DeepFD: a deep learning approach to fast generate force-directed layout for large graphs

Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph dra...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualization Vol. 27; no. 5; pp. 925 - 940
Main Authors Zhang, Shuhang, Xu, Ruihong, Zhang, Qing, Quan, Yining, Liu, Qi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1343-8875
1875-8975
DOI10.1007/s12650-024-00991-1

Cover

Loading…
Abstract Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency. Graphical abstract
AbstractList Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency. Graphical abstract
Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However, when revisiting existing studies, only stress model and dimensional reduction methods are utilized in the unsupervised learning of graph drawing tasks since their gradient descent conditions can be easily constructed, and few works have explored their scalability on large graphs. In this paper, we propose a framework that can adapt most of the graph layout methods to a form of loss function and develop an implementation DeepFD, which takes the force-directed algorithm as the prototype to design the loss function. Our model is built with the graph-LSTM as encoder and multilayer perceptron as decoder and trained with dataset split from huge graphs with millions of nodes by Louvain. We design a set of qualitative and quantitative experiments to evaluate our method and compare with classical layout techniques such as F-R and K-K algorithms, while deep-learning based models with various architecture or loss function are adopted to perform ablation experiments. The results indicate that our developed approach can generate a high-quality layout of large graph within a low time cost, and the model we propose shows strong robustness and high efficiency.
Author Xu, Ruihong
Zhang, Shuhang
Quan, Yining
Zhang, Qing
Liu, Qi
Author_xml – sequence: 1
  givenname: Shuhang
  surname: Zhang
  fullname: Zhang, Shuhang
  organization: School of Computer Science and Technology, Xidian University, Data Analysis Application and Security Assess Lab, Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd
– sequence: 2
  givenname: Ruihong
  surname: Xu
  fullname: Xu, Ruihong
  organization: School of Computer Science and Technology, Xidian University
– sequence: 3
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  organization: School of Computer Science and Technology, Xidian University
– sequence: 4
  givenname: Yining
  surname: Quan
  fullname: Quan, Yining
  email: ynquan@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University
– sequence: 5
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: China Telecom Bestpay Co., Ltd
BookMark eNp9kM1OwzAQhC1UJNrCC3CyxNmw_kmccEMtBaRKXEDiZrnxOm1VkmAnh749LkHixmlHq5nZ1Tcjk6ZtkJBrDrccQN9FLvIMGAjFAMqSM35GprzQGStKnU2SlkqyIi0uyCzGPYDgSvMp-VgidqvlPbXUJUUPaEOza2pquy60ttrSvqXexp7W2GCwPVLfhgqZ2wWsenT0YI_t0J-2SYYaaR1st42X5NzbQ8Sr3zkn76vHt8UzW78-vSwe1qwSGnrGhfYuE4WXZZ67jfMZlIiOa-uQ55tcOYVO6dLnUEC5QaWFVVKjKpwWUlVyTm7G3vTu14CxN_t2CE06aSQHpXRWgEouMbqq0MYY0Jsu7D5tOBoO5kTQjARNImh-CBqeQnIMxWRuagx_1f-kvgFNGXT8
Cites_doi 10.1109/TVCG.2022.3222186
10.1112/plms/s3-13.1.743
10.1016/j.patcog.2019.01.006
10.1162/089976603321780317
10.1002/spe.4380211102
10.1007/978-3-540-24595-7_40
10.1016/j.procs.2015.11.078
10.1109/TST.2013.6509098
10.1109/TNNLS.2022.3184967
10.1038/324446a0
10.1109/MCG.2018.2881501
10.1109/TVCG.2019.2934396
10.1038/nature14539
10.1109/TVCG.2022.3209371
10.1007/978-3-030-92931-2_27
10.1038/s41598-019-41695-z
10.1109/TVCG.2020.3030428
10.1007/978-3-540-31843-9_25
10.1177/1473871612455749
10.1111/cgf.14003
10.1145/264645.264657
10.1201/b15385
10.1007/978-3-540-70904-6_6
10.1016/0020-0190(89)90102-6
10.1016/j.neucom.2015.08.104
10.1109/TPDS.2018.2869805
10.1109/TNNLS.2020.2978386
10.1109/TVCG.2019.2934798
10.1109/MCG.2021.3093908
10.1145/3035918.3064045
10.1145/2470654.2466444
10.1007/978-3-319-46448-0_8
10.1145/2623330.2623732
10.1145/2939672.2939754
10.1109/VIS47514.2020.00026
ContentType Journal Article
Copyright The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12650-024-00991-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8975
EndPage 940
ExternalDocumentID 10_1007_s12650_024_00991_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872432
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2KG
2VQ
30V
4.4
406
408
40D
5GY
67Z
8TC
96X
AAAVM
AACDK
AAFNC
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPQW
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
ADZMO
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRHK
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGIAB
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IOS
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MET
MIO
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PT5
R89
R9I
RLLFE
RNI
ROL
RSV
RZK
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-127fd528f3966dbdf509eed17ade16b64d4ed479f60809be472a437e48d7234c3
IEDL.DBID U2A
ISSN 1343-8875
IngestDate Sat Jul 26 02:05:29 EDT 2025
Tue Jul 01 04:10:07 EDT 2025
Fri Feb 21 02:38:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Graph layout
Loss function
Graph-LSTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-127fd528f3966dbdf509eed17ade16b64d4ed479f60809be472a437e48d7234c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3104475804
PQPubID 2043635
PageCount 16
ParticipantIDs proquest_journals_3104475804
crossref_primary_10_1007_s12650_024_00991_1
springer_journals_10_1007_s12650_024_00991_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of visualization
PublicationTitleAbbrev J Vis
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Brandes, Pich, Kaufmann, Wagner (CR4) 2007
Haleem, Wang, Puri, Wadhwa, Qu (CR15) 2019; 39
Meidiana, Hong, Torkel, Cai, Eades (CR21) 2020; 39
Taud, Mas (CR26) 2018
Zhou, Xu, Yuan, Qu (CR41) 2013; 18
CR39
Gibson, Faith, Vickers (CR11) 2013; 12
CR16
CR38
Giovannangeli, Lalanne, Auber, Giot, Bourqui (CR13) 2022
CR14
CR36
Van der Maaten, Hinton (CR30) 2008; 9
Gansner, Koren, North, Pach (CR10) 2005
Zhao, Jiang, Chen, Qin, Xie, Wu, Liu, Zhou, Xia, Zhou (CR40) 2021; 27
Kamada, Kawai (CR17) 1989; 31
Tutte (CR29) 1963; 3
Wang, Yao, Zhao (CR33) 2016; 184
Xue, Wang, Zhong, Wang, Xu, Deussen, Wang (CR37) 2023; 29
Kwon, Ma (CR18) 2020; 26
LeCun, Bengio, Hinton (CR19) 2015; 521
CR6
CR7
Giovannangeli, Lalanne, Auber, Giot, Bourqui (CR12) 2021
Tamassia (CR25) 2013
Wang, Jin, Wang, Cui, Ma, Qu (CR32) 2020; 26
Egorov, Bezgodov (CR8) 2015; 66
Wu, Pan, Chen, Long, Zhang, Yu (CR34) 2021; 32
Belkin, Niyogi (CR3) 2003; 15
Noack, Liotta (CR22) 2004
CR24
CR23
Wang, Yen, Hu, Shen (CR31) 2021; 41
Traag, Waltman, Van Eck (CR28) 2019; 9
CR20
Arleo, Didimo, Liotta, Montecchiani (CR1) 2019; 30
Wu, Shen, van den Hengel (CR35) 2019; 90
Fruchterman, Reingold (CR9) 1991; 21
Cohen (CR5) 1997; 4
Tiezzi, Ciravegna, Gori (CR27) 2022
Barnes, Hut (CR2) 1986; 324
991_CR23
991_CR24
H Taud (991_CR26) 2018
991_CR20
M Belkin (991_CR3) 2003; 15
Z Wu (991_CR35) 2019; 90
VA Traag (991_CR28) 2019; 9
ER Gansner (991_CR10) 2005
H Gibson (991_CR11) 2013; 12
H Zhou (991_CR41) 2013; 18
Z Wu (991_CR34) 2021; 32
A Noack (991_CR22) 2004
Y Wang (991_CR33) 2016; 184
TMJ Fruchterman (991_CR9) 1991; 21
U Brandes (991_CR4) 2007
JD Cohen (991_CR5) 1997; 4
X Wang (991_CR31) 2021; 41
R Tamassia (991_CR25) 2013
A Arleo (991_CR1) 2019; 30
WT Tutte (991_CR29) 1963; 3
991_CR7
991_CR16
Y LeCun (991_CR19) 2015; 521
991_CR38
991_CR39
991_CR14
991_CR36
991_CR6
D Egorov (991_CR8) 2015; 66
O-H Kwon (991_CR18) 2020; 26
H Haleem (991_CR15) 2019; 39
L Giovannangeli (991_CR13) 2022
J Barnes (991_CR2) 1986; 324
Y Wang (991_CR32) 2020; 26
A Meidiana (991_CR21) 2020; 39
L Van der Maaten (991_CR30) 2008; 9
M Tiezzi (991_CR27) 2022
M Xue (991_CR37) 2023; 29
T Kamada (991_CR17) 1989; 31
Y Zhao (991_CR40) 2021; 27
L Giovannangeli (991_CR12) 2021
References_xml – year: 2022
  ident: CR13
  article-title: Toward efficient deep learning for graph drawing (DL4GD)
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2022.3222186
– volume: 3
  start-page: 743
  issue: 1
  year: 1963
  end-page: 767
  ident: CR29
  article-title: How to draw a graph
  publication-title: Proc Lond Math Soc
  doi: 10.1112/plms/s3-13.1.743
– ident: CR14
– volume: 90
  start-page: 119
  year: 2019
  end-page: 133
  ident: CR35
  article-title: Wider or deeper: revisiting the resnet model for visual recognition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.01.006
– ident: CR39
– ident: CR16
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  ident: CR3
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– volume: 21
  start-page: 1129
  issue: 11
  year: 1991
  end-page: 1164
  ident: CR9
  article-title: Graph drawing by force-directed placement
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.4380211102
– start-page: 425
  year: 2004
  end-page: 436
  ident: CR22
  article-title: An energy model for visual graph clustering
  publication-title: Graph drawing
  doi: 10.1007/978-3-540-24595-7_40
– volume: 66
  start-page: 689
  year: 2015
  end-page: 696
  ident: CR8
  article-title: Improved force-directed method of graph layout generation with adaptive step length
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.11.078
– ident: CR6
– volume: 18
  start-page: 145
  issue: 2
  year: 2013
  end-page: 156
  ident: CR41
  article-title: Edge bundling in information visualization
  publication-title: Tsinghua Sci Technol
  doi: 10.1109/TST.2013.6509098
– year: 2022
  ident: CR27
  article-title: Graph neural networks for graph drawing
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3184967
– start-page: 451
  year: 2018
  end-page: 455
  ident: CR26
  publication-title: Multilayer perceptron (MLP)
– volume: 324
  start-page: 446
  issue: 6096
  year: 1986
  end-page: 449
  ident: CR2
  article-title: A hierarchical o (n log n) force-calculation algorithm
  publication-title: Nature
  doi: 10.1038/324446a0
– volume: 39
  start-page: 40
  issue: 4
  year: 2019
  end-page: 53
  ident: CR15
  article-title: Evaluating the readability of force directed graph layouts: a deep learning approach
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/MCG.2018.2881501
– volume: 26
  start-page: 665
  issue: 1
  year: 2020
  end-page: 675
  ident: CR18
  article-title: A deep generative model for graph layout
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2019.2934396
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR23
– volume: 9
  start-page: 2579
  year: 2008
  ident: CR30
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 29
  start-page: 886
  issue: 1
  year: 2023
  end-page: 895
  ident: CR37
  article-title: Taurus: towards a unified force representation and universal solver for graph layout
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2022.3209371
– start-page: 375
  year: 2021
  end-page: 390
  ident: CR12
  article-title: Deep neural network for drawing networks,
  publication-title: Graph drawing and network visualization
  doi: 10.1007/978-3-030-92931-2_27
– volume: 9
  start-page: 5233
  issue: 1
  year: 2019
  ident: CR28
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– volume: 27
  start-page: 1698
  issue: 2
  year: 2021
  end-page: 1708
  ident: CR40
  article-title: Preserving minority structures in graph sampling
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2020.3030428
– start-page: 239
  year: 2005
  end-page: 250
  ident: CR10
  article-title: Graph drawing by stress majorization
  publication-title: Graph drawing
  doi: 10.1007/978-3-540-31843-9_25
– volume: 12
  start-page: 324
  issue: 3–4
  year: 2013
  end-page: 357
  ident: CR11
  article-title: A survey of two-dimensional graph layout techniques for information visualisation
  publication-title: Inf Vis
  doi: 10.1177/1473871612455749
– volume: 39
  start-page: 579
  issue: 3
  year: 2020
  end-page: 591
  ident: CR21
  article-title: Sublinear time force computation for big complex network visualization
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.14003
– ident: CR38
– volume: 4
  start-page: 197
  issue: 3
  year: 1997
  end-page: 229
  ident: CR5
  article-title: Drawing graphs to convey proximity: an incremental arrangement method
  publication-title: ACM Trans Comput Hum Interact
  doi: 10.1145/264645.264657
– year: 2013
  ident: CR25
  publication-title: Handbook of graph drawing and visualization
  doi: 10.1201/b15385
– ident: CR36
– start-page: 42
  year: 2007
  end-page: 53
  ident: CR4
  article-title: Eigensolver methods for progressive multidimensional scaling of large data
  publication-title: Graph drawing
  doi: 10.1007/978-3-540-70904-6_6
– volume: 31
  start-page: 7
  issue: 1
  year: 1989
  end-page: 15
  ident: CR17
  article-title: An algorithm for drawing general undirected graphs
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(89)90102-6
– ident: CR7
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: CR33
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 30
  start-page: 754
  issue: 4
  year: 2019
  end-page: 765
  ident: CR1
  article-title: A distributed multilevel force-directed algorithm
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2869805
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  end-page: 24
  ident: CR34
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– ident: CR24
– volume: 26
  start-page: 676
  issue: 1
  year: 2020
  end-page: 686
  ident: CR32
  article-title: Deepdrawing: a deep learning approach to graph drawing
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2019.2934798
– ident: CR20
– volume: 41
  start-page: 32
  issue: 5
  year: 2021
  end-page: 44
  ident: CR31
  article-title: DeepGD: a deep learning framework for graph drawing using GNN
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/MCG.2021.3093908
– year: 2022
  ident: 991_CR27
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3184967
– volume: 31
  start-page: 7
  issue: 1
  year: 1989
  ident: 991_CR17
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(89)90102-6
– volume: 4
  start-page: 197
  issue: 3
  year: 1997
  ident: 991_CR5
  publication-title: ACM Trans Comput Hum Interact
  doi: 10.1145/264645.264657
– volume: 39
  start-page: 40
  issue: 4
  year: 2019
  ident: 991_CR15
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/MCG.2018.2881501
– ident: 991_CR23
  doi: 10.1145/3035918.3064045
– ident: 991_CR7
– start-page: 451
  volume-title: Multilayer perceptron (MLP)
  year: 2018
  ident: 991_CR26
– volume: 26
  start-page: 665
  issue: 1
  year: 2020
  ident: 991_CR18
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2019.2934396
– volume: 27
  start-page: 1698
  issue: 2
  year: 2021
  ident: 991_CR40
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2020.3030428
– volume: 184
  start-page: 232
  year: 2016
  ident: 991_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 991_CR19
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 425
  volume-title: Graph drawing
  year: 2004
  ident: 991_CR22
  doi: 10.1007/978-3-540-24595-7_40
– ident: 991_CR16
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 991_CR34
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2978386
– volume: 90
  start-page: 119
  year: 2019
  ident: 991_CR35
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.01.006
– ident: 991_CR6
  doi: 10.1145/2470654.2466444
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 991_CR3
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– volume: 9
  start-page: 2579
  year: 2008
  ident: 991_CR30
  publication-title: J Mach Learn Res
– volume: 30
  start-page: 754
  issue: 4
  year: 2019
  ident: 991_CR1
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2869805
– start-page: 375
  volume-title: Graph drawing and network visualization
  year: 2021
  ident: 991_CR12
  doi: 10.1007/978-3-030-92931-2_27
– volume: 29
  start-page: 886
  issue: 1
  year: 2023
  ident: 991_CR37
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2022.3209371
– volume: 324
  start-page: 446
  issue: 6096
  year: 1986
  ident: 991_CR2
  publication-title: Nature
  doi: 10.1038/324446a0
– volume: 18
  start-page: 145
  issue: 2
  year: 2013
  ident: 991_CR41
  publication-title: Tsinghua Sci Technol
  doi: 10.1109/TST.2013.6509098
– start-page: 239
  volume-title: Graph drawing
  year: 2005
  ident: 991_CR10
  doi: 10.1007/978-3-540-31843-9_25
– volume: 39
  start-page: 579
  issue: 3
  year: 2020
  ident: 991_CR21
  publication-title: Comput Graph Forum
  doi: 10.1111/cgf.14003
– volume: 41
  start-page: 32
  issue: 5
  year: 2021
  ident: 991_CR31
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/MCG.2021.3093908
– volume: 21
  start-page: 1129
  issue: 11
  year: 1991
  ident: 991_CR9
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.4380211102
– ident: 991_CR20
  doi: 10.1007/978-3-319-46448-0_8
– volume-title: Handbook of graph drawing and visualization
  year: 2013
  ident: 991_CR25
  doi: 10.1201/b15385
– volume: 26
  start-page: 676
  issue: 1
  year: 2020
  ident: 991_CR32
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2019.2934798
– volume: 3
  start-page: 743
  issue: 1
  year: 1963
  ident: 991_CR29
  publication-title: Proc Lond Math Soc
  doi: 10.1112/plms/s3-13.1.743
– volume: 9
  start-page: 5233
  issue: 1
  year: 2019
  ident: 991_CR28
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– ident: 991_CR24
  doi: 10.1145/2623330.2623732
– volume: 12
  start-page: 324
  issue: 3–4
  year: 2013
  ident: 991_CR11
  publication-title: Inf Vis
  doi: 10.1177/1473871612455749
– ident: 991_CR14
  doi: 10.1145/2939672.2939754
– ident: 991_CR39
  doi: 10.1109/VIS47514.2020.00026
– start-page: 42
  volume-title: Graph drawing
  year: 2007
  ident: 991_CR4
  doi: 10.1007/978-3-540-70904-6_6
– year: 2022
  ident: 991_CR13
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2022.3222186
– volume: 66
  start-page: 689
  year: 2015
  ident: 991_CR8
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.11.078
– ident: 991_CR38
– ident: 991_CR36
SSID ssj0021471
Score 2.3197877
Snippet Deep learning techniques have been applied to the graph drawing of node-link diagrams to help figure out user preference of layout in recent research. However,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 925
SubjectTerms Ablation
Algorithms
Classical and Continuum Physics
Computer Imaging
Deep learning
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Graphs
Heat and Mass Transfer
Layouts
Machine learning
Multilayer perceptrons
Pattern Recognition and Graphics
Regular Paper
Unsupervised learning
Vision
Title DeepFD: a deep learning approach to fast generate force-directed layout for large graphs
URI https://link.springer.com/article/10.1007/s12650-024-00991-1
https://www.proquest.com/docview/3104475804
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIYt1C4w8FFAFErlgQ0sNbZjp2wVbalAMFGpTFEcX7qgtmrSgX_POXUIIBjYrCTycLbzPif7XhNyhQrjXOBSppQGJhNtWKIQ5FKZGAOZQoh19c5Pz2oylQ-zcOaLwvLqtHu1JVn-qetiN440wVBTmMOagGHO0wwxd3cH-aZ88JlmBVWaJQXDJRT6Upnf-_guRzVj_tgWLdVmfEj2PSbSwXZcj8gOLFrkwCMj9Qsyb5G9L36Cx2Q2BFiNh7c0oRZb1F8JMaeVczgtljRL8oLOS7fpAigyawpsK2zY81vyvtwU7ik213OgpaF1fkKm49HL3YT5qxNYynWvYAHXmQ15lAlMZ6yxGXIBqmGgEwuBMkpaCVbqfqaQGPsGpOaJFBpkZDUXMhWnpLFYLuCMUNR3CPtRlolQYO4YmEA4D3cFCG8crG6T6yqC8WrrkBHXXsgu3jHGOy7jHQdt0qmCHPvVkseImM53MOrJNrmpAl-__ru38_99fkF2uRv78ixehzSK9QYukSkK0yXNwf3r46hbTqUPv7nB-g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ09T8MwEIZPqB2AgW9EoYAHNnBFEsdO2RBtKbQwUalMURxfOoDaiqQD_HouqUMBwdDNSiIrubNzz8m-1wBnFGFyFbiYS6mQi0hpHkkCuVhEWmMiCWLzeueHR9kdiPuhP7RFYWm5271ckiz-1ItiN5doglNM4TnWOJxynqqgHFxUoHp9-9xrfyVaTploCY_TJPJtsczfvfwMSAvK_LUwWsSbziYMyjedbzN5acwy3Yg_fok4LvspW7BhAZRdz0fMNqzgeAc2LYwyO9XTHVj_plS4C8MW4rTTumIRM9Ri9rCJESs1yVk2YUmUZmxU6FhnyIiGY-TzkEk9v0bvk1mWX6Xm2whZIZWd7sGg03666XJ7KAOPXXWZccdVifHdIPEoUTLaJEQcFGcdFRl0pJbCCDRCNRNJLNrUKJQbCU-hCIxyPRF7-1AZT8Z4AIzIAf1mkCSe71FW6mjHy9XhJRIWumhUDc5Lz4TTufZGuFBZzk0YkgnDwoShU4N66bzQzsM0JHjNFQ2DS1GDi9IXi9v_93a43OOnsNp9euiH_bvH3hGsublrix1_dahkbzM8JnLJ9IkdqJ959OBJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NbxMxEIZHVSpV5UDaACJQqA_cwEl212sn3CrStKUf4tBI6Wllr8c5gJIocQ7w6xnvR5NW9FBxs3ZX1u6MvfOM7HkN8IkiTFCBy7mUCrnQynAtCeRyoY1BJwliQ73z9Y08H4vvk3SyVcVf7HavlyTLmoag0jTz3YV13U3hW0xkwSm-8IA4Eaf8Z1cEcfYG7J6c3V2e3iddUZ10iYTThEqrwpl_9_IwOG2I89EiaRF7Rk3Q9VuXW05-dtbedPI_jwQd_-ezDuBlBabspBxJh7CDsxY0K0hl1S9g1YIXWwqGr2AyRFyMhl-ZZpZarDqEYspqrXLm58zplWfTQt_aIyNKzpGXoZR6_qV_z9c-XKXmcoqskNBevYbx6PT22zmvDmvgeax6nkexcjaN-y6hBMoa64hEKP5GSluMpJHCCrRCDZwkRh0YFCrWIlEo-lbFiciTN9CYzWf4FhgRBaaDvnNJmlC2GpkoCarxEgkXY7SqDZ9rL2WLUpMj26gvBxNmZMKsMGEWteGodmRWzc9VRlAblA77PdGGL7VfNref7u3d8x4_hr0fw1F2dXFz-R724-DZYiPgETT8co0fCGi8-ViN2b8AB-kt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepFD%3A+a+deep+learning+approach+to+fast+generate+force-directed+layout+for+large+graphs&rft.jtitle=Journal+of+visualization&rft.au=Zhang%2C+Shuhang&rft.au=Xu%2C+Ruihong&rft.au=Zhang%2C+Qing&rft.au=Quan%2C+Yining&rft.date=2024-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=27&rft.issue=5&rft.spage=925&rft.epage=940&rft_id=info:doi/10.1007%2Fs12650-024-00991-1&rft.externalDocID=10_1007_s12650_024_00991_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon