Tractable representations for Boolean functional synthesis

Given a Boolean relational specification F ( X , Y ) , where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to compute a vector of (Skolem) functions Ψ ( X ) , one for each output in Y , such that F ( X , Ψ ( X ) ) ↔ ∃ Y F ( X , Y ) holds. This problem...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 92; no. 5; pp. 1051 - 1096
Main Authors Akshay, S., Chakraborty, Supratik, Shah, Shetal
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Given a Boolean relational specification F ( X , Y ) , where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to compute a vector of (Skolem) functions Ψ ( X ) , one for each output in Y , such that F ( X , Ψ ( X ) ) ↔ ∃ Y F ( X , Y ) holds. This problem lies at the heart of many applications and has received significant attention in recent years. In this paper, we investigate the role of representation of F ( X , Y ) and of Ψ ( X ) in determining the computational hardness of Boolean functional synthesis. We start by showing that an efficient way of existentially quantifying variables from a Boolean formula in a given order yields an efficient solution to Boolean functional synthesis and vice versa. We then propose a semantic normal form, called SynNNF, that guarantees polynomial-time synthesis and characterizes polynomial-time existential quantification for a given order of quantification of variables. We show that several syntactic and other semantic normal forms for Boolean formulas studied in the knowledge compilation literature are subsumed by SynNNF, and that SynNNF is exponentially more succinct than most of them. We also investigate how the representation of the synthesized (Skolem) functions Ψ ( X ) affects the complexity of Boolean functional synthesis, and present a map of complexity based on the representations of F ( X , Y ) and Ψ ( X ) . Finally, we propose an algorithm to compile a specification represented as a NNF (including CNF) circuit to SynNNF. We present results of an extensive set of experiments conducted using an implementation of the above algorithm, and two other tools available in the public domain.
AbstractList Given a Boolean relational specification F(X,Y), where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to compute a vector of (Skolem) functions Ψ(X), one for each output in Y, such that F(X,Ψ(X))↔∃YF(X,Y) holds. This problem lies at the heart of many applications and has received significant attention in recent years. In this paper, we investigate the role of representation of F(X,Y) and of Ψ(X) in determining the computational hardness of Boolean functional synthesis. We start by showing that an efficient way of existentially quantifying variables from a Boolean formula in a given order yields an efficient solution to Boolean functional synthesis and vice versa. We then propose a semantic normal form, called SynNNF, that guarantees polynomial-time synthesis and characterizes polynomial-time existential quantification for a given order of quantification of variables. We show that several syntactic and other semantic normal forms for Boolean formulas studied in the knowledge compilation literature are subsumed by SynNNF, and that SynNNF is exponentially more succinct than most of them. We also investigate how the representation of the synthesized (Skolem) functions Ψ(X) affects the complexity of Boolean functional synthesis, and present a map of complexity based on the representations of F(X,Y) and Ψ(X). Finally, we propose an algorithm to compile a specification represented as a NNF (including CNF) circuit to SynNNF. We present results of an extensive set of experiments conducted using an implementation of the above algorithm, and two other tools available in the public domain.
Given a Boolean relational specification F ( X , Y ) , where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to compute a vector of (Skolem) functions Ψ ( X ) , one for each output in Y , such that F ( X , Ψ ( X ) ) ↔ ∃ Y F ( X , Y ) holds. This problem lies at the heart of many applications and has received significant attention in recent years. In this paper, we investigate the role of representation of F ( X , Y ) and of Ψ ( X ) in determining the computational hardness of Boolean functional synthesis. We start by showing that an efficient way of existentially quantifying variables from a Boolean formula in a given order yields an efficient solution to Boolean functional synthesis and vice versa. We then propose a semantic normal form, called SynNNF, that guarantees polynomial-time synthesis and characterizes polynomial-time existential quantification for a given order of quantification of variables. We show that several syntactic and other semantic normal forms for Boolean formulas studied in the knowledge compilation literature are subsumed by SynNNF, and that SynNNF is exponentially more succinct than most of them. We also investigate how the representation of the synthesized (Skolem) functions Ψ ( X ) affects the complexity of Boolean functional synthesis, and present a map of complexity based on the representations of F ( X , Y ) and Ψ ( X ) . Finally, we propose an algorithm to compile a specification represented as a NNF (including CNF) circuit to SynNNF. We present results of an extensive set of experiments conducted using an implementation of the above algorithm, and two other tools available in the public domain.
Author Akshay, S.
Chakraborty, Supratik
Shah, Shetal
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0002-2471-5997
  surname: Akshay
  fullname: Akshay, S.
  email: akshayss@cse.iitb.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Bombay
– sequence: 2
  givenname: Supratik
  orcidid: 0000-0002-7527-7675
  surname: Chakraborty
  fullname: Chakraborty, Supratik
  email: supratik@cse.iitb.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Bombay
– sequence: 3
  givenname: Shetal
  orcidid: 0000-0002-7897-4900
  surname: Shah
  fullname: Shah, Shetal
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Bombay
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNowfsUJO6h4SZXYlLXl2BNoFexiJ4v-PSlBYsdqRqNzr0ZnQWYhBiTkksE1A9A3mYHUnAIXFOoaNFUnZM6UFlRLDbNxB8Ypl1KckUXOOwCoy6qck9tNsq63TYdFwn3CjKG3_TaGXLQxFfcxdmhD0Q7BHa-2K_Ih9B-Yt_mcnLa2y3jxO5fk7fFhs3qm69enl9XdmjquoaeMi6aRzIETSjZeC_RlWaPQpRIIHBGZrWoBwrvWV65sGHDPpG-0VzXnlViSq6l3n-LXgLk3uzik8ZVsBGMlaMW1Gik-US7FnBO2Zp-2nzYdDANzdGQmR2Z0ZH4cmWNITKE8wuEd01_1P6lvPR1rRQ
Cites_doi 10.1007/s10009-012-0223-4
10.23919/FMCAD.2018.8603000
10.1002/j.1538-7305.1959.tb01585.x
10.1137/1.9780898719789
10.1007/978-3-319-96145-3_14
10.1109/TC.1986.1676819
10.1006/jcss.2000.1727
10.24963/kr.2020/91
10.5591/978-1-57735-516-8/IJCAI11-143
10.1007/s10703-020-00352-2
10.1007/s100090100038
10.1007/978-1-4899-5327-8_25
10.1109/ICTAI.2019.00020
10.1109/FMCAD.2015.7542255
10.1007/978-1-4613-1303-8
10.1145/378239.379017
10.1007/978-3-030-53291-8_31
10.1145/502090.502091
10.1109/ICCAD51958.2021.9643583
10.1109/TC.1978.1675141
10.1017/CBO9780511810275
10.1109/12.73590
10.1007/978-3-319-41540-6_22
10.1007/978-3-662-54577-5_19
10.1007/978-3-319-40970-2_23
10.1145/1809028.1806632
10.3166/jancl.11.11-34
10.1109/LICS52264.2021.9470741
10.1007/978-3-642-02658-4_30
10.1007/978-3-642-33293-7_4
10.1007/978-3-030-53288-8_24
10.1145/136035.136043
10.1145/800135.804419
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10472-023-09907-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 1096
ExternalDocumentID 10_1007_s10472_023_09907_5
GrantInformation_xml – fundername: DST/CEFIPRA/INRIA
  grantid: CEFIPRA Project EQuaVE
– fundername: Science and Engineering Research Board, Government of India
  grantid: Matrices Grant MTR/2018/000744
– fundername: Ministry of Human Resouces and Development, Govt of India
  grantid: IMPRINT-1/Project 5496(FMSAFE)
– fundername: Ministry of Human Resources and Development, Govt of India
  grantid: IMPRINT-1/Project 5496(FMSAFE)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEOY
AAGNY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-123bb41c0c354bd73ed669e37653e02eee1a89303dcfd8c6b102d14db7d592283
IEDL.DBID U2A
ISSN 1012-2443
IngestDate Tue Oct 15 03:25:34 EDT 2024
Wed Oct 16 15:31:54 EDT 2024
Mon Oct 14 03:43:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Boolean functional synthesis
Tractable representations
Knowledge compilation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-123bb41c0c354bd73ed669e37653e02eee1a89303dcfd8c6b102d14db7d592283
ORCID 0000-0002-7897-4900
0000-0002-7527-7675
0000-0002-2471-5997
PQID 3116075275
PQPubID 2043872
PageCount 46
ParticipantIDs proquest_journals_3116075275
crossref_primary_10_1007_s10472_023_09907_5
springer_journals_10_1007_s10472_023_09907_5
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References AkshaySAroraJChakrabortySKrishnaSNRaghunathanDShahSBarrettCWYangJKnowledge compilation for Boolean functional synthesisFormal Methods in Computer Aided Design, FMCAD 20192019San JoseCA, USA, October2225
Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about Boolean functional synthesis? In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 251–269
KuncakVMayerMPiskacRSuterPComplete functional synthesisSIGPLAN Not.201045631632910.1145/1809028.1806632
John, A.K., Shah, S., Chakraborty, S., Trivedi, A., Akshay, S.: Skolem functions for factored formulas. In: 2015 Formal Methods in Computer-Aided Design (FMCAD), pp. 73–80 (2015). IEEE
DarwicheAOn the tractable counting of theory models and its application to truth maintenance and belief revisionJournal of Applied Non-Classical Logics2001111–21134192206110.3166/jancl.11.11-34
Tseitin, G.S.: On the complexity of derivation in propositional calculus. Structures in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics, 115–125 (1968)
Darwiche, A.: SDD: A new canonical representation of propositional knowledge bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 819–826. IJCAI/AAAI, (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Dependable Software Systems Engineering. NATO Science for Peace and Security Series, D: Information and Communication Security, vol. 40, pp. 1–25
Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sickert, S. (eds.) Dependable Software Systems Engineering. NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 45, pp. 72–98
PadoaAEssai d’une théorie algébrique des nombres entiers, précédé d’une intro duction logique à une théorie déductive quelconqueBibliothèque du Congrès International de Philosophie19013309
AkshaySChakrabortySGoelSKulalSShahSBoolean functional synthesis: hardness and practical algorithmsFormal Methods in System Design2021571538610.1007/s10703-020-00352-2
WegenerIBranching Programs and Binary Decision Diagrams2000USASIAM10.1137/1.9780898719789
DarwicheADecomposable negation normal formJ. ACM2001484608647214492410.1145/502090.502091
LeeCYRepresentation of Switching Circuits by Binary-Decision ProgramsBell System Technical Journal195938498599910613710.1002/j.1538-7305.1959.tb01585.x
Jiang, J.-H.R.: Quantifier elimination via functional composition. In: Proc. of CAV, pp. 383–397 (2009). Springer
Chen, Y., Eickmeyer, K., Flum, J.: The exponential time hypothesis and the parameterized clique problem. In: Proceedings of the 7th International Conference on Parameterized and Exact Computation. IPEC’12, pp. 13–24. Springer, Berlin, Heidelberg (2012)
SrivastavaSGulwaniSFosterJSTemplate-based program verification and program synthesisInternational Journal on Software Tools for Technology Transfer2013155–649751810.1007/s10009-012-0223-4
Akshay, S., Chakraborty, S., John, A.K., Shah, S.: Towards parallel Boolean functional synthesis. In: TACAS 2017 Proceedings, Part I, pp. 337–353 (2017)
Minato, S.-I.: Zero-suppressed BDDs and their applications. International Journal on Software Tools for Technology Transfer 3(2), 156–170 (2001)
MinatoS-IBinary Decision Diagrams and Applications for VLSI CAD1996USAKluwer Academic Publishers10.1007/978-1-4613-1303-8
Muise, C., McIlraith, S.A., Beck, C., Hsu, E.: DSHARP: Fast d-DNNF Compilation with sharpSAT . In: AAAI-16 Workshop on Beyond NP (2016). http://haz.ca/dsharp-related.html
Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-based Boolean functional synthesis. In: Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pp. 402–421 (2016)
Logic, B., Group, V.: ABC: A System for Sequential Synthesis and Verification . http://www.eecs.berkeley.edu/~alanmi/abc
Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for Boolean function synthesis. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12225, pp. 611–633
ImpagliazzoRPaturiROn the complexity of k-SATJournal of Computer and System Sciences2001622367375182059710.1006/jcss.2000.1727
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), pp. 530–535 (2001). https://doi.org/10.1145/378239.379017
HuthMRyanMLogic in Computer Science: Modelling and Reasoning About Systems2004USACambridge University Press10.1017/CBO9780511810275
BryantRESymbolic Boolean Manipulation with Ordered Binary-Decision DiagramsACM Computing Surveys1992243293318120880210.1145/136035.136043
Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. Computers 40(2), 205–213 (1991). https://doi.org/10.1109/12.73590
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819
Golia, P., Slivovsky, F., Roy, S., Meel, K.S.: Engineering an efficient Boolean functional synthesis engine. In: IEEE/ACM International Conference On Computer Aided Design, ICCAD 2021, Munich, Germany, November 1-4, 2021, pp. 1–9
Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing. STOC ’79, pp. 249–261. ACM, New York, NY, USA (1979)
Somenzi, F.: Binary decision diagrams. In: Calculational System Design, Vol. 173 of NATO Science Series F, pp. 303–366 (1999)
Shi, W., Shih, A., Darwiche, A., Choi, A.: On tractable representations of binary neural networks. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pp. 882–892 (2020). https://doi.org/10.24963/kr.2020/91
Slivovsky, F.: Interpolation-based semantic gate extraction and its applications to QBF preprocessing. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12224, pp. 508–528
Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams, 12th edn. Addison-Wesley Professional, USA (2009)
Shukla, A., Bierre, A., Siedl, M., Pulina, L.: A survey on applications of quantified Boolean formula. In: Proceedings of the Thirty-First International Conference on Tools with Artificial Intelligence (ICTAI), pp. 78–84 (2019)
AkersSBBinary Decision DiagramsIEEE Transactions on Computers197827650951610.1109/TC.1978.1675141
Shah, P., Bansal, A., Akshay, S., Chakraborty, S.: A normal form characterization for efficient Boolean Skolem function synthesis. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pp. 1–13
Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional synthesis via input-output separation. In: 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1–9 (2018)
Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pp. 375–392 (2016). https://doi.org/10.1007/978-3-319-40970-2_23
DarwicheAMarquisPA knowledge compilation mapJ. Artif. Int. Res.20021712292641950798
A Darwiche (9907_CR15) 2001; 48
A Darwiche (9907_CR20) 2001; 11
9907_CR1
RE Bryant (9907_CR23) 1992; 24
S Srivastava (9907_CR7) 2013; 15
9907_CR5
9907_CR6
9907_CR3
9907_CR4
9907_CR9
9907_CR19
9907_CR18
A Darwiche (9907_CR35) 2002; 17
9907_CR17
9907_CR39
9907_CR8
9907_CR16
9907_CR37
9907_CR13
9907_CR12
9907_CR34
9907_CR11
9907_CR33
9907_CR31
9907_CR30
M Huth (9907_CR14) 2004
A Padoa (9907_CR38) 1901; 3
SB Akers (9907_CR22) 1978; 27
S-I Minato (9907_CR24) 1996
CY Lee (9907_CR21) 1959; 38
I Wegener (9907_CR25) 2000
S Akshay (9907_CR2) 2021; 57
S Akshay (9907_CR10) 2019
9907_CR29
9907_CR28
9907_CR27
9907_CR26
V Kuncak (9907_CR36) 2010; 45
R Impagliazzo (9907_CR32) 2001; 62
9907_CR42
9907_CR41
9907_CR40
References_xml – volume: 3
  start-page: 309
  year: 1901
  ident: 9907_CR38
  publication-title: Bibliothèque du Congrès International de Philosophie
  contributor:
    fullname: A Padoa
– volume: 15
  start-page: 497
  issue: 5–6
  year: 2013
  ident: 9907_CR7
  publication-title: International Journal on Software Tools for Technology Transfer
  doi: 10.1007/s10009-012-0223-4
  contributor:
    fullname: S Srivastava
– ident: 9907_CR13
  doi: 10.23919/FMCAD.2018.8603000
– volume: 38
  start-page: 985
  issue: 4
  year: 1959
  ident: 9907_CR21
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1959.tb01585.x
  contributor:
    fullname: CY Lee
– volume-title: Branching Programs and Binary Decision Diagrams
  year: 2000
  ident: 9907_CR25
  doi: 10.1137/1.9780898719789
  contributor:
    fullname: I Wegener
– ident: 9907_CR1
  doi: 10.1007/978-3-319-96145-3_14
– ident: 9907_CR18
  doi: 10.1109/TC.1986.1676819
– volume: 62
  start-page: 367
  issue: 2
  year: 2001
  ident: 9907_CR32
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.2000.1727
  contributor:
    fullname: R Impagliazzo
– ident: 9907_CR16
  doi: 10.24963/kr.2020/91
– ident: 9907_CR28
  doi: 10.5591/978-1-57735-516-8/IJCAI11-143
– volume: 57
  start-page: 53
  issue: 1
  year: 2021
  ident: 9907_CR2
  publication-title: Formal Methods in System Design
  doi: 10.1007/s10703-020-00352-2
  contributor:
    fullname: S Akshay
– ident: 9907_CR26
  doi: 10.1007/s100090100038
– ident: 9907_CR37
  doi: 10.1007/978-1-4899-5327-8_25
– start-page: 22
  volume-title: Formal Methods in Computer Aided Design, FMCAD 2019
  year: 2019
  ident: 9907_CR10
  contributor:
    fullname: S Akshay
– ident: 9907_CR41
– ident: 9907_CR6
– ident: 9907_CR19
  doi: 10.1109/ICTAI.2019.00020
– volume: 17
  start-page: 229
  issue: 1
  year: 2002
  ident: 9907_CR35
  publication-title: J. Artif. Int. Res.
  contributor:
    fullname: A Darwiche
– ident: 9907_CR8
  doi: 10.1109/FMCAD.2015.7542255
– volume-title: Binary Decision Diagrams and Applications for VLSI CAD
  year: 1996
  ident: 9907_CR24
  doi: 10.1007/978-1-4613-1303-8
  contributor:
    fullname: S-I Minato
– ident: 9907_CR40
  doi: 10.1145/378239.379017
– ident: 9907_CR12
  doi: 10.1007/978-3-030-53291-8_31
– volume: 48
  start-page: 608
  issue: 4
  year: 2001
  ident: 9907_CR15
  publication-title: J. ACM
  doi: 10.1145/502090.502091
  contributor:
    fullname: A Darwiche
– ident: 9907_CR17
– ident: 9907_CR3
  doi: 10.1109/ICCAD51958.2021.9643583
– volume: 27
  start-page: 509
  issue: 6
  year: 1978
  ident: 9907_CR22
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1978.1675141
  contributor:
    fullname: SB Akers
– volume-title: Logic in Computer Science: Modelling and Reasoning About Systems
  year: 2004
  ident: 9907_CR14
  doi: 10.1017/CBO9780511810275
  contributor:
    fullname: M Huth
– ident: 9907_CR34
  doi: 10.1109/12.73590
– ident: 9907_CR29
  doi: 10.1007/978-3-319-41540-6_22
– ident: 9907_CR9
  doi: 10.1007/978-3-662-54577-5_19
– ident: 9907_CR4
  doi: 10.1007/978-3-319-40970-2_23
– volume: 45
  start-page: 316
  issue: 6
  year: 2010
  ident: 9907_CR36
  publication-title: SIGPLAN Not.
  doi: 10.1145/1809028.1806632
  contributor:
    fullname: V Kuncak
– ident: 9907_CR5
– volume: 11
  start-page: 11
  issue: 1–2
  year: 2001
  ident: 9907_CR20
  publication-title: Journal of Applied Non-Classical Logics
  doi: 10.3166/jancl.11.11-34
  contributor:
    fullname: A Darwiche
– ident: 9907_CR27
– ident: 9907_CR11
  doi: 10.1109/LICS52264.2021.9470741
– ident: 9907_CR30
  doi: 10.1007/978-3-642-02658-4_30
– ident: 9907_CR42
– ident: 9907_CR33
  doi: 10.1007/978-3-642-33293-7_4
– ident: 9907_CR39
  doi: 10.1007/978-3-030-53288-8_24
– volume: 24
  start-page: 293
  issue: 3
  year: 1992
  ident: 9907_CR23
  publication-title: ACM Computing Surveys
  doi: 10.1145/136035.136043
  contributor:
    fullname: RE Bryant
– ident: 9907_CR31
  doi: 10.1145/800135.804419
SSID ssj0009686
Score 2.4079013
Snippet Given a Boolean relational specification F ( X , Y ) , where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to...
Given a Boolean relational specification F(X,Y), where X is a vector of inputs and Y is a vector of outputs, Boolean functional synthesis requires us to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1051
SubjectTerms Algorithms
Artificial Intelligence
Boolean
Canonical forms
Complex Systems
Complexity
Computer Science
Functionals
Knowledge representation
Mathematics
Polynomials
Public domain
Semantics
Specifications
Synthesis
Title Tractable representations for Boolean functional synthesis
URI https://link.springer.com/article/10.1007/s10472-023-09907-5
https://www.proquest.com/docview/3116075275
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwGPwE7QIDjwKiUCoPbGAp8bNha1FLBWqnVipTlMSOhIRSRMrAv-dzHgQQDEwZHHu42L5T7LsP4FJaq6RIAxrJyJUw44YG3EZUMT8RA9QIqXEG59lcTZfifiVXjY-7uOxen0gWG_UXr5vQjCLFUHeWo6nchrZ0cWg4iZds2CTtqqK8o8utoshdvHLK_D7GdzZqJOaPU9GCbCYHsFepRDIsP-shbNmsA_t1BQZSLcgO7M4-U1fzI7hZOMuT80KRIquy9hVlOUFpSkbr9bONMuKorPwDSPL3DPvnT_kxLCfjxe2UVrURaMK0t6FIOHEs_MRLuBSx0dwapQKL24Xk1mPWWj9CKeJxk6RmkKgYhYTxhYm1kYGLvDmBVrbO7CmQWLDUBFzoRCnhpd4gClKOssdJEY0du3BVYxS-lBEYYRN27BANEdGwQDSUXejVMIbVcshD7rscO8k0Nl_X0DbNf4929r_Xz2GHoegoL9v1oLV5fbMXKBo2cR_aw8loNHfPu8eHcb-YNB9d37nk
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2CdgAGCgVEoUAGNnCV-NmwFdRS6GNqpTJFSexICJQikg7w9dh5UKhg6OzYSq4f5yi-51yAS6YUZzRykc98U8KMSOQS5SOOnZC2NUeIpBE4j8a8P6WPMzYrRGFJme1eXklmJ_UPsRsVGGmMQeYyRyC2CVWKHY4rUO3cPw26S7NdnlV4NNZVSMMXKcQyf4_yG5CWLHPlYjTDm14NpuWb5mkmL61FGrTCzxUTx3U_ZQ92CwJqdfIVsw8bKq5DrSzuYBV7vQ47o29D1-QAbiZGTWVkVlZmg1lKluLE0qzXup3PX5UfWwYl85-LVvIR6_7Jc3II0153ctdHRdkFFGJhp0hjWRBQJ7RDwmggBVGSc1fpk4gRZWOllONrlmMTGUayHfJAcxTpUBkIyVzjpnMElXgeq2OwAooj6RIqQs6pHdlt342IZlSG5QjdsQFXZey9t9xdw1v6KJsgeTpIXhYkjzWgWU6PV-y0xCOOschjWOjm6zLay-b_RztZ7_EL2OpPRkNv-DAenMI21twmz-lrQiV9X6gzzU3S4LxYil_ssdco
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFL1RTIwuRFEjitqFOx1oOy_qDhVEEeICElw1bWeaGE0htiz0653pQ5DowriezqS98zgnnXvOBTijUjJKQgd51NMlzLBADpYeYrYVkKbiCKHQAuf-gHVH5H5Mxwsq_jTbvbiSzDQN2qUpShpTETYWhG-E20jhDdIXOxzRVVgj2hmpBGut26dee268y9Jqj9rGCikow7lw5udRvoPTnHEuXZKm2NMpg1e8dZZy8lKfJX49-FgydPzPZ23DVk5MjVa2knZgRUYVKBdFH4z8DKjAZv_L6DXehcuhVllp-ZWR2mMWUqYoNhQbNq4mk1fpRYZGz-ynoxG_R6p__BzvwajTHl53UV6OAQU2NxOkMM73iRWYAabEFxxLwZgj1QlFsTRtKaXlKfZjYhGEohkwX3EXYRHhc0Ed7bKzD6VoEskDMHxih8LBhAeMETM0m54TYsW0NPvhqmMVzot5cKeZ64Y791fWQXJVkNw0SC6tQq2YKjffgbGLLW2dR22umi-KyM-bfx_t8G-Pn8L6403Hfbgb9I5gw1aUJ0v1q0EpeZvJY0VZEv8kX5WfaLrgDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tractable+representations+for+Boolean+functional+synthesis&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Akshay%2C+S&rft.au=Chakraborty%2C+Supratik&rft.au=Shah%2C+Shetal&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=92&rft.issue=5&rft.spage=1051&rft.epage=1096&rft_id=info:doi/10.1007%2Fs10472-023-09907-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon