DeepFD: a deep learning approach to fast generate force-directed layout for large graphs
Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph dra...
Saved in:
Published in | Journal of visualization Vol. 27; no. 5; pp. 925 - 940 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1343-8875 1875-8975 |
DOI | 10.1007/s12650-024-00991-1 |
Cover
Loading…
Abstract | Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency.
Graphical abstract |
---|---|
AbstractList | Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency.
Graphical abstract Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency. |
Author | Xu, Ruihong Zhang, Shuhang Quan, Yining Zhang, Qing Liu, Qi |
Author_xml | – sequence: 1 givenname: Shuhang surname: Zhang fullname: Zhang, Shuhang organization: School of Computer Science and Technology, Xidian University, Data Analysis Application and Security Assess Lab, Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd – sequence: 2 givenname: Ruihong surname: Xu fullname: Xu, Ruihong organization: School of Computer Science and Technology, Xidian University – sequence: 3 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: School of Computer Science and Technology, Xidian University – sequence: 4 givenname: Yining surname: Quan fullname: Quan, Yining email: ynquan@xidian.edu.cn organization: School of Computer Science and Technology, Xidian University – sequence: 5 givenname: Qi surname: Liu fullname: Liu, Qi organization: China Telecom Bestpay Co., Ltd |
BookMark | eNp9kM1OwzAQhC1UJNrCC3CyxNmw_kmccEMtBaRKXEDiZrnxOm1VkmAnh749LkHixmlHq5nZ1Tcjk6ZtkJBrDrccQN9FLvIMGAjFAMqSM35GprzQGStKnU2SlkqyIi0uyCzGPYDgSvMp-VgidqvlPbXUJUUPaEOza2pquy60ttrSvqXexp7W2GCwPVLfhgqZ2wWsenT0YI_t0J-2SYYaaR1st42X5NzbQ8Sr3zkn76vHt8UzW78-vSwe1qwSGnrGhfYuE4WXZZ67jfMZlIiOa-uQ55tcOYVO6dLnUEC5QaWFVVKjKpwWUlVyTm7G3vTu14CxN_t2CE06aSQHpXRWgEouMbqq0MYY0Jsu7D5tOBoO5kTQjARNImh-CBqeQnIMxWRuagx_1f-kvgFNGXT8 |
Cites_doi | 10.1109/TVCG.2022.3222186 10.1112/plms/s3-13.1.743 10.1016/j.patcog.2019.01.006 10.1162/089976603321780317 10.1002/spe.4380211102 10.1007/978-3-540-24595-7_40 10.1016/j.procs.2015.11.078 10.1109/TST.2013.6509098 10.1109/TNNLS.2022.3184967 10.1038/324446a0 10.1109/MCG.2018.2881501 10.1109/TVCG.2019.2934396 10.1038/nature14539 10.1109/TVCG.2022.3209371 10.1007/978-3-030-92931-2_27 10.1038/s41598-019-41695-z 10.1109/TVCG.2020.3030428 10.1007/978-3-540-31843-9_25 10.1177/1473871612455749 10.1111/cgf.14003 10.1145/264645.264657 10.1201/b15385 10.1007/978-3-540-70904-6_6 10.1016/0020-0190(89)90102-6 10.1016/j.neucom.2015.08.104 10.1109/TPDS.2018.2869805 10.1109/TNNLS.2020.2978386 10.1109/TVCG.2019.2934798 10.1109/MCG.2021.3093908 10.1145/3035918.3064045 10.1145/2470654.2466444 10.1007/978-3-319-46448-0_8 10.1145/2623330.2623732 10.1145/2939672.2939754 10.1109/VIS47514.2020.00026 |
ContentType | Journal Article |
Copyright | The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12650-024-00991-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1875-8975 |
EndPage | 940 |
ExternalDocumentID | 10_1007_s12650_024_00991_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872432 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2KG 2VQ 30V 4.4 406 408 40D 5GY 67Z 8TC 96X AAAVM AACDK AAFNC AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACPQW ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW ADZMO AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRHK AFWTZ AFZKB AGAYW AGDGC AGGDS AGIAB AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD AYJHY BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HZ~ I0C IKXTQ IOS ITM IWAJR J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MET MIO NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PT5 R89 R9I RLLFE RNI ROL RSV RZK S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-127fd528f3966dbdf509eed17ade16b64d4ed479f60809be472a437e48d7234c3 |
IEDL.DBID | U2A |
ISSN | 1343-8875 |
IngestDate | Sat Jul 26 02:05:29 EDT 2025 Tue Jul 01 04:10:07 EDT 2025 Fri Feb 21 02:38:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Graph layout Loss function Graph-LSTM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-127fd528f3966dbdf509eed17ade16b64d4ed479f60809be472a437e48d7234c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3104475804 |
PQPubID | 2043635 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3104475804 crossref_primary_10_1007_s12650_024_00991_1 springer_journals_10_1007_s12650_024_00991_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of visualization |
PublicationTitleAbbrev | J Vis |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Brandes, Pich, Kaufmann, Wagner (CR4) 2007 Haleem, Wang, Puri, Wadhwa, Qu (CR15) 2019; 39 Meidiana, Hong, Torkel, Cai, Eades (CR21) 2020; 39 Taud, Mas (CR26) 2018 Zhou, Xu, Yuan, Qu (CR41) 2013; 18 CR39 Gibson, Faith, Vickers (CR11) 2013; 12 CR16 CR38 Giovannangeli, Lalanne, Auber, Giot, Bourqui (CR13) 2022 CR14 CR36 Van der Maaten, Hinton (CR30) 2008; 9 Gansner, Koren, North, Pach (CR10) 2005 Zhao, Jiang, Chen, Qin, Xie, Wu, Liu, Zhou, Xia, Zhou (CR40) 2021; 27 Kamada, Kawai (CR17) 1989; 31 Tutte (CR29) 1963; 3 Wang, Yao, Zhao (CR33) 2016; 184 Xue, Wang, Zhong, Wang, Xu, Deussen, Wang (CR37) 2023; 29 Kwon, Ma (CR18) 2020; 26 LeCun, Bengio, Hinton (CR19) 2015; 521 CR6 CR7 Giovannangeli, Lalanne, Auber, Giot, Bourqui (CR12) 2021 Tamassia (CR25) 2013 Wang, Jin, Wang, Cui, Ma, Qu (CR32) 2020; 26 Egorov, Bezgodov (CR8) 2015; 66 Wu, Pan, Chen, Long, Zhang, Yu (CR34) 2021; 32 Belkin, Niyogi (CR3) 2003; 15 Noack, Liotta (CR22) 2004 CR24 CR23 Wang, Yen, Hu, Shen (CR31) 2021; 41 Traag, Waltman, Van Eck (CR28) 2019; 9 CR20 Arleo, Didimo, Liotta, Montecchiani (CR1) 2019; 30 Wu, Shen, van den Hengel (CR35) 2019; 90 Fruchterman, Reingold (CR9) 1991; 21 Cohen (CR5) 1997; 4 Tiezzi, Ciravegna, Gori (CR27) 2022 Barnes, Hut (CR2) 1986; 324 991_CR23 991_CR24 H Taud (991_CR26) 2018 991_CR20 M Belkin (991_CR3) 2003; 15 Z Wu (991_CR35) 2019; 90 VA Traag (991_CR28) 2019; 9 ER Gansner (991_CR10) 2005 H Gibson (991_CR11) 2013; 12 H Zhou (991_CR41) 2013; 18 Z Wu (991_CR34) 2021; 32 A Noack (991_CR22) 2004 Y Wang (991_CR33) 2016; 184 TMJ Fruchterman (991_CR9) 1991; 21 U Brandes (991_CR4) 2007 JD Cohen (991_CR5) 1997; 4 X Wang (991_CR31) 2021; 41 R Tamassia (991_CR25) 2013 A Arleo (991_CR1) 2019; 30 WT Tutte (991_CR29) 1963; 3 991_CR7 991_CR16 Y LeCun (991_CR19) 2015; 521 991_CR38 991_CR39 991_CR14 991_CR36 991_CR6 D Egorov (991_CR8) 2015; 66 O-H Kwon (991_CR18) 2020; 26 H Haleem (991_CR15) 2019; 39 L Giovannangeli (991_CR13) 2022 J Barnes (991_CR2) 1986; 324 Y Wang (991_CR32) 2020; 26 A Meidiana (991_CR21) 2020; 39 L Van der Maaten (991_CR30) 2008; 9 M Tiezzi (991_CR27) 2022 M Xue (991_CR37) 2023; 29 T Kamada (991_CR17) 1989; 31 Y Zhao (991_CR40) 2021; 27 L Giovannangeli (991_CR12) 2021 |
References_xml | – year: 2022 ident: CR13 article-title: Toward efficient deep learning for graph drawing (DL4GD) publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2022.3222186 – volume: 3 start-page: 743 issue: 1 year: 1963 end-page: 767 ident: CR29 article-title: How to draw a graph publication-title: Proc Lond Math Soc doi: 10.1112/plms/s3-13.1.743 – ident: CR14 – volume: 90 start-page: 119 year: 2019 end-page: 133 ident: CR35 article-title: Wider or deeper: revisiting the resnet model for visual recognition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.01.006 – ident: CR39 – ident: CR16 – volume: 15 start-page: 1373 issue: 6 year: 2003 end-page: 1396 ident: CR3 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput doi: 10.1162/089976603321780317 – volume: 21 start-page: 1129 issue: 11 year: 1991 end-page: 1164 ident: CR9 article-title: Graph drawing by force-directed placement publication-title: Softw Pract Exp doi: 10.1002/spe.4380211102 – start-page: 425 year: 2004 end-page: 436 ident: CR22 article-title: An energy model for visual graph clustering publication-title: Graph drawing doi: 10.1007/978-3-540-24595-7_40 – volume: 66 start-page: 689 year: 2015 end-page: 696 ident: CR8 article-title: Improved force-directed method of graph layout generation with adaptive step length publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.11.078 – ident: CR6 – volume: 18 start-page: 145 issue: 2 year: 2013 end-page: 156 ident: CR41 article-title: Edge bundling in information visualization publication-title: Tsinghua Sci Technol doi: 10.1109/TST.2013.6509098 – year: 2022 ident: CR27 article-title: Graph neural networks for graph drawing publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3184967 – start-page: 451 year: 2018 end-page: 455 ident: CR26 publication-title: Multilayer perceptron (MLP) – volume: 324 start-page: 446 issue: 6096 year: 1986 end-page: 449 ident: CR2 article-title: A hierarchical o (n log n) force-calculation algorithm publication-title: Nature doi: 10.1038/324446a0 – volume: 39 start-page: 40 issue: 4 year: 2019 end-page: 53 ident: CR15 article-title: Evaluating the readability of force directed graph layouts: a deep learning approach publication-title: IEEE Comput Graph Appl doi: 10.1109/MCG.2018.2881501 – volume: 26 start-page: 665 issue: 1 year: 2020 end-page: 675 ident: CR18 article-title: A deep generative model for graph layout publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2019.2934396 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR23 – volume: 9 start-page: 2579 year: 2008 ident: CR30 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 29 start-page: 886 issue: 1 year: 2023 end-page: 895 ident: CR37 article-title: Taurus: towards a unified force representation and universal solver for graph layout publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2022.3209371 – start-page: 375 year: 2021 end-page: 390 ident: CR12 article-title: Deep neural network for drawing networks, publication-title: Graph drawing and network visualization doi: 10.1007/978-3-030-92931-2_27 – volume: 9 start-page: 5233 issue: 1 year: 2019 ident: CR28 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci Rep doi: 10.1038/s41598-019-41695-z – volume: 27 start-page: 1698 issue: 2 year: 2021 end-page: 1708 ident: CR40 article-title: Preserving minority structures in graph sampling publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2020.3030428 – start-page: 239 year: 2005 end-page: 250 ident: CR10 article-title: Graph drawing by stress majorization publication-title: Graph drawing doi: 10.1007/978-3-540-31843-9_25 – volume: 12 start-page: 324 issue: 3–4 year: 2013 end-page: 357 ident: CR11 article-title: A survey of two-dimensional graph layout techniques for information visualisation publication-title: Inf Vis doi: 10.1177/1473871612455749 – volume: 39 start-page: 579 issue: 3 year: 2020 end-page: 591 ident: CR21 article-title: Sublinear time force computation for big complex network visualization publication-title: Comput Graph Forum doi: 10.1111/cgf.14003 – ident: CR38 – volume: 4 start-page: 197 issue: 3 year: 1997 end-page: 229 ident: CR5 article-title: Drawing graphs to convey proximity: an incremental arrangement method publication-title: ACM Trans Comput Hum Interact doi: 10.1145/264645.264657 – year: 2013 ident: CR25 publication-title: Handbook of graph drawing and visualization doi: 10.1201/b15385 – ident: CR36 – start-page: 42 year: 2007 end-page: 53 ident: CR4 article-title: Eigensolver methods for progressive multidimensional scaling of large data publication-title: Graph drawing doi: 10.1007/978-3-540-70904-6_6 – volume: 31 start-page: 7 issue: 1 year: 1989 end-page: 15 ident: CR17 article-title: An algorithm for drawing general undirected graphs publication-title: Inf Process Lett doi: 10.1016/0020-0190(89)90102-6 – ident: CR7 – volume: 184 start-page: 232 year: 2016 end-page: 242 ident: CR33 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 30 start-page: 754 issue: 4 year: 2019 end-page: 765 ident: CR1 article-title: A distributed multilevel force-directed algorithm publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2018.2869805 – volume: 32 start-page: 4 issue: 1 year: 2021 end-page: 24 ident: CR34 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978386 – ident: CR24 – volume: 26 start-page: 676 issue: 1 year: 2020 end-page: 686 ident: CR32 article-title: Deepdrawing: a deep learning approach to graph drawing publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2019.2934798 – ident: CR20 – volume: 41 start-page: 32 issue: 5 year: 2021 end-page: 44 ident: CR31 article-title: DeepGD: a deep learning framework for graph drawing using GNN publication-title: IEEE Comput Graph Appl doi: 10.1109/MCG.2021.3093908 – year: 2022 ident: 991_CR27 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3184967 – volume: 31 start-page: 7 issue: 1 year: 1989 ident: 991_CR17 publication-title: Inf Process Lett doi: 10.1016/0020-0190(89)90102-6 – volume: 4 start-page: 197 issue: 3 year: 1997 ident: 991_CR5 publication-title: ACM Trans Comput Hum Interact doi: 10.1145/264645.264657 – volume: 39 start-page: 40 issue: 4 year: 2019 ident: 991_CR15 publication-title: IEEE Comput Graph Appl doi: 10.1109/MCG.2018.2881501 – ident: 991_CR23 doi: 10.1145/3035918.3064045 – ident: 991_CR7 – start-page: 451 volume-title: Multilayer perceptron (MLP) year: 2018 ident: 991_CR26 – volume: 26 start-page: 665 issue: 1 year: 2020 ident: 991_CR18 publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2019.2934396 – volume: 27 start-page: 1698 issue: 2 year: 2021 ident: 991_CR40 publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2020.3030428 – volume: 184 start-page: 232 year: 2016 ident: 991_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 991_CR19 publication-title: Nature doi: 10.1038/nature14539 – start-page: 425 volume-title: Graph drawing year: 2004 ident: 991_CR22 doi: 10.1007/978-3-540-24595-7_40 – ident: 991_CR16 – volume: 32 start-page: 4 issue: 1 year: 2021 ident: 991_CR34 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2978386 – volume: 90 start-page: 119 year: 2019 ident: 991_CR35 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.01.006 – ident: 991_CR6 doi: 10.1145/2470654.2466444 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 991_CR3 publication-title: Neural Comput doi: 10.1162/089976603321780317 – volume: 9 start-page: 2579 year: 2008 ident: 991_CR30 publication-title: J Mach Learn Res – volume: 30 start-page: 754 issue: 4 year: 2019 ident: 991_CR1 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2018.2869805 – start-page: 375 volume-title: Graph drawing and network visualization year: 2021 ident: 991_CR12 doi: 10.1007/978-3-030-92931-2_27 – volume: 29 start-page: 886 issue: 1 year: 2023 ident: 991_CR37 publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2022.3209371 – volume: 324 start-page: 446 issue: 6096 year: 1986 ident: 991_CR2 publication-title: Nature doi: 10.1038/324446a0 – volume: 18 start-page: 145 issue: 2 year: 2013 ident: 991_CR41 publication-title: Tsinghua Sci Technol doi: 10.1109/TST.2013.6509098 – start-page: 239 volume-title: Graph drawing year: 2005 ident: 991_CR10 doi: 10.1007/978-3-540-31843-9_25 – volume: 39 start-page: 579 issue: 3 year: 2020 ident: 991_CR21 publication-title: Comput Graph Forum doi: 10.1111/cgf.14003 – volume: 41 start-page: 32 issue: 5 year: 2021 ident: 991_CR31 publication-title: IEEE Comput Graph Appl doi: 10.1109/MCG.2021.3093908 – volume: 21 start-page: 1129 issue: 11 year: 1991 ident: 991_CR9 publication-title: Softw Pract Exp doi: 10.1002/spe.4380211102 – ident: 991_CR20 doi: 10.1007/978-3-319-46448-0_8 – volume-title: Handbook of graph drawing and visualization year: 2013 ident: 991_CR25 doi: 10.1201/b15385 – volume: 26 start-page: 676 issue: 1 year: 2020 ident: 991_CR32 publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2019.2934798 – volume: 3 start-page: 743 issue: 1 year: 1963 ident: 991_CR29 publication-title: Proc Lond Math Soc doi: 10.1112/plms/s3-13.1.743 – volume: 9 start-page: 5233 issue: 1 year: 2019 ident: 991_CR28 publication-title: Sci Rep doi: 10.1038/s41598-019-41695-z – ident: 991_CR24 doi: 10.1145/2623330.2623732 – volume: 12 start-page: 324 issue: 3–4 year: 2013 ident: 991_CR11 publication-title: Inf Vis doi: 10.1177/1473871612455749 – ident: 991_CR14 doi: 10.1145/2939672.2939754 – ident: 991_CR39 doi: 10.1109/VIS47514.2020.00026 – start-page: 42 volume-title: Graph drawing year: 2007 ident: 991_CR4 doi: 10.1007/978-3-540-70904-6_6 – year: 2022 ident: 991_CR13 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2022.3222186 – volume: 66 start-page: 689 year: 2015 ident: 991_CR8 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.11.078 – ident: 991_CR38 – ident: 991_CR36 |
SSID | ssj0021471 |
Score | 2.3197877 |
Snippet | Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 925 |
SubjectTerms | Ablation Algorithms Classical and Continuum Physics Computer Imaging Deep learning Engineering Engineering Fluid Dynamics Engineering Thermodynamics Graphs Heat and Mass Transfer Layouts Machine learning Multilayer perceptrons Pattern Recognition and Graphics Regular Paper Unsupervised learning Vision |
Title | DeepFD: a deep learning approach to fast generate force-directed layout for large graphs |
URI | https://link.springer.com/article/10.1007/s12650-024-00991-1 https://www.proquest.com/docview/3104475804 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIYt1C4w8FFAFErlgQ0sNbZjp2wVbalAMFGpTFEcX7qgtmrSgX_POXUIIBjYrCTycLbzPif7XhNyhQrjXOBSppQGJhNtWKIQ5FKZGAOZQoh19c5Pz2oylQ-zcOaLwvLqtHu1JVn-qetiN440wVBTmMOagGHO0wwxd3cH-aZ88JlmBVWaJQXDJRT6Upnf-_guRzVj_tgWLdVmfEj2PSbSwXZcj8gOLFrkwCMj9Qsyb5G9L36Cx2Q2BFiNh7c0oRZb1F8JMaeVczgtljRL8oLOS7fpAigyawpsK2zY81vyvtwU7ik213OgpaF1fkKm49HL3YT5qxNYynWvYAHXmQ15lAlMZ6yxGXIBqmGgEwuBMkpaCVbqfqaQGPsGpOaJFBpkZDUXMhWnpLFYLuCMUNR3CPtRlolQYO4YmEA4D3cFCG8crG6T6yqC8WrrkBHXXsgu3jHGOy7jHQdt0qmCHPvVkseImM53MOrJNrmpAl-__ru38_99fkF2uRv78ixehzSK9QYukSkK0yXNwf3r46hbTqUPv7nB-g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPqB2AgW9EoYAHNnBFEsdO2RBtKbQwUalMURxfOoDaiqQD_HouqUMBwdDNSiIrubNzz8m-1wBnFGFyFbiYS6mQi0hpHkkCuVhEWmMiCWLzeueHR9kdiPuhP7RFYWm5271ckiz-1ItiN5doglNM4TnWOJxynqqgHFxUoHp9-9xrfyVaTploCY_TJPJtsczfvfwMSAvK_LUwWsSbziYMyjedbzN5acwy3Yg_fok4LvspW7BhAZRdz0fMNqzgeAc2LYwyO9XTHVj_plS4C8MW4rTTumIRM9Ri9rCJESs1yVk2YUmUZmxU6FhnyIiGY-TzkEk9v0bvk1mWX6Xm2whZIZWd7sGg03666XJ7KAOPXXWZccdVifHdIPEoUTLaJEQcFGcdFRl0pJbCCDRCNRNJLNrUKJQbCU-hCIxyPRF7-1AZT8Z4AIzIAf1mkCSe71FW6mjHy9XhJRIWumhUDc5Lz4TTufZGuFBZzk0YkgnDwoShU4N66bzQzsM0JHjNFQ2DS1GDi9IXi9v_93a43OOnsNp9euiH_bvH3hGsublrix1_dahkbzM8JnLJ9IkdqJ959OBJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NbxMxEIZHVSpV5UDaACJQqA_cwEl212sn3CrStKUf4tBI6Wllr8c5gJIocQ7w6xnvR5NW9FBxs3ZX1u6MvfOM7HkN8IkiTFCBy7mUCrnQynAtCeRyoY1BJwliQ73z9Y08H4vvk3SyVcVf7HavlyTLmoag0jTz3YV13U3hW0xkwSm-8IA4Eaf8Z1cEcfYG7J6c3V2e3iddUZ10iYTThEqrwpl_9_IwOG2I89EiaRF7Rk3Q9VuXW05-dtbedPI_jwQd_-ezDuBlBabspBxJh7CDsxY0K0hl1S9g1YIXWwqGr2AyRFyMhl-ZZpZarDqEYspqrXLm58zplWfTQt_aIyNKzpGXoZR6_qV_z9c-XKXmcoqskNBevYbx6PT22zmvDmvgeax6nkexcjaN-y6hBMoa64hEKP5GSluMpJHCCrRCDZwkRh0YFCrWIlEo-lbFiciTN9CYzWf4FhgRBaaDvnNJmlC2GpkoCarxEgkXY7SqDZ9rL2WLUpMj26gvBxNmZMKsMGEWteGodmRWzc9VRlAblA77PdGGL7VfNref7u3d8x4_hr0fw1F2dXFz-R724-DZYiPgETT8co0fCGi8-ViN2b8AB-kt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepFD%3A+a+deep+learning+approach+to+fast+generate+force-directed+layout+for+large+graphs&rft.jtitle=Journal+of+visualization&rft.au=Zhang%2C+Shuhang&rft.au=Xu%2C+Ruihong&rft.au=Zhang%2C+Qing&rft.au=Quan%2C+Yining&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=27&rft.issue=5&rft.spage=925&rft.epage=940&rft_id=info:doi/10.1007%2Fs12650-024-00991-1&rft.externalDocID=10_1007_s12650_024_00991_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon |