Quasi-stability and Upper Semicontinuity for Coupled Wave Equations with Fractional Damping

This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics & optimization Vol. 89; no. 1; p. 26
Main Authors Qin, Yuming, Han, Xiaoyue
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–241, 2008; Mem AMS 912:1–167, 2008; Von Karman evolution equations. Well-posedness and long time dynamics, Springer, New York, 2010) on the property of quasi-stability of dynamic systems, we show first the quasi-stability property holds for the problem considered here and then prove the existence of global and exponential attractors. We also prove the upper semicontinuity of global attractors with respect to the fractional exponent. Finally, we show the continuity of global attractors with respect to a pair of parameters in a residual dense set and their upper semicontinuities in a complete metric space.
AbstractList This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–241, 2008; Mem AMS 912:1–167, 2008; Von Karman evolution equations. Well-posedness and long time dynamics, Springer, New York, 2010) on the property of quasi-stability of dynamic systems, we show first the quasi-stability property holds for the problem considered here and then prove the existence of global and exponential attractors. We also prove the upper semicontinuity of global attractors with respect to the fractional exponent. Finally, we show the continuity of global attractors with respect to a pair of parameters in a residual dense set and their upper semicontinuities in a complete metric space.
ArticleNumber 26
Author Han, Xiaoyue
Qin, Yuming
Author_xml – sequence: 1
  givenname: Yuming
  orcidid: 0000-0002-1850-2362
  surname: Qin
  fullname: Qin, Yuming
  email: yuming_qin@hotmail.com, yuming@dhu.edu.cn
  organization: Department of Mathematics, Donghua University, Institute for Nonlinear Science, Shanghai
– sequence: 2
  givenname: Xiaoyue
  surname: Han
  fullname: Han, Xiaoyue
  organization: College of Information Science and Technology, Donghua University
BookMark eNp9UEFLwzAYDTLBbfoHPAU8R5M0TdOjzE2FgYgODx5K2iQzo0u6pFX2722t4E2-w8fje-_xvjcDE-edBuCS4GuCcXYTMaYsRZgmaMAUiRMwJSyhCHPMJ2CKcZ4ixgk_A7MYd7jnJzyZgvfnTkaLYitLW9v2CKVTcNM0OsAXvbeVd6113XAwPsCF75paK_gmPzVcHjrZWu8i_LLtB1wFWQ1Q1vBO7hvrtufg1Mg66ovfPQeb1fJ18YDWT_ePi9s1qmiGW0QIN5QIljFljEi1YpUwHKvKcM0yU2pFJS-FyKqSKS5xKjJVKpljJnNGmU7m4Gr0bYI_dDq2xc53oQ8SC5oT2o_of50DOrKq4GMM2hRNsHsZjgXBxVBaMZZY9M38YFqIXpSMotiT3VaHP-t_VN9sjHeW
Cites_doi 10.1007/978-94-010-0732-0
10.1007/978-1-4757-5037-9
10.1007/978-3-319-33304-5
10.1007/978-1-4614-4581-4
10.1007/978-1-4612-0645-3
10.1007/s00245-022-09849-0
10.1007/s10440-021-00462-x
10.1111/sapm.12331
10.1142/5643
10.1007/978-3-319-00831-8
10.1007/s10884-004-4289-x
10.1007/s10255-020-0978-4
10.1007/s00245-007-9031-8
10.1515/msds-2020-0125
10.1007/978-3-319-10151-4
10.1007/978-0-387-87712-9
10.1090/surv/246
10.1007/s00245-019-09590-1
10.1051/978-2-7598-2703-9
10.1081/PDE-120016132
10.1016/j.na.2019.111582
10.3934/dcds.2003.9.1
10.1007/BFb0089647
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00245-023-10072-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1432-0606
ExternalDocumentID 10_1007_s00245_023_10072_8
GrantInformation_xml – fundername: NNSF
  grantid: No. 12171082
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2232022G-13; 2232023G-13
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
G8K
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TH9
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WHG
WJK
WK8
YLTOR
Z45
Z81
Z8U
ZL0
ZMTXR
ZWQNP
ZY4
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACDTI
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
AAYZH
JQ2
ID FETCH-LOGICAL-c270t-116f218474dff85ed4c8f60dcf6e47fbed2a6b887cb4d6a0587dbda904a9424e3
IEDL.DBID AGYKE
ISSN 0095-4616
IngestDate Fri Nov 08 08:10:33 EST 2024
Thu Sep 12 19:56:26 EDT 2024
Mon Jan 29 04:52:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Upper semicontinuity
Quasi-stability
37L05
Coupled wave equation
35L05
35B41
26A15
35B40
Fractional damping
Global attractors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-116f218474dff85ed4c8f60dcf6e47fbed2a6b887cb4d6a0587dbda904a9424e3
ORCID 0000-0002-1850-2362
PQID 2912121836
PQPubID 47316
ParticipantIDs proquest_journals_2912121836
crossref_primary_10_1007_s00245_023_10072_8
springer_journals_10_1007_s00245_023_10072_8
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied mathematics & optimization
PublicationTitleAbbrev Appl Math Optim
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cheban (CR7) 2004
Aouadi (CR2) 2021; 176
Chueshov, Lasiecka (CR11) 2008; 58
Bruschi, Carvalho (CR5) 2007; 32
Chueshov, Lasiecka (CR13) 2010
Freitas, Dos Santos, Ramos, Vinhote, Santos (CR16) 2021; 8
Wang, Hu, Qin (CR33) 2021; 56
Aouadi (CR1) 2020; 145
Qin (CR26) 2017
Chueshov, Eller, Lasiecka (CR14) 2002; 27
Qin (CR25) 2016
Chueshov, Lasiecka (CR10) 2004; 16
Freitas, Caljaro, Santos, Ramos (CR18) 2022; 85
Henry (CR21) 1981
Miranville, Zelik (CR22) 2003; 9
Chueshov, Eller, Lasiecka (CR15) 2002
Temam (CR32) 1997
Chepyzhov, Vishik (CR8) 2001
Giga, Novotny (CR19) 2016
Qin, Su (CR27) 2022
Bortolan, Carvalho, Langa (CR4) 2020
Shomberg (CR30) 2019; 36
Babin, Vishik (CR3) 1992
CR9
Sell, You (CR29) 2002
Yue, Liang, Yang (CR34) 2020; 36
Hale (CR20) 1988
Freitas, Ramos, Santos (CR17) 2021; 83
Miranville, Zelik (CR23) 2008
Robinson (CR28) 2001
Zheng (CR35) 2004
Carvalho, Langa, Robinson (CR6) 2013
Chueshov, Lasiecka (CR12) 2008; 912
Qin (CR24) 2016
Simon (CR31) 1987; 146
I Chueshov (10072_CR15) 2002
I Chueshov (10072_CR11) 2008; 58
M Aouadi (10072_CR2) 2021; 176
A Carvalho (10072_CR6) 2013
MM Freitas (10072_CR16) 2021; 8
cr-split#-10072_CR9.2
cr-split#-10072_CR9.1
DN Cheban (10072_CR7) 2004
MC Bortolan (10072_CR4) 2020
I Chueshov (10072_CR12) 2008; 912
A Miranville (10072_CR23) 2008
I Chueshov (10072_CR14) 2002; 27
Y Qin (10072_CR25) 2016
JC Robinson (10072_CR28) 2001
DB Henry (10072_CR21) 1981
JL Shomberg (10072_CR30) 2019; 36
G Yue (10072_CR34) 2020; 36
SM Bruschi (10072_CR5) 2007; 32
Y Giga (10072_CR19) 2016
A Miranville (10072_CR22) 2003; 9
Y Wang (10072_CR33) 2021; 56
GR Sell (10072_CR29) 2002
S Zheng (10072_CR35) 2004
AV Babin (10072_CR3) 1992
I Chueshov (10072_CR13) 2010
I Chueshov (10072_CR10) 2004; 16
MM Freitas (10072_CR17) 2021; 83
J Simon (10072_CR31) 1987; 146
Y Qin (10072_CR26) 2017
Y Qin (10072_CR27) 2022
VV Chepyzhov (10072_CR8) 2001
JK Hale (10072_CR20) 1988
MM Freitas (10072_CR18) 2022; 85
M Aouadi (10072_CR1) 2020; 145
Y Qin (10072_CR24) 2016
R Temam (10072_CR32) 1997
References_xml – year: 2001
  ident: CR28
  publication-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
  doi: 10.1007/978-94-010-0732-0
  contributor:
    fullname: Robinson
– year: 2002
  ident: CR29
  publication-title: Dynamics of Evolutionary Equations
  doi: 10.1007/978-1-4757-5037-9
  contributor:
    fullname: You
– year: 2016
  ident: CR24
  publication-title: Integral and Discrete Inequalities and Their Applications
  doi: 10.1007/978-3-319-33304-5
  contributor:
    fullname: Qin
– year: 2013
  ident: CR6
  publication-title: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems
  doi: 10.1007/978-1-4614-4581-4
  contributor:
    fullname: Robinson
– volume: 9
  start-page: 1
  year: 2003
  end-page: 27
  ident: CR22
  article-title: Uniform exponential attractors for a singularly perturbed damped wave equation
  publication-title: Discret. Contin. Dyn. Syst.
  contributor:
    fullname: Zelik
– volume: 146
  start-page: 65
  issue: 4
  year: 1987
  end-page: 96
  ident: CR31
  article-title: Compact sets in the space
  publication-title: Ann. Mat. Pura Appl.
  contributor:
    fullname: Simon
– year: 1997
  ident: CR32
  publication-title: Infinite-Dimensional Dynamical System in Mechanics and Physics
  doi: 10.1007/978-1-4612-0645-3
  contributor:
    fullname: Temam
– volume: 912
  start-page: 1
  year: 2008
  end-page: 167
  ident: CR12
  article-title: Long-time behavior of second order evolution equations with nonlinear damping
  publication-title: Mem. AMS
  contributor:
    fullname: Lasiecka
– year: 1981
  ident: CR21
  publication-title: Geometric Theory of Semilinear Parabolic Equations
  contributor:
    fullname: Henry
– volume: 85
  start-page: 9
  year: 2022
  ident: CR18
  article-title: Singular limit dynamics and attractors for wave equations connected in parallel
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-022-09849-0
  contributor:
    fullname: Ramos
– year: 2008
  ident: CR23
  publication-title: Handbook of Differential Equations Evolutionary Equations
  contributor:
    fullname: Zelik
– volume: 176
  start-page: 1
  year: 2021
  end-page: 28
  ident: CR2
  article-title: Continuity of global attractors for a suspension bridge equation
  publication-title: Acta. Appl. Math.
  doi: 10.1007/s10440-021-00462-x
  contributor:
    fullname: Aouadi
– year: 1988
  ident: CR20
  publication-title: Asymptotic Behavior of Disssipative Systems. Mathemathical Surveys and Monographs
  contributor:
    fullname: Hale
– volume: 145
  start-page: 586
  year: 2020
  end-page: 621
  ident: CR1
  article-title: Quasi-stability and upper semicontinuity for coupled parabolic equations with memory
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12331
  contributor:
    fullname: Aouadi
– year: 1992
  ident: CR3
  publication-title: Attractors of Evolution Equations
  contributor:
    fullname: Vishik
– year: 2002
  ident: CR15
  publication-title: Von Karman Evolution Equations: Well-Posedness and Long Time Dynamics
  contributor:
    fullname: Lasiecka
– year: 2004
  ident: CR7
  publication-title: Global Attractors of Non-autonomous Dissipative Dynamical Systems
  doi: 10.1142/5643
  contributor:
    fullname: Cheban
– year: 2017
  ident: CR26
  publication-title: Analytic Inequalities and Their Applications in PDEs
  doi: 10.1007/978-3-319-00831-8
  contributor:
    fullname: Qin
– year: 2001
  ident: CR8
  publication-title: Attractors of Equations of Mathematical Physics. Colloquium Publications
  contributor:
    fullname: Vishik
– volume: 16
  start-page: 469
  year: 2004
  end-page: 512
  ident: CR10
  article-title: Attractors for second order evolution equations with a nonlinear damping
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-004-4289-x
  contributor:
    fullname: Lasiecka
– volume: 36
  start-page: 952
  year: 2020
  end-page: 974
  ident: CR34
  article-title: Regularity of invariant sets in variable internal damped wave equations
  publication-title: Acta Math. Appl. Sin. Engl. Ser
  doi: 10.1007/s10255-020-0978-4
  contributor:
    fullname: Yang
– volume: 32
  start-page: 39
  year: 2007
  end-page: 62
  ident: CR5
  article-title: Upper semicontinuity of attractors for the discretization of strongly damped wave equations
  publication-title: Mat. Contemp.
  contributor:
    fullname: Carvalho
– volume: 56
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR33
  article-title: Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation
  publication-title: Bound. Value Probl.
  contributor:
    fullname: Qin
– year: 2004
  ident: CR35
  publication-title: Nonlinear Evolution Equations. Monographs and Surveys in Pure and Applied Mathmatics
  contributor:
    fullname: Zheng
– year: 2016
  ident: CR25
  publication-title: Integral and Discrete Inequalities and Their Applications
  doi: 10.1007/978-3-319-33304-5
  contributor:
    fullname: Qin
– ident: CR9
– volume: 58
  start-page: 195
  year: 2008
  end-page: 241
  ident: CR11
  article-title: Attractors and long-time behavior of von Karman thermoelastic plates
  publication-title: Appl. Math. Optim. Equ.
  doi: 10.1007/s00245-007-9031-8
  contributor:
    fullname: Lasiecka
– volume: 8
  start-page: 27
  year: 2021
  end-page: 45
  ident: CR16
  article-title: Quasi-stability and continuity of attractors for nonlinear system of wave equations
  publication-title: Nonauton. Dyn. Syst.
  doi: 10.1515/msds-2020-0125
  contributor:
    fullname: Santos
– year: 2016
  ident: CR19
  publication-title: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  doi: 10.1007/978-3-319-10151-4
  contributor:
    fullname: Novotny
– year: 2010
  ident: CR13
  publication-title: Von Karman Evolution Equations
  doi: 10.1007/978-0-387-87712-9
  contributor:
    fullname: Lasiecka
– year: 2020
  ident: CR4
  publication-title: Attractors Under Autonomous and Non-autonomous Perturbations. Mathemathical Surveys and Monographs
  doi: 10.1090/surv/246
  contributor:
    fullname: Langa
– volume: 83
  start-page: 1353
  year: 2021
  end-page: 1385
  ident: CR17
  article-title: Existence and upper-semicontinuity of global attractors for binary mixtures solids with fractional damping
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09590-1
  contributor:
    fullname: Santos
– year: 2022
  ident: CR27
  publication-title: Attractors for Nonlinear Autonomous Dynamical Systems
  doi: 10.1051/978-2-7598-2703-9
  contributor:
    fullname: Su
– volume: 27
  start-page: 1901
  year: 2002
  end-page: 1951
  ident: CR14
  article-title: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1081/PDE-120016132
  contributor:
    fullname: Lasiecka
– volume: 36
  year: 2019
  ident: CR30
  article-title: Attractors for damped semilinear wave equations with a robin-acoustic boundary perturbation
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2019.111582
  contributor:
    fullname: Shomberg
– ident: #cr-split#-10072_CR9.1
– volume: 9
  start-page: 1
  year: 2003
  ident: 10072_CR22
  publication-title: Discret. Contin. Dyn. Syst.
  doi: 10.3934/dcds.2003.9.1
  contributor:
    fullname: A Miranville
– volume-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
  year: 2001
  ident: 10072_CR28
  doi: 10.1007/978-94-010-0732-0
  contributor:
    fullname: JC Robinson
– volume: 146
  start-page: 65
  issue: 4
  year: 1987
  ident: 10072_CR31
  publication-title: Ann. Mat. Pura Appl.
  contributor:
    fullname: J Simon
– volume: 83
  start-page: 1353
  year: 2021
  ident: 10072_CR17
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09590-1
  contributor:
    fullname: MM Freitas
– volume-title: Infinite-Dimensional Dynamical System in Mechanics and Physics
  year: 1997
  ident: 10072_CR32
  doi: 10.1007/978-1-4612-0645-3
  contributor:
    fullname: R Temam
– volume-title: Analytic Inequalities and Their Applications in PDEs
  year: 2017
  ident: 10072_CR26
  doi: 10.1007/978-3-319-00831-8
  contributor:
    fullname: Y Qin
– volume-title: Attractors of Evolution Equations
  year: 1992
  ident: 10072_CR3
  contributor:
    fullname: AV Babin
– volume: 58
  start-page: 195
  year: 2008
  ident: 10072_CR11
  publication-title: Appl. Math. Optim. Equ.
  doi: 10.1007/s00245-007-9031-8
  contributor:
    fullname: I Chueshov
– volume-title: Asymptotic Behavior of Disssipative Systems. Mathemathical Surveys and Monographs
  year: 1988
  ident: 10072_CR20
  contributor:
    fullname: JK Hale
– volume-title: Integral and Discrete Inequalities and Their Applications
  year: 2016
  ident: 10072_CR25
  doi: 10.1007/978-3-319-33304-5
  contributor:
    fullname: Y Qin
– volume-title: Attractors Under Autonomous and Non-autonomous Perturbations. Mathemathical Surveys and Monographs
  year: 2020
  ident: 10072_CR4
  doi: 10.1090/surv/246
  contributor:
    fullname: MC Bortolan
– volume-title: Von Karman Evolution Equations
  year: 2010
  ident: 10072_CR13
  doi: 10.1007/978-0-387-87712-9
  contributor:
    fullname: I Chueshov
– volume: 176
  start-page: 1
  year: 2021
  ident: 10072_CR2
  publication-title: Acta. Appl. Math.
  doi: 10.1007/s10440-021-00462-x
  contributor:
    fullname: M Aouadi
– volume: 912
  start-page: 1
  year: 2008
  ident: 10072_CR12
  publication-title: Mem. AMS
  contributor:
    fullname: I Chueshov
– volume: 36
  year: 2019
  ident: 10072_CR30
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2019.111582
  contributor:
    fullname: JL Shomberg
– volume-title: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems
  year: 2013
  ident: 10072_CR6
  doi: 10.1007/978-1-4614-4581-4
  contributor:
    fullname: A Carvalho
– volume-title: Integral and Discrete Inequalities and Their Applications
  year: 2016
  ident: 10072_CR24
  doi: 10.1007/978-3-319-33304-5
  contributor:
    fullname: Y Qin
– volume-title: Dynamics of Evolutionary Equations
  year: 2002
  ident: 10072_CR29
  doi: 10.1007/978-1-4757-5037-9
  contributor:
    fullname: GR Sell
– ident: #cr-split#-10072_CR9.2
– volume-title: Geometric Theory of Semilinear Parabolic Equations
  year: 1981
  ident: 10072_CR21
  doi: 10.1007/BFb0089647
  contributor:
    fullname: DB Henry
– volume-title: Handbook of Differential Equations Evolutionary Equations
  year: 2008
  ident: 10072_CR23
  contributor:
    fullname: A Miranville
– volume-title: Global Attractors of Non-autonomous Dissipative Dynamical Systems
  year: 2004
  ident: 10072_CR7
  doi: 10.1142/5643
  contributor:
    fullname: DN Cheban
– volume: 27
  start-page: 1901
  year: 2002
  ident: 10072_CR14
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1081/PDE-120016132
  contributor:
    fullname: I Chueshov
– volume-title: Nonlinear Evolution Equations. Monographs and Surveys in Pure and Applied Mathmatics
  year: 2004
  ident: 10072_CR35
  contributor:
    fullname: S Zheng
– volume: 32
  start-page: 39
  year: 2007
  ident: 10072_CR5
  publication-title: Mat. Contemp.
  contributor:
    fullname: SM Bruschi
– volume: 145
  start-page: 586
  year: 2020
  ident: 10072_CR1
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12331
  contributor:
    fullname: M Aouadi
– volume: 85
  start-page: 9
  year: 2022
  ident: 10072_CR18
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-022-09849-0
  contributor:
    fullname: MM Freitas
– volume: 36
  start-page: 952
  year: 2020
  ident: 10072_CR34
  publication-title: Acta Math. Appl. Sin. Engl. Ser
  doi: 10.1007/s10255-020-0978-4
  contributor:
    fullname: G Yue
– volume: 16
  start-page: 469
  year: 2004
  ident: 10072_CR10
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-004-4289-x
  contributor:
    fullname: I Chueshov
– volume-title: Attractors for Nonlinear Autonomous Dynamical Systems
  year: 2022
  ident: 10072_CR27
  doi: 10.1051/978-2-7598-2703-9
  contributor:
    fullname: Y Qin
– volume-title: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  year: 2016
  ident: 10072_CR19
  doi: 10.1007/978-3-319-10151-4
  contributor:
    fullname: Y Giga
– volume: 56
  start-page: 1
  year: 2021
  ident: 10072_CR33
  publication-title: Bound. Value Probl.
  contributor:
    fullname: Y Wang
– volume-title: Von Karman Evolution Equations: Well-Posedness and Long Time Dynamics
  year: 2002
  ident: 10072_CR15
  contributor:
    fullname: I Chueshov
– volume: 8
  start-page: 27
  year: 2021
  ident: 10072_CR16
  publication-title: Nonauton. Dyn. Syst.
  doi: 10.1515/msds-2020-0125
  contributor:
    fullname: MM Freitas
– volume-title: Attractors of Equations of Mathematical Physics. Colloquium Publications
  year: 2001
  ident: 10072_CR8
  contributor:
    fullname: VV Chepyzhov
SSID ssj0002363
Score 2.3828735
Snippet This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 26
SubjectTerms Applied mathematics
Attractors (mathematics)
Calculus of Variations and Optimal Control; Optimization
Control
Damping
Dynamic stability
Dynamical systems
Hilbert space
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Metric space
Nonlinear dynamics
Nonlinear systems
Numerical and Computational Physics
Optimization
Simulation
Systems Theory
Theoretical
Wave equations
Title Quasi-stability and Upper Semicontinuity for Coupled Wave Equations with Fractional Damping
URI https://link.springer.com/article/10.1007/s00245-023-10072-8
https://www.proquest.com/docview/2912121836
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BuJQD0AciPCIfuLVGuxuvYx8DJEVFIKESlaqHlZ8SApKQZJHg1zPeR1JaOHCc9cqr9YxnPtvzjQH2tY-E59ZQK7mlAcBTLQWnKlKIR4R0WgRy8tk5PxmwH1fp1YLHXSS71yeShaOec92KQ0KKIYYGGafxMqxUxNOV7vffp725A07a1QVqMqWMx7ziyrzey8t4tACZ_5yLFuGmvw6XNWmnzDK5Ochn-sA8_V_D8T1_sgFrFfwk3dJePsKSG36C1b-KEqJ0Nq_kOv0Mfy5yNb2miCGLLNpHooaWDMZjNyE_Q179KNw0kYcGRL_kaJSPb50lv9SDI737soz4lITNXtKflBwK_Pyxugs0rS8w6Pcuj05odSEDNUknmtE45j4sCTvMei9SZ5lBRUfWeO5Yx2tnE8U1ui2jmeUqSkXHaqtkxJRkCXPtTWgMR0O3BcRLY6xDb4ErJqZTqYVrpzriQrm47U3chK-1WrJxWXcjm1dYLgYwwwEs5CQTTditNZdVc3CaJTJG80CXxZvwrdbEovnt3rbf9_oOfEjwWZnKvQuN2SR3e4hUZrqFltk_PDxvVRbaguVB0n0G_N7hUQ
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGK1ag7eNLCPbJocS22p2hbELgoeljxB0HbttoL_3mQfrYoePA6zZGGyM_NlZ-YLAOfCeNQQJZFiRCEH4JFglCDucYtHKNOCuuHkwZD0YnzzGD2WQ2FZ1e1elSTzSL0YdsurhMjmGORk68erYM3xqzvG_DhoLeJvEJb3p7EIYeKTclTm9zW-p6MlxvxRFs2zTXcbbJUwEbaKfd0BK3q8Cza_kAdaabBgXM32wNPdnGfPyGK9vNv1A_KxgnGa6im8d_3vE3cjxNwpLEqF7ck8fdEKPvB3DTtvBd13Bt1PWdidFrMO9vVX_NWNU-2DuNsZtXuovDgByaDpzZDvE-OObk2sjKGRVljaDfGUNETjphFaBZwIG16kwIpwL6JNJRRnHuYMB1iHB6A2noz1IYCGSam09Wp7ssEiYoLqMBIeoVz7oZF-HVxU9kvSgh8jWTAh59ZOrLVzOUhoHTQqEyelr2RJwHybP21oIXVwWZl9qf57taP_PX4G1nujQT_pXw9vj8FGYPVF-3UD1GbTuT6x6GImTvOP6ROSYcXW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrFaNQdvGrqPbJocS2upTxQtFjwsySYBQbdrH4L_3snutlXRg8dhlixMdma-7Mw3QehYWY9bphOiBdPEAXiiBGdEehLwCBdGcUdOvr5h3R696Ef9Lyz-vNt9WpIsOA1uSlM6rmfa1mfEt7xiSCDfECeDTy-iJUhFoWvq6wXNWSwOwvIuNRERynxW0mZ-X-N7aprjzR8l0jzzdNbRWgkZcbPY4w20YNJNtPplkCBI17Ppq6Mt9HQ3kaNnArgv73z9wDLVuJdlZojvXS_8wN0OMXEKQKy4NZhkL0bjR_lu8NlbMfp7hN0PWtwZFrwHeH1bvjpq1Tbqdc4eWl1SXqJAkqDhjYnvM-uOcQ2qreWR0TSBzfF0YpmhDauMDiRTEGoSRTWTXsQbWmkpPCoFDagJd1AlHaRmF2ErkkQb8HA45VAVCcVNGCmPcWn80CZ-FZ1M7RdnxayMeDYVObd2DNbO5SDmVVSbmjgu_WYUB8KHXAphhlXR6dTsc_Xfq-397_EjtHzb7sRX5zeX-2glAHXRiV1DlfFwYg4AaIzVYf4tfQJS5Mob
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-stability+and+Upper+Semicontinuity+for+Coupled+Wave+Equations+with+Fractional+Damping&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Qin%2C+Yuming&rft.au=Han%2C+Xiaoyue&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=89&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1007%2Fs00245-023-10072-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon