident: 962_CR11
  publication-title: J Turbomach
  doi: 10.1115/1.4006605
– volume: 35
  start-page: 30
  year: 2022
  ident: 962_CR8
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.11.013
– volume: 75
  start-page: 3
  year: 1963
  ident: 962_CR12
  publication-title: Mech Eng
– ident: 962_CR14
  doi: 10.4271/760925
– volume: 27
  year: 2016
  ident: 962_CR21
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/27/8/084006
– volume: 139
  year: 2017
  ident: 962_CR28
  publication-title: J Fluids Eng
  doi: 10.1115/1.4035876
– volume-title: Experimentation, validation, and uncertainty analysis for engineers
  year: 2018
  ident: 962_CR5
  doi: 10.1002/9781119417989.ch2
– ident: 962_CR6
  doi: 10.1115/93-GT-435
– ident: 962_CR1
  doi: 10.1115/GT2014-25329
– volume: 124
  start-page: 521
  year: 2002
  ident: 962_CR9
  publication-title: J Turbomach
  doi: 10.1115/1.1507333
– volume: 31
  start-page: 815
  year: 2015
  ident: 962_CR27
  publication-title: J Propul Power
  doi: 10.2514/1.B35448
– volume-title: Particle image velocimetry: a practical guide
  year: 1998
  ident: 962_CR19
  doi: 10.1007/978-3-662-03637-2_2
– ident: 962_CR23
  doi: 10.1115/FEDSM2014-21593
– ident: 962_CR13
– volume: 139
  year: 2016
  ident: 962_CR17
  publication-title: J Fluids Eng
  doi: 10.1115/1.4034871
– volume: 1
  start-page: 303
  year: 2017
  ident: 962_CR2
  publication-title: J Glob Power Propuls Soc
  doi: 10.22261/JGPPS.JYVUQD
– volume: 58
  start-page: 85
  year: 2020
  ident: 962_CR24
  publication-title: AIAA J
  doi: 10.2514/1.J058488
– ident: 962_CR25
  doi: 10.2514/6.2008-4299
– volume: 58
  year: 2015
  ident: 962_CR18
  publication-title: Sci China Phys Mech
  doi: 10.1007/s11433-015-5719-y
– volume: 141
  year: 2019
  ident: 962_CR16
  publication-title: J Turbomach
  doi: 10.1115/1.4042990
– volume: 52
  start-page: 581
  year: 2012
  ident: 962_CR26
  publication-title: Exp Fluids
  doi: 10.1007/s00348-011-1061-y
SSID ssj0021471
Score 2.3154917
Snippet To deepen the understanding of flow mechanisms related to corner separation and associated control techniques, a passive control scheme based on a vortex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 159
SubjectTerms Angle of attack
Classical and Continuum Physics
Computer Imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow velocity
Fluid flow
Heat and Mass Transfer
Kinetic energy
Low speed wind tunnels
Particle image velocimetry
Passive control
Pattern Recognition and Graphics
Regular Paper
Reynolds number
Separation
Trailing vortices
Vision
Vortex generators
Vortices
Vorticity
Title PIV investigation on corner separation control in a compressor cascade based on a vortex generator
URI https://link.springer.com/article/10.1007/s12650-024-00962-6
https://www.proquest.com/docview/2968914009
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH647aIHp1NxOkcO3rSjTX-sOQ7ZnIriwco8leaXiNDJuon41_vStVaHHgalhzYJbV6S933kvS8Ap8JFWKxU35KCKSQoSFiZq4RFXZ8zDwmC65hE4du7YBx51xN_UiSFZWW0e7klma_UVbIbRTRhoU-xDO6mVlCDhu-ELKxDY3D5dDP8JlpOSbQ818JJ5BfJMn-38tshVShzZWM09zejJkTlly7DTF57iznvic8VEcd1f2UHtgsASgbLEbMLGyptQbMAo6SY6lkLtn4oFe4Bv796JC-VJsc0JXghc03VjGRqKSCeP8kj37EoSYgJVzdsfjojIslMID4xTlOaqgl5N2G-H-Q5171G5r8P0Wj4cDG2iuMZLEH7tjnEPhRacN3Xmju-6LucITsRTOMioSX3mI2jQ3LX05zTRBjZVQRfOmCeb0shpHsA9XSaqkMgtsZlRiJUZUbeTGI1h_lUMLz5gbRpG85KG8VvSxWOuNJbNp0ZY2fGeWfGQRs6pRnjYkZmMWVByJBN2qwN56VVqtf_t3a0XvFj2KS5YU1wTwfq89lCnSBumfNuMUy7UIvo4AtYouP8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSwldh71WCGqFtqKoUXdoviFWFLUFMTP55wmBBAMSFGGxPZw9vm-T777DHCpOMJiY2KqlTBIUJCwCm4UZTyUIkCCwH1XKDwaR_1pcDcLZ2VRWF5lu1dHksVOXRe7MUQTFGMKdbib0WgdNhAMdNy9BVPW_aRZfkWzAk7RhcKyVOb3Mb6Hoxpj_jgWLaJNbw92SphIuqt53Yc1kzVht4SMpHTIvAnbX_QED0A-DB7Jc62cMc8IPsgvM7MguVnJfBdfivx0bEpS4pLKHeeeL4hKc5cuT1xo065rSt5cMu47eSrUqZGfH8K0dzu56dPyEgWqWOy5q-Y7yippY2ulH6qYS4EcQgmLrmy1DISHc6glD6yULFVOHBUhko1EEHpaKc2PoJHNM3MMxLO4GWgElMKJkGns5ouQKYGvMNIea8FVZcvkZaWVkdSqyM7yCVo-KSyfRC1oV-ZOSr_JEyaijkDO54kWXFdTUP_-e7ST_zW_gM3-ZDRMhoPx_SlssWJFuHScNjSWi1dzhkhjKc-LhfUBD63I_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQgEPbBCROK96rICq5VF1oKibFb8QS1o1BfHzOedBCoIBKcqQ2B7OPt_3yXefAc6lj7BY69hRkmkkKEhYma-lQ_1QsAAJgu_ZQuHHYdQfB3eTcLJUxZ9nu1dHkkVNg1VpShdXM2Wu6sI3isjCwfjiWAxOnWgV1nA79uxKH9PuF-XyKsoV-A66U1iWzfw-xvfQVOPNH0ekeeTp7cBWCRlJt5jjXVjRaRO2S_hISufMmrC5pC24B2I0eCavtYrGNCX4INdM9ZxkupD8zr_kuerYlCTEJphb_j2dE5lkNnWe2DCnbNeEvNvE3A_ykitVI1ffh3Hv9um675QXKjiSxq69dr4jjRQmNkZ4oYx9wZBPSGbQrY0SAXNxPpXwAyMETaQVSkW4ZCIWhK6SUvkH0EinqT4E4hrcGBSCS2YFyRR281hIJcNXGCmXtuCisiWfFboZvFZItpbnaHmeW55HLWhX5ualD2WcsqjDkP-5rAWX1RTUv_8e7eh_zc9gfXTT4w-D4f0xbNB8QdjMnDY0FvM3fYKgYyFO83X1CeedzTk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PIV+investigation+on+corner+separation+control+in+a+compressor+cascade+based+on+a+vortex+generator&rft.jtitle=Journal+of+visualization&rft.au=Sun%2C+Shuxian&rft.au=Zhou%2C+Ling&rft.au=Zhu%2C+Yichen&rft.au=Zhu%2C+Huiling&rft.date=2024-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=27&rft.issue=2&rft.spage=159&rft.epage=175&rft_id=info:doi/10.1007%2Fs12650-024-00962-6&rft.externalDocID=10_1007_s12650_024_00962_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon