Local isoperimetric inequalities in metric measure spaces verifying measure contraction property

We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.

Saved in:
Bibliographic Details
Published inManuscripta mathematica Vol. 171; no. 1-2; pp. 1 - 21
Main Author Huang, Xian-Tao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
AbstractList We prove that on an essentially non-branching MCP(K,N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
Author Huang, Xian-Tao
Author_xml – sequence: 1
  givenname: Xian-Tao
  surname: Huang
  fullname: Huang, Xian-Tao
  email: hxiant@mail2.sysu.edu.cn
  organization: School of Mathematics, Sun Yat-sen University
BookMark eNp9UE1PwzAMjdCQ2AZ_gFMlzoEkbpv2iCZgSJO4wDmkmTNl2tIuaZH278noBDcutuz3YfnNyMS3Hgm55eyeMyYfImNC1DQVyjhIoHBBpjwHQbmsigmZJrygouT8isxi3DKWQAlT8rlqjd5lLrYdBrfHPjiTOY-HQe9c7zCmITuv96jjEDCLnTYJ-EoCe3R-8wuY1vdBm961PuvCybE_XpNLq3cRb859Tj6en94XS7p6e3ldPK6oEZL1lAsjuVnzwjQgLG90tda5LACxzisomwagrrgGYerGroXRtsZSW0SwdXpEwpzcjb7p8GHA2KttOwSfTipRMVFDmYsqscTIMqGNMaBVXfpah6PiTJ2SVGOSKhX1k6SCJIJRFBPZbzD8Wf-j-gacVHq-
Cites_doi 10.1016/j.na.2022.112839
10.1007/BF01388608
10.1007/s00222-018-0840-y
10.4007/annals.2009.169.903
10.1007/BF00252910
10.1007/s00222-016-0700-6
10.4171/JEMS/526
10.1007/BF02574061
10.1007/s00229-019-01138-5
10.1093/imrn/rny070
10.1090/memo/1180
10.1016/j.jfa.2019.06.016
10.1016/j.na.2013.12.008
10.1007/s00222-021-01040-6
10.2422/2036-2145.201906_012
10.3934/dcds.2016.36.303
10.1142/S021919971750081X
10.1016/j.na.2016.03.010
10.2140/apde.2020.13.2091
10.1007/BF01394058
10.1007/s00222-013-0452-5
10.1016/j.jfa.2010.03.024
10.1142/S0219199717500079
10.4171/CMH/110
10.1515/9783110550832-003
10.1007/s00220-013-1663-8
10.1007/s00526-022-02284-7
10.1007/s11511-006-0003-7
10.1007/s11511-006-0002-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s00229-022-01373-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1785
EndPage 21
ExternalDocumentID 10_1007_s00229_022_01373_3
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1GH
1N0
1SB
2.D
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c270t-12c71cd15cb32f1ba8da4753ee94836bb33981a32c9bfd2caf9e6afee3f937373
IEDL.DBID AGYKE
ISSN 0025-2611
IngestDate Mon Nov 04 11:28:48 EST 2024
Thu Sep 12 18:06:38 EDT 2024
Sat Dec 16 12:09:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 51Fxx
53C23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-12c71cd15cb32f1ba8da4753ee94836bb33981a32c9bfd2caf9e6afee3f937373
PQID 2802936428
PQPubID 2043619
PageCount 21
ParticipantIDs proquest_journals_2802936428
crossref_primary_10_1007_s00229_022_01373_3
springer_journals_10_1007_s00229_022_01373_3
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Manuscripta mathematica
PublicationTitleAbbrev manuscripta math
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MilmanESharp isoperimetric inequalities and model spaces for curvature-dimension diameter conditionJ. Eur. Math. Soc.20151710411078334668810.4171/JEMS/5261321.53043
SturmKTOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032
EichmairMMetzgerJUnique isoperimetric foliations of asymptotically flat manifolds in all dimensionsInvent. Math.2013194591630312706310.1007/s00222-013-0452-51297.49078
LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math. (2)2009169903991248061910.4007/annals.2009.169.9031178.53038
Han, B.-X., Milman, E.: Sharp Poincaré inequalities under measure contraction property. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22, 1401–1428 (2021)
CavallettiFMondinoAIsoperimetric inequalities for finite perimeter sets under lower Ricci curvature boundsRend. Lincei Mat. Appl.20182941343038190971395.53044
CavallettiFSantarcangeloFIsoperimetric inequality under measure contraction propertyJ. Funct. Anal.201927728932917399762410.1016/j.jfa.2019.06.0161431.53047
Klartag, B.: Needle decomposition in Riemannian geometry. Mem. Amer. Math. Soc. 249, v+77 pp (2017)
Cavalletti, F., Mondino, A.: New formulas for the Laplacian of distance functions and applications. Anal. PDE. 13, 2091–2147 (2020)
AmbrosioLGigliNA user’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics2011BerlinSpringer
BarilariDRizziLSharp measure contraction property for generalized H-type Carnot groupsCommun. Contemp. Math.2018201750081, 24384807010.1142/S021919971750081X1398.53038
Nobili, F., Violo, I.: Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds. http://arxiv.org/abs/2108.02135 (2021)
BérardPBessonGGallotSSur une inégalité isopérimétrique qui généralise celle de Paul Lévy-GromovInvent. Math.19858029530878841210.1007/BF013886080571.53027
GromovMMilmanVDGeneralization of the spherical isoperimetric inequality to uniformly convex Banach spacesCompos. Math.1987622632829013930623.46007
CavallettiFMondinoAAlmost Euclidean Isoperimetric Inequalities in spaces satisfying local Ricci curvature lower boundsInt. Math. Res. Not. IMRN20202020514811510407394710.1093/imrn/rny0701436.53022
VillaniCOptimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer
FremlinDHMeasure Theory2002BostonTorres Fremlin
SturmKTOn the geometry of metric measure spaces IActa Math.200619665131223720610.1007/s11511-006-0002-81105.53035
BarilariDRizziLSub-Riemannian interpolation inequalitiesInvent. math.20192159771038393503510.1007/s00222-018-0840-y1412.53051
CavallettiFMondinoAOptimal maps in essentially non-branching spacesCommun. Contemp. Math.2017191750007, 27369150210.1142/S02191997175000791376.53064
Cavalletti, F., Milman, E.: The globalization theorem for the curvature-dimension condition. Invent. Math. 226, 1–137 (2021)
JuilletNGeometric inequalities and generalized Ricci bounds in the Heisenberg groupInt. Math. Res. Not. IMRN2009132347237325207831176.53053
Ambrosio, L., Gigli, N., Di Marino, S.: Perimeter as relaxed Minkowski content in metric measure spaces. Nonlinear Anal. 153, 78–88 (2017)
GromovMMetric Structures for Riemannian and Non Riemannian Spaces2007BaselModern Birkhäuser Classics1113.53001
OhtaSOn the measure contraction property of metric measure spacesComment. Math. Helv.200782805828234184010.4171/CMH/1101176.28016
KannanRLovászLSimonovitsMIsoperimetric problems for convex bodies and a localization lemmaDiscrete Comput. Geom.199513541559131879410.1007/BF025740610824.52012
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. http://arxiv.org/abs/math/0211159v1 (2002)
HanB-XSharp p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Poincaré inequality under measure contraction propertyManuscr. Math.202016245747110.1007/s00229-019-01138-51444.53031
BacherKSturmK-TLocalization and tensorization properties of the curvature-dimension condition for metric measure spacesJ. Funct. Anal.20102592856261037810.1016/j.jfa.2010.03.0241196.53027
CavallettiFMondinoASharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature boundsInvent. Math.2017208803849364897510.1007/s00222-016-0700-61375.53053
BianchiniSCavallettiFThe Monge problem for distance cost in geodesic spacesCommun. Math. Phys.2013318615673302758110.1007/s00220-013-1663-81275.49080
Antonelli, G., Pasqualetto, E., Pozzetta, M.: Isoperimetric sets in spaces with lower bounds on the Ricci curvature. http://arxiv.org/abs/2107.03124v2(2021)
CrokeCBAn eigenvalue pinching theoremInvent. Math.19826825325666616210.1007/BF013940580505.53018
LeePWYLiCZelenkoIRicci curvature type lower bounds for sub-Riemannian structures on Sasakian manifoldsDiscrete Contin. Dyn. Syst.201636303321336922310.3934/dcds.2016.36.3031326.53043
CavallettiFMonge problem in metric measure spaces with Riemannian curvature-dimension conditionNonlinear Anal.201499136151316053010.1016/j.na.2013.12.0081283.49058
Cavalletti, F.: An overview of L1-optimal transportation on metric measure spaces. In: Gigli, N. (ed.) Measure Theory in Non-Smooth Spaces. De Gruyter Open, Boston (2017)
PayneLEWeinbergerHFAn optimal Poincaré inequality for convex domainsArch. Ration. Mech. Anal1960528629210.1007/BF002529100099.08402
BianchiniSCaravennaLOn the extremality, uniqueness and optimality of transference plansBull. Inst. Math. Acad. Sin. (N.S.)2009435345425827361207.90015
B-X Han (1373_CR24) 2020; 162
KT Sturm (1373_CR36) 2006; 196
M Gromov (1373_CR23) 1987; 62
P Bérard (1373_CR7) 1985; 80
PWY Lee (1373_CR30) 2016; 36
F Cavalletti (1373_CR14) 2017; 19
DH Fremlin (1373_CR21) 2002
L Ambrosio (1373_CR1) 2011
E Milman (1373_CR31) 2015; 17
D Barilari (1373_CR5) 2018; 20
F Cavalletti (1373_CR16) 2018; 29
F Cavalletti (1373_CR18) 2019; 277
1373_CR28
C Villani (1373_CR38) 2009
1373_CR25
R Kannan (1373_CR27) 1995; 13
LE Payne (1373_CR34) 1960; 5
M Eichmair (1373_CR20) 2013; 194
1373_CR10
F Cavalletti (1373_CR17) 2020; 2020
CB Croke (1373_CR19) 1982; 68
1373_CR32
K Bacher (1373_CR4) 2010; 259
F Cavalletti (1373_CR13) 2017; 208
M Gromov (1373_CR22) 2007
1373_CR2
1373_CR3
J Lott (1373_CR29) 2009; 169
S Bianchini (1373_CR8) 2013; 318
KT Sturm (1373_CR37) 2006; 196
D Barilari (1373_CR6) 2019; 215
S Bianchini (1373_CR9) 2009; 4
1373_CR15
F Cavalletti (1373_CR11) 2014; 99
S Ohta (1373_CR33) 2007; 82
1373_CR12
N Juillet (1373_CR26) 2009; 13
1373_CR35
References_xml – ident: 1373_CR3
  doi: 10.1016/j.na.2022.112839
– volume: 80
  start-page: 295
  year: 1985
  ident: 1373_CR7
  publication-title: Invent. Math.
  doi: 10.1007/BF01388608
  contributor:
    fullname: P Bérard
– volume-title: Metric Structures for Riemannian and Non Riemannian Spaces
  year: 2007
  ident: 1373_CR22
  contributor:
    fullname: M Gromov
– volume: 215
  start-page: 977
  year: 2019
  ident: 1373_CR6
  publication-title: Invent. math.
  doi: 10.1007/s00222-018-0840-y
  contributor:
    fullname: D Barilari
– volume: 169
  start-page: 903
  year: 2009
  ident: 1373_CR29
  publication-title: Ann. of Math. (2)
  doi: 10.4007/annals.2009.169.903
  contributor:
    fullname: J Lott
– volume: 5
  start-page: 286
  year: 1960
  ident: 1373_CR34
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/BF00252910
  contributor:
    fullname: LE Payne
– volume: 208
  start-page: 803
  year: 2017
  ident: 1373_CR13
  publication-title: Invent. Math.
  doi: 10.1007/s00222-016-0700-6
  contributor:
    fullname: F Cavalletti
– volume: 62
  start-page: 263
  year: 1987
  ident: 1373_CR23
  publication-title: Compos. Math.
  contributor:
    fullname: M Gromov
– volume: 17
  start-page: 1041
  year: 2015
  ident: 1373_CR31
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/526
  contributor:
    fullname: E Milman
– volume: 13
  start-page: 541
  year: 1995
  ident: 1373_CR27
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574061
  contributor:
    fullname: R Kannan
– volume: 162
  start-page: 457
  year: 2020
  ident: 1373_CR24
  publication-title: Manuscr. Math.
  doi: 10.1007/s00229-019-01138-5
  contributor:
    fullname: B-X Han
– volume: 2020
  start-page: 1481
  issue: 5
  year: 2020
  ident: 1373_CR17
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rny070
  contributor:
    fullname: F Cavalletti
– ident: 1373_CR28
  doi: 10.1090/memo/1180
– volume: 277
  start-page: 2893
  year: 2019
  ident: 1373_CR18
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2019.06.016
  contributor:
    fullname: F Cavalletti
– volume: 99
  start-page: 136
  year: 2014
  ident: 1373_CR11
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2013.12.008
  contributor:
    fullname: F Cavalletti
– volume-title: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften
  year: 2009
  ident: 1373_CR38
  contributor:
    fullname: C Villani
– ident: 1373_CR12
  doi: 10.1007/s00222-021-01040-6
– ident: 1373_CR25
  doi: 10.2422/2036-2145.201906_012
– volume: 36
  start-page: 303
  year: 2016
  ident: 1373_CR30
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2016.36.303
  contributor:
    fullname: PWY Lee
– volume: 20
  start-page: 1750081, 24
  year: 2018
  ident: 1373_CR5
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S021919971750081X
  contributor:
    fullname: D Barilari
– volume-title: A user’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics
  year: 2011
  ident: 1373_CR1
  contributor:
    fullname: L Ambrosio
– volume: 4
  start-page: 353
  year: 2009
  ident: 1373_CR9
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
  contributor:
    fullname: S Bianchini
– ident: 1373_CR2
  doi: 10.1016/j.na.2016.03.010
– ident: 1373_CR35
– ident: 1373_CR15
  doi: 10.2140/apde.2020.13.2091
– volume: 68
  start-page: 253
  year: 1982
  ident: 1373_CR19
  publication-title: Invent. Math.
  doi: 10.1007/BF01394058
  contributor:
    fullname: CB Croke
– volume: 194
  start-page: 591
  year: 2013
  ident: 1373_CR20
  publication-title: Invent. Math.
  doi: 10.1007/s00222-013-0452-5
  contributor:
    fullname: M Eichmair
– volume: 259
  start-page: 28
  year: 2010
  ident: 1373_CR4
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.03.024
  contributor:
    fullname: K Bacher
– volume: 19
  start-page: 1750007, 27
  year: 2017
  ident: 1373_CR14
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199717500079
  contributor:
    fullname: F Cavalletti
– volume: 82
  start-page: 805
  year: 2007
  ident: 1373_CR33
  publication-title: Comment. Math. Helv.
  doi: 10.4171/CMH/110
  contributor:
    fullname: S Ohta
– ident: 1373_CR10
  doi: 10.1515/9783110550832-003
– volume-title: Measure Theory
  year: 2002
  ident: 1373_CR21
  contributor:
    fullname: DH Fremlin
– volume: 29
  start-page: 413
  year: 2018
  ident: 1373_CR16
  publication-title: Rend. Lincei Mat. Appl.
  contributor:
    fullname: F Cavalletti
– volume: 318
  start-page: 615
  year: 2013
  ident: 1373_CR8
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1663-8
  contributor:
    fullname: S Bianchini
– ident: 1373_CR32
  doi: 10.1007/s00526-022-02284-7
– volume: 196
  start-page: 133
  year: 2006
  ident: 1373_CR37
  publication-title: Acta Math.
  doi: 10.1007/s11511-006-0003-7
  contributor:
    fullname: KT Sturm
– volume: 13
  start-page: 2347
  year: 2009
  ident: 1373_CR26
  publication-title: Int. Math. Res. Not. IMRN
  contributor:
    fullname: N Juillet
– volume: 196
  start-page: 65
  year: 2006
  ident: 1373_CR36
  publication-title: Acta Math.
  doi: 10.1007/s11511-006-0002-8
  contributor:
    fullname: KT Sturm
SSID ssj0014373
Score 2.3409839
Snippet We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric...
We prove that on an essentially non-branching MCP(K,N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algebraic Geometry
Calculus of Variations and Optimal Control; Optimization
Differential geometry
Geometry
Lie Groups
Lower bounds
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
Title Local isoperimetric inequalities in metric measure spaces verifying measure contraction property
URI https://link.springer.com/article/10.1007/s00229-022-01373-3
https://www.proquest.com/docview/2802936428
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBbyOKpAdvOsLabWxHMCBR8SQJnmbbtQkxAoFx0L_e13Ub8etAlizZujRd-17fe-37_QpwJYNAoJXzHM5Rgj2uW6hzPqo70zrUXCURM-Dk4VMwGHn3Y3-8xnFnye7FjmQ2UZdYN2NtIscknxuWPOawbajmwNNq5-7loVduHhi2nuKkVgwQ3Bwr83ct3-3R2sn8sS-amZv-PjwXoB2bZfLWXKWiKT9_czhu8icHsJe7n6Rj5eUQttT0CHaHJXfr8hheH415I5PlzHL_Gwp_gr6ohV9iYI0PJH_9blcYCU5LON8QVItJhpsqC7JMeIudIHOz7r9IP05g1O893w6c_BwGR9J2K3VcKtuuTFxfCka1K3iYcA_DHKUiL2SBEIxFocsZlZHQCZVcRyrgWimm0fnB6xQq09lUnQGhbU4DHkjXD5XHKeVJgO3zE7ST2g-FV4PrYjTiuaXbiEti5azfYrzFWb_FrAb1YsDiXPWWMQ1b6MKYsKoGN8UArIv_r-18s88vYMccPW-TH-tQSRcrdYkOSioaKJD9bvepkQtmA7ZHtPMFyyHfzg
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHv40o6g7edIS1W9mOxIAoHydI8DTbrk2IEQiMg_71vu6LSPRAlizZujRd29f3Xt_7_QpwLxkTqOVcm3OcwS7XdZQ5D8Wdau1rrqKAGnByf8A6I_d17I0zUNgyz3bPQ5LJSl2A3Yy6CWyTfW5o8qhNd6HsEoeREpSbz2_dVhE9MHQ9-VGt6CE4GVjm71p-K6S1lbkRGE30TfsIRnlL0zSTj9oqFjX5vUHiuO2vHMNhZoBazXTGnMCOmp7CQb9gb12ewXvPKDhrspyl7P-GxN9CazQFYKJrjQ9W9voz3WO0cGHCFcdCwZgkyKmiIMmFT9ET1tzs_C_ir3MYtVvDp46dncRgS9Kox7ZDZMORkeNJQYl2BPcj7qKjo1Tg-pQJQWngO5wSGQgdEcl1oBjXSlGN5g9eF1CazqbqEizS4IRxJh3PVy4nhEcM2-dFqCm15wu3Ag_5cITzlHAjLKiVk34L8RYm_RbSClTzEQsz4VuGxK-jEWMcqwo85gOwLv6_tqvtPr-Dvc6w3wt7L4PuNeybg-jTVMgqlOLFSt2guRKL22x2_gCzgOE9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEL_olhh98Ns4ncqDb4obLTB4XHRzuo_4oIk-YVvaZDFuy8Ye9K_3SoGp0QdjSEighJS217vj7vc7gFPh-xy1nGszhivYZaqOMuehuFOlAsVkHFINTu4P_M6De_voPX5C8afZ7nlI0mAaNEvTKKlNYlUrgG9a9YS2zkTXlHnUpstQdjUzUgnKzeunbquIJGjqnrxsK3oLTgac-fktX5XTwuL8FiRNdU97A1jea5Ny8nIxT_iFeP9G6Pifz9qE9cwwtZpmJW3Bkhxtw1q_YHWd7cBzTys-azgbm6oAmtzfQivVADPR5cYLK7v9av49Wrhh4U5kocAMU0RV0ZDmyBtUhTXREYFp8rYLD-3W_WXHzio02II06ontENFwROx4glOiHM6CmLnoAEkZugH1Oac0DBxGiQi5iolgKpQ-U1JShWYRHntQGo1Hch8s0mDEZ75wvEC6jBAW-9g_L0YNqryAuxU4y6cmmhgijqigXE7HLcJTlI5bRCtQzWcvyoRyFpGgjsaNdrgqcJ5PxqL597cd_O3xE1i5u2pHvZtB9xBWdX16kyFZhVIyncsjtGISfpwt1A_Xy-oh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+isoperimetric+inequalities+in+metric+measure+spaces+verifying+measure+contraction+property&rft.jtitle=Manuscripta+mathematica&rft.au=Huang%2C+Xian-Tao&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=171&rft.issue=1-2&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2Fs00229-022-01373-3&rft.externalDocID=10_1007_s00229_022_01373_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon