Local isoperimetric inequalities in metric measure spaces verifying measure contraction property
We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
Saved in:
Published in | Manuscripta mathematica Vol. 171; no. 1-2; pp. 1 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove that on an essentially non-branching
MCP
(
K
,
N
)
space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants. |
---|---|
AbstractList | We prove that on an essentially non-branching MCP(K,N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants. We prove that on an essentially non-branching MCP ( K , N ) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants. |
Author | Huang, Xian-Tao |
Author_xml | – sequence: 1 givenname: Xian-Tao surname: Huang fullname: Huang, Xian-Tao email: hxiant@mail2.sysu.edu.cn organization: School of Mathematics, Sun Yat-sen University |
BookMark | eNp9UE1PwzAMjdCQ2AZ_gFMlzoEkbpv2iCZgSJO4wDmkmTNl2tIuaZH278noBDcutuz3YfnNyMS3Hgm55eyeMyYfImNC1DQVyjhIoHBBpjwHQbmsigmZJrygouT8isxi3DKWQAlT8rlqjd5lLrYdBrfHPjiTOY-HQe9c7zCmITuv96jjEDCLnTYJ-EoCe3R-8wuY1vdBm961PuvCybE_XpNLq3cRb859Tj6en94XS7p6e3ldPK6oEZL1lAsjuVnzwjQgLG90tda5LACxzisomwagrrgGYerGroXRtsZSW0SwdXpEwpzcjb7p8GHA2KttOwSfTipRMVFDmYsqscTIMqGNMaBVXfpah6PiTJ2SVGOSKhX1k6SCJIJRFBPZbzD8Wf-j-gacVHq- |
Cites_doi | 10.1016/j.na.2022.112839 10.1007/BF01388608 10.1007/s00222-018-0840-y 10.4007/annals.2009.169.903 10.1007/BF00252910 10.1007/s00222-016-0700-6 10.4171/JEMS/526 10.1007/BF02574061 10.1007/s00229-019-01138-5 10.1093/imrn/rny070 10.1090/memo/1180 10.1016/j.jfa.2019.06.016 10.1016/j.na.2013.12.008 10.1007/s00222-021-01040-6 10.2422/2036-2145.201906_012 10.3934/dcds.2016.36.303 10.1142/S021919971750081X 10.1016/j.na.2016.03.010 10.2140/apde.2020.13.2091 10.1007/BF01394058 10.1007/s00222-013-0452-5 10.1016/j.jfa.2010.03.024 10.1142/S0219199717500079 10.4171/CMH/110 10.1515/9783110550832-003 10.1007/s00220-013-1663-8 10.1007/s00526-022-02284-7 10.1007/s11511-006-0003-7 10.1007/s11511-006-0002-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00229-022-01373-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-1785 |
EndPage | 21 |
ExternalDocumentID | 10_1007_s00229_022_01373_3 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1GH 1N0 1SB 2.D 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFDYV AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR YQT Z45 Z7U ZMTXR ZWQNP ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH |
ID | FETCH-LOGICAL-c270t-12c71cd15cb32f1ba8da4753ee94836bb33981a32c9bfd2caf9e6afee3f937373 |
IEDL.DBID | AGYKE |
ISSN | 0025-2611 |
IngestDate | Mon Nov 04 11:28:48 EST 2024 Thu Sep 12 18:06:38 EDT 2024 Sat Dec 16 12:09:43 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | 51Fxx 53C23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-12c71cd15cb32f1ba8da4753ee94836bb33981a32c9bfd2caf9e6afee3f937373 |
PQID | 2802936428 |
PQPubID | 2043619 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2802936428 crossref_primary_10_1007_s00229_022_01373_3 springer_journals_10_1007_s00229_022_01373_3 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Manuscripta mathematica |
PublicationTitleAbbrev | manuscripta math |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | MilmanESharp isoperimetric inequalities and model spaces for curvature-dimension diameter conditionJ. Eur. Math. Soc.20151710411078334668810.4171/JEMS/5261321.53043 SturmKTOn the geometry of metric measure spaces IIActa Math.2006196133177223720710.1007/s11511-006-0003-71106.53032 EichmairMMetzgerJUnique isoperimetric foliations of asymptotically flat manifolds in all dimensionsInvent. Math.2013194591630312706310.1007/s00222-013-0452-51297.49078 LottJVillaniCRicci curvature for metric-measure spaces via optimal transportAnn. of Math. (2)2009169903991248061910.4007/annals.2009.169.9031178.53038 Han, B.-X., Milman, E.: Sharp Poincaré inequalities under measure contraction property. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22, 1401–1428 (2021) CavallettiFMondinoAIsoperimetric inequalities for finite perimeter sets under lower Ricci curvature boundsRend. Lincei Mat. Appl.20182941343038190971395.53044 CavallettiFSantarcangeloFIsoperimetric inequality under measure contraction propertyJ. Funct. Anal.201927728932917399762410.1016/j.jfa.2019.06.0161431.53047 Klartag, B.: Needle decomposition in Riemannian geometry. Mem. Amer. Math. Soc. 249, v+77 pp (2017) Cavalletti, F., Mondino, A.: New formulas for the Laplacian of distance functions and applications. Anal. PDE. 13, 2091–2147 (2020) AmbrosioLGigliNA user’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics2011BerlinSpringer BarilariDRizziLSharp measure contraction property for generalized H-type Carnot groupsCommun. Contemp. Math.2018201750081, 24384807010.1142/S021919971750081X1398.53038 Nobili, F., Violo, I.: Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds. http://arxiv.org/abs/2108.02135 (2021) BérardPBessonGGallotSSur une inégalité isopérimétrique qui généralise celle de Paul Lévy-GromovInvent. Math.19858029530878841210.1007/BF013886080571.53027 GromovMMilmanVDGeneralization of the spherical isoperimetric inequality to uniformly convex Banach spacesCompos. Math.1987622632829013930623.46007 CavallettiFMondinoAAlmost Euclidean Isoperimetric Inequalities in spaces satisfying local Ricci curvature lower boundsInt. Math. Res. Not. IMRN20202020514811510407394710.1093/imrn/rny0701436.53022 VillaniCOptimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften2009BerlinSpringer FremlinDHMeasure Theory2002BostonTorres Fremlin SturmKTOn the geometry of metric measure spaces IActa Math.200619665131223720610.1007/s11511-006-0002-81105.53035 BarilariDRizziLSub-Riemannian interpolation inequalitiesInvent. math.20192159771038393503510.1007/s00222-018-0840-y1412.53051 CavallettiFMondinoAOptimal maps in essentially non-branching spacesCommun. Contemp. Math.2017191750007, 27369150210.1142/S02191997175000791376.53064 Cavalletti, F., Milman, E.: The globalization theorem for the curvature-dimension condition. Invent. Math. 226, 1–137 (2021) JuilletNGeometric inequalities and generalized Ricci bounds in the Heisenberg groupInt. Math. Res. Not. IMRN2009132347237325207831176.53053 Ambrosio, L., Gigli, N., Di Marino, S.: Perimeter as relaxed Minkowski content in metric measure spaces. Nonlinear Anal. 153, 78–88 (2017) GromovMMetric Structures for Riemannian and Non Riemannian Spaces2007BaselModern Birkhäuser Classics1113.53001 OhtaSOn the measure contraction property of metric measure spacesComment. Math. Helv.200782805828234184010.4171/CMH/1101176.28016 KannanRLovászLSimonovitsMIsoperimetric problems for convex bodies and a localization lemmaDiscrete Comput. Geom.199513541559131879410.1007/BF025740610824.52012 Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. http://arxiv.org/abs/math/0211159v1 (2002) HanB-XSharp p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Poincaré inequality under measure contraction propertyManuscr. Math.202016245747110.1007/s00229-019-01138-51444.53031 BacherKSturmK-TLocalization and tensorization properties of the curvature-dimension condition for metric measure spacesJ. Funct. Anal.20102592856261037810.1016/j.jfa.2010.03.0241196.53027 CavallettiFMondinoASharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature boundsInvent. Math.2017208803849364897510.1007/s00222-016-0700-61375.53053 BianchiniSCavallettiFThe Monge problem for distance cost in geodesic spacesCommun. Math. Phys.2013318615673302758110.1007/s00220-013-1663-81275.49080 Antonelli, G., Pasqualetto, E., Pozzetta, M.: Isoperimetric sets in spaces with lower bounds on the Ricci curvature. http://arxiv.org/abs/2107.03124v2(2021) CrokeCBAn eigenvalue pinching theoremInvent. Math.19826825325666616210.1007/BF013940580505.53018 LeePWYLiCZelenkoIRicci curvature type lower bounds for sub-Riemannian structures on Sasakian manifoldsDiscrete Contin. Dyn. Syst.201636303321336922310.3934/dcds.2016.36.3031326.53043 CavallettiFMonge problem in metric measure spaces with Riemannian curvature-dimension conditionNonlinear Anal.201499136151316053010.1016/j.na.2013.12.0081283.49058 Cavalletti, F.: An overview of L1-optimal transportation on metric measure spaces. In: Gigli, N. (ed.) Measure Theory in Non-Smooth Spaces. De Gruyter Open, Boston (2017) PayneLEWeinbergerHFAn optimal Poincaré inequality for convex domainsArch. Ration. Mech. Anal1960528629210.1007/BF002529100099.08402 BianchiniSCaravennaLOn the extremality, uniqueness and optimality of transference plansBull. Inst. Math. Acad. Sin. (N.S.)2009435345425827361207.90015 B-X Han (1373_CR24) 2020; 162 KT Sturm (1373_CR36) 2006; 196 M Gromov (1373_CR23) 1987; 62 P Bérard (1373_CR7) 1985; 80 PWY Lee (1373_CR30) 2016; 36 F Cavalletti (1373_CR14) 2017; 19 DH Fremlin (1373_CR21) 2002 L Ambrosio (1373_CR1) 2011 E Milman (1373_CR31) 2015; 17 D Barilari (1373_CR5) 2018; 20 F Cavalletti (1373_CR16) 2018; 29 F Cavalletti (1373_CR18) 2019; 277 1373_CR28 C Villani (1373_CR38) 2009 1373_CR25 R Kannan (1373_CR27) 1995; 13 LE Payne (1373_CR34) 1960; 5 M Eichmair (1373_CR20) 2013; 194 1373_CR10 F Cavalletti (1373_CR17) 2020; 2020 CB Croke (1373_CR19) 1982; 68 1373_CR32 K Bacher (1373_CR4) 2010; 259 F Cavalletti (1373_CR13) 2017; 208 M Gromov (1373_CR22) 2007 1373_CR2 1373_CR3 J Lott (1373_CR29) 2009; 169 S Bianchini (1373_CR8) 2013; 318 KT Sturm (1373_CR37) 2006; 196 D Barilari (1373_CR6) 2019; 215 S Bianchini (1373_CR9) 2009; 4 1373_CR15 F Cavalletti (1373_CR11) 2014; 99 S Ohta (1373_CR33) 2007; 82 1373_CR12 N Juillet (1373_CR26) 2009; 13 1373_CR35 |
References_xml | – ident: 1373_CR3 doi: 10.1016/j.na.2022.112839 – volume: 80 start-page: 295 year: 1985 ident: 1373_CR7 publication-title: Invent. Math. doi: 10.1007/BF01388608 contributor: fullname: P Bérard – volume-title: Metric Structures for Riemannian and Non Riemannian Spaces year: 2007 ident: 1373_CR22 contributor: fullname: M Gromov – volume: 215 start-page: 977 year: 2019 ident: 1373_CR6 publication-title: Invent. math. doi: 10.1007/s00222-018-0840-y contributor: fullname: D Barilari – volume: 169 start-page: 903 year: 2009 ident: 1373_CR29 publication-title: Ann. of Math. (2) doi: 10.4007/annals.2009.169.903 contributor: fullname: J Lott – volume: 5 start-page: 286 year: 1960 ident: 1373_CR34 publication-title: Arch. Ration. Mech. Anal doi: 10.1007/BF00252910 contributor: fullname: LE Payne – volume: 208 start-page: 803 year: 2017 ident: 1373_CR13 publication-title: Invent. Math. doi: 10.1007/s00222-016-0700-6 contributor: fullname: F Cavalletti – volume: 62 start-page: 263 year: 1987 ident: 1373_CR23 publication-title: Compos. Math. contributor: fullname: M Gromov – volume: 17 start-page: 1041 year: 2015 ident: 1373_CR31 publication-title: J. Eur. Math. Soc. doi: 10.4171/JEMS/526 contributor: fullname: E Milman – volume: 13 start-page: 541 year: 1995 ident: 1373_CR27 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574061 contributor: fullname: R Kannan – volume: 162 start-page: 457 year: 2020 ident: 1373_CR24 publication-title: Manuscr. Math. doi: 10.1007/s00229-019-01138-5 contributor: fullname: B-X Han – volume: 2020 start-page: 1481 issue: 5 year: 2020 ident: 1373_CR17 publication-title: Int. Math. Res. Not. IMRN doi: 10.1093/imrn/rny070 contributor: fullname: F Cavalletti – ident: 1373_CR28 doi: 10.1090/memo/1180 – volume: 277 start-page: 2893 year: 2019 ident: 1373_CR18 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2019.06.016 contributor: fullname: F Cavalletti – volume: 99 start-page: 136 year: 2014 ident: 1373_CR11 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2013.12.008 contributor: fullname: F Cavalletti – volume-title: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften year: 2009 ident: 1373_CR38 contributor: fullname: C Villani – ident: 1373_CR12 doi: 10.1007/s00222-021-01040-6 – ident: 1373_CR25 doi: 10.2422/2036-2145.201906_012 – volume: 36 start-page: 303 year: 2016 ident: 1373_CR30 publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2016.36.303 contributor: fullname: PWY Lee – volume: 20 start-page: 1750081, 24 year: 2018 ident: 1373_CR5 publication-title: Commun. Contemp. Math. doi: 10.1142/S021919971750081X contributor: fullname: D Barilari – volume-title: A user’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics year: 2011 ident: 1373_CR1 contributor: fullname: L Ambrosio – volume: 4 start-page: 353 year: 2009 ident: 1373_CR9 publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) contributor: fullname: S Bianchini – ident: 1373_CR2 doi: 10.1016/j.na.2016.03.010 – ident: 1373_CR35 – ident: 1373_CR15 doi: 10.2140/apde.2020.13.2091 – volume: 68 start-page: 253 year: 1982 ident: 1373_CR19 publication-title: Invent. Math. doi: 10.1007/BF01394058 contributor: fullname: CB Croke – volume: 194 start-page: 591 year: 2013 ident: 1373_CR20 publication-title: Invent. Math. doi: 10.1007/s00222-013-0452-5 contributor: fullname: M Eichmair – volume: 259 start-page: 28 year: 2010 ident: 1373_CR4 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2010.03.024 contributor: fullname: K Bacher – volume: 19 start-page: 1750007, 27 year: 2017 ident: 1373_CR14 publication-title: Commun. Contemp. Math. doi: 10.1142/S0219199717500079 contributor: fullname: F Cavalletti – volume: 82 start-page: 805 year: 2007 ident: 1373_CR33 publication-title: Comment. Math. Helv. doi: 10.4171/CMH/110 contributor: fullname: S Ohta – ident: 1373_CR10 doi: 10.1515/9783110550832-003 – volume-title: Measure Theory year: 2002 ident: 1373_CR21 contributor: fullname: DH Fremlin – volume: 29 start-page: 413 year: 2018 ident: 1373_CR16 publication-title: Rend. Lincei Mat. Appl. contributor: fullname: F Cavalletti – volume: 318 start-page: 615 year: 2013 ident: 1373_CR8 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1663-8 contributor: fullname: S Bianchini – ident: 1373_CR32 doi: 10.1007/s00526-022-02284-7 – volume: 196 start-page: 133 year: 2006 ident: 1373_CR37 publication-title: Acta Math. doi: 10.1007/s11511-006-0003-7 contributor: fullname: KT Sturm – volume: 13 start-page: 2347 year: 2009 ident: 1373_CR26 publication-title: Int. Math. Res. Not. IMRN contributor: fullname: N Juillet – volume: 196 start-page: 65 year: 2006 ident: 1373_CR36 publication-title: Acta Math. doi: 10.1007/s11511-006-0002-8 contributor: fullname: KT Sturm |
SSID | ssj0014373 |
Score | 2.3409839 |
Snippet | We prove that on an essentially non-branching
MCP
(
K
,
N
)
space, if a geodesic ball has a volume lower bound and satisfies some additional geometric... We prove that on an essentially non-branching MCP(K,N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algebraic Geometry Calculus of Variations and Optimal Control; Optimization Differential geometry Geometry Lie Groups Lower bounds Mathematics Mathematics and Statistics Number Theory Topological Groups |
Title | Local isoperimetric inequalities in metric measure spaces verifying measure contraction property |
URI | https://link.springer.com/article/10.1007/s00229-022-01373-3 https://www.proquest.com/docview/2802936428 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBbyOKpAdvOsLabWxHMCBR8SQJnmbbtQkxAoFx0L_e13Ub8etAlizZujRd-17fe-37_QpwJYNAoJXzHM5Rgj2uW6hzPqo70zrUXCURM-Dk4VMwGHn3Y3-8xnFnye7FjmQ2UZdYN2NtIscknxuWPOawbajmwNNq5-7loVduHhi2nuKkVgwQ3Bwr83ct3-3R2sn8sS-amZv-PjwXoB2bZfLWXKWiKT9_czhu8icHsJe7n6Rj5eUQttT0CHaHJXfr8hheH415I5PlzHL_Gwp_gr6ohV9iYI0PJH_9blcYCU5LON8QVItJhpsqC7JMeIudIHOz7r9IP05g1O893w6c_BwGR9J2K3VcKtuuTFxfCka1K3iYcA_DHKUiL2SBEIxFocsZlZHQCZVcRyrgWimm0fnB6xQq09lUnQGhbU4DHkjXD5XHKeVJgO3zE7ST2g-FV4PrYjTiuaXbiEti5azfYrzFWb_FrAb1YsDiXPWWMQ1b6MKYsKoGN8UArIv_r-18s88vYMccPW-TH-tQSRcrdYkOSioaKJD9bvepkQtmA7ZHtPMFyyHfzg |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHv40o6g7edIS1W9mOxIAoHydI8DTbrk2IEQiMg_71vu6LSPRAlizZujRd29f3Xt_7_QpwLxkTqOVcm3OcwS7XdZQ5D8Wdau1rrqKAGnByf8A6I_d17I0zUNgyz3bPQ5LJSl2A3Yy6CWyTfW5o8qhNd6HsEoeREpSbz2_dVhE9MHQ9-VGt6CE4GVjm71p-K6S1lbkRGE30TfsIRnlL0zSTj9oqFjX5vUHiuO2vHMNhZoBazXTGnMCOmp7CQb9gb12ewXvPKDhrspyl7P-GxN9CazQFYKJrjQ9W9voz3WO0cGHCFcdCwZgkyKmiIMmFT9ET1tzs_C_ir3MYtVvDp46dncRgS9Kox7ZDZMORkeNJQYl2BPcj7qKjo1Tg-pQJQWngO5wSGQgdEcl1oBjXSlGN5g9eF1CazqbqEizS4IRxJh3PVy4nhEcM2-dFqCm15wu3Ag_5cITzlHAjLKiVk34L8RYm_RbSClTzEQsz4VuGxK-jEWMcqwo85gOwLv6_tqvtPr-Dvc6w3wt7L4PuNeybg-jTVMgqlOLFSt2guRKL22x2_gCzgOE9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEL_olhh98Ns4ncqDb4obLTB4XHRzuo_4oIk-YVvaZDFuy8Ye9K_3SoGp0QdjSEighJS217vj7vc7gFPh-xy1nGszhivYZaqOMuehuFOlAsVkHFINTu4P_M6De_voPX5C8afZ7nlI0mAaNEvTKKlNYlUrgG9a9YS2zkTXlHnUpstQdjUzUgnKzeunbquIJGjqnrxsK3oLTgac-fktX5XTwuL8FiRNdU97A1jea5Ny8nIxT_iFeP9G6Pifz9qE9cwwtZpmJW3Bkhxtw1q_YHWd7cBzTys-azgbm6oAmtzfQivVADPR5cYLK7v9av49Wrhh4U5kocAMU0RV0ZDmyBtUhTXREYFp8rYLD-3W_WXHzio02II06ontENFwROx4glOiHM6CmLnoAEkZugH1Oac0DBxGiQi5iolgKpQ-U1JShWYRHntQGo1Hch8s0mDEZ75wvEC6jBAW-9g_L0YNqryAuxU4y6cmmhgijqigXE7HLcJTlI5bRCtQzWcvyoRyFpGgjsaNdrgqcJ5PxqL597cd_O3xE1i5u2pHvZtB9xBWdX16kyFZhVIyncsjtGISfpwt1A_Xy-oh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+isoperimetric+inequalities+in+metric+measure+spaces+verifying+measure+contraction+property&rft.jtitle=Manuscripta+mathematica&rft.au=Huang%2C+Xian-Tao&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=171&rft.issue=1-2&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2Fs00229-022-01373-3&rft.externalDocID=10_1007_s00229_022_01373_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon |