Quasi-stability and Upper Semicontinuity for Coupled Wave Equations with Fractional Damping
This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–...
Saved in:
Published in | Applied mathematics & optimization Vol. 89; no. 1; p. 26 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–241, 2008; Mem AMS 912:1–167, 2008; Von Karman evolution equations. Well-posedness and long time dynamics, Springer, New York, 2010) on the property of quasi-stability of dynamic systems, we show first the quasi-stability property holds for the problem considered here and then prove the existence of global and exponential attractors. We also prove the upper semicontinuity of global attractors with respect to the fractional exponent. Finally, we show the continuity of global attractors with respect to a pair of parameters in a residual dense set and their upper semicontinuities in a complete metric space. |
---|---|
AbstractList | This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations of autonomous external forces. Inspired by the works of Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004; Appl Math Optim Equ 58:195–241, 2008; Mem AMS 912:1–167, 2008; Von Karman evolution equations. Well-posedness and long time dynamics, Springer, New York, 2010) on the property of quasi-stability of dynamic systems, we show first the quasi-stability property holds for the problem considered here and then prove the existence of global and exponential attractors. We also prove the upper semicontinuity of global attractors with respect to the fractional exponent. Finally, we show the continuity of global attractors with respect to a pair of parameters in a residual dense set and their upper semicontinuities in a complete metric space. |
ArticleNumber | 26 |
Author | Han, Xiaoyue Qin, Yuming |
Author_xml | – sequence: 1 givenname: Yuming orcidid: 0000-0002-1850-2362 surname: Qin fullname: Qin, Yuming email: yuming_qin@hotmail.com, yuming@dhu.edu.cn organization: Department of Mathematics, Donghua University, Institute for Nonlinear Science, Shanghai – sequence: 2 givenname: Xiaoyue surname: Han fullname: Han, Xiaoyue organization: College of Information Science and Technology, Donghua University |
BookMark | eNp9UEFLwzAYDTLBbfoHPAU8R5M0TdOjzE2FgYgODx5K2iQzo0u6pFX2722t4E2-w8fje-_xvjcDE-edBuCS4GuCcXYTMaYsRZgmaMAUiRMwJSyhCHPMJ2CKcZ4ixgk_A7MYd7jnJzyZgvfnTkaLYitLW9v2CKVTcNM0OsAXvbeVd6113XAwPsCF75paK_gmPzVcHjrZWu8i_LLtB1wFWQ1Q1vBO7hvrtufg1Mg66ovfPQeb1fJ18YDWT_ePi9s1qmiGW0QIN5QIljFljEi1YpUwHKvKcM0yU2pFJS-FyKqSKS5xKjJVKpljJnNGmU7m4Gr0bYI_dDq2xc53oQ8SC5oT2o_of50DOrKq4GMM2hRNsHsZjgXBxVBaMZZY9M38YFqIXpSMotiT3VaHP-t_VN9sjHeW |
Cites_doi | 10.1007/978-94-010-0732-0 10.1007/978-1-4757-5037-9 10.1007/978-3-319-33304-5 10.1007/978-1-4614-4581-4 10.1007/978-1-4612-0645-3 10.1007/s00245-022-09849-0 10.1007/s10440-021-00462-x 10.1111/sapm.12331 10.1142/5643 10.1007/978-3-319-00831-8 10.1007/s10884-004-4289-x 10.1007/s10255-020-0978-4 10.1007/s00245-007-9031-8 10.1515/msds-2020-0125 10.1007/978-3-319-10151-4 10.1007/978-0-387-87712-9 10.1090/surv/246 10.1007/s00245-019-09590-1 10.1051/978-2-7598-2703-9 10.1081/PDE-120016132 10.1016/j.na.2019.111582 10.3934/dcds.2003.9.1 10.1007/BFb0089647 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00245-023-10072-8 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1432-0606 |
ExternalDocumentID | 10_1007_s00245_023_10072_8 |
GrantInformation_xml | – fundername: NNSF grantid: No. 12171082 – fundername: Fundamental Research Funds for the Central Universities grantid: 2232022G-13; 2232023G-13 funderid: http://dx.doi.org/10.13039/501100012226 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC G8K GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WHG WJK WK8 YLTOR Z45 Z81 Z8U ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACDTI AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA AAYZH JQ2 |
ID | FETCH-LOGICAL-c270t-116f218474dff85ed4c8f60dcf6e47fbed2a6b887cb4d6a0587dbda904a9424e3 |
IEDL.DBID | AGYKE |
ISSN | 0095-4616 |
IngestDate | Fri Nov 08 08:10:33 EST 2024 Thu Sep 12 19:56:26 EDT 2024 Mon Jan 29 04:52:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Upper semicontinuity Quasi-stability 37L05 Coupled wave equation 35L05 35B41 26A15 35B40 Fractional damping Global attractors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-116f218474dff85ed4c8f60dcf6e47fbed2a6b887cb4d6a0587dbda904a9424e3 |
ORCID | 0000-0002-1850-2362 |
PQID | 2912121836 |
PQPubID | 47316 |
ParticipantIDs | proquest_journals_2912121836 crossref_primary_10_1007_s00245_023_10072_8 springer_journals_10_1007_s00245_023_10072_8 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied mathematics & optimization |
PublicationTitleAbbrev | Appl Math Optim |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Cheban (CR7) 2004 Aouadi (CR2) 2021; 176 Chueshov, Lasiecka (CR11) 2008; 58 Bruschi, Carvalho (CR5) 2007; 32 Chueshov, Lasiecka (CR13) 2010 Freitas, Dos Santos, Ramos, Vinhote, Santos (CR16) 2021; 8 Wang, Hu, Qin (CR33) 2021; 56 Aouadi (CR1) 2020; 145 Qin (CR26) 2017 Chueshov, Eller, Lasiecka (CR14) 2002; 27 Qin (CR25) 2016 Chueshov, Lasiecka (CR10) 2004; 16 Freitas, Caljaro, Santos, Ramos (CR18) 2022; 85 Henry (CR21) 1981 Miranville, Zelik (CR22) 2003; 9 Chueshov, Eller, Lasiecka (CR15) 2002 Temam (CR32) 1997 Chepyzhov, Vishik (CR8) 2001 Giga, Novotny (CR19) 2016 Qin, Su (CR27) 2022 Bortolan, Carvalho, Langa (CR4) 2020 Shomberg (CR30) 2019; 36 Babin, Vishik (CR3) 1992 CR9 Sell, You (CR29) 2002 Yue, Liang, Yang (CR34) 2020; 36 Hale (CR20) 1988 Freitas, Ramos, Santos (CR17) 2021; 83 Miranville, Zelik (CR23) 2008 Robinson (CR28) 2001 Zheng (CR35) 2004 Carvalho, Langa, Robinson (CR6) 2013 Chueshov, Lasiecka (CR12) 2008; 912 Qin (CR24) 2016 Simon (CR31) 1987; 146 I Chueshov (10072_CR15) 2002 I Chueshov (10072_CR11) 2008; 58 M Aouadi (10072_CR2) 2021; 176 A Carvalho (10072_CR6) 2013 MM Freitas (10072_CR16) 2021; 8 cr-split#-10072_CR9.2 cr-split#-10072_CR9.1 DN Cheban (10072_CR7) 2004 MC Bortolan (10072_CR4) 2020 I Chueshov (10072_CR12) 2008; 912 A Miranville (10072_CR23) 2008 I Chueshov (10072_CR14) 2002; 27 Y Qin (10072_CR25) 2016 JC Robinson (10072_CR28) 2001 DB Henry (10072_CR21) 1981 JL Shomberg (10072_CR30) 2019; 36 G Yue (10072_CR34) 2020; 36 SM Bruschi (10072_CR5) 2007; 32 Y Giga (10072_CR19) 2016 A Miranville (10072_CR22) 2003; 9 Y Wang (10072_CR33) 2021; 56 GR Sell (10072_CR29) 2002 S Zheng (10072_CR35) 2004 AV Babin (10072_CR3) 1992 I Chueshov (10072_CR13) 2010 I Chueshov (10072_CR10) 2004; 16 MM Freitas (10072_CR17) 2021; 83 J Simon (10072_CR31) 1987; 146 Y Qin (10072_CR26) 2017 Y Qin (10072_CR27) 2022 VV Chepyzhov (10072_CR8) 2001 JK Hale (10072_CR20) 1988 MM Freitas (10072_CR18) 2022; 85 M Aouadi (10072_CR1) 2020; 145 Y Qin (10072_CR24) 2016 R Temam (10072_CR32) 1997 |
References_xml | – year: 2001 ident: CR28 publication-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors doi: 10.1007/978-94-010-0732-0 contributor: fullname: Robinson – year: 2002 ident: CR29 publication-title: Dynamics of Evolutionary Equations doi: 10.1007/978-1-4757-5037-9 contributor: fullname: You – year: 2016 ident: CR24 publication-title: Integral and Discrete Inequalities and Their Applications doi: 10.1007/978-3-319-33304-5 contributor: fullname: Qin – year: 2013 ident: CR6 publication-title: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems doi: 10.1007/978-1-4614-4581-4 contributor: fullname: Robinson – volume: 9 start-page: 1 year: 2003 end-page: 27 ident: CR22 article-title: Uniform exponential attractors for a singularly perturbed damped wave equation publication-title: Discret. Contin. Dyn. Syst. contributor: fullname: Zelik – volume: 146 start-page: 65 issue: 4 year: 1987 end-page: 96 ident: CR31 article-title: Compact sets in the space publication-title: Ann. Mat. Pura Appl. contributor: fullname: Simon – year: 1997 ident: CR32 publication-title: Infinite-Dimensional Dynamical System in Mechanics and Physics doi: 10.1007/978-1-4612-0645-3 contributor: fullname: Temam – volume: 912 start-page: 1 year: 2008 end-page: 167 ident: CR12 article-title: Long-time behavior of second order evolution equations with nonlinear damping publication-title: Mem. AMS contributor: fullname: Lasiecka – year: 1981 ident: CR21 publication-title: Geometric Theory of Semilinear Parabolic Equations contributor: fullname: Henry – volume: 85 start-page: 9 year: 2022 ident: CR18 article-title: Singular limit dynamics and attractors for wave equations connected in parallel publication-title: Appl. Math. Optim. doi: 10.1007/s00245-022-09849-0 contributor: fullname: Ramos – year: 2008 ident: CR23 publication-title: Handbook of Differential Equations Evolutionary Equations contributor: fullname: Zelik – volume: 176 start-page: 1 year: 2021 end-page: 28 ident: CR2 article-title: Continuity of global attractors for a suspension bridge equation publication-title: Acta. Appl. Math. doi: 10.1007/s10440-021-00462-x contributor: fullname: Aouadi – year: 1988 ident: CR20 publication-title: Asymptotic Behavior of Disssipative Systems. Mathemathical Surveys and Monographs contributor: fullname: Hale – volume: 145 start-page: 586 year: 2020 end-page: 621 ident: CR1 article-title: Quasi-stability and upper semicontinuity for coupled parabolic equations with memory publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12331 contributor: fullname: Aouadi – year: 1992 ident: CR3 publication-title: Attractors of Evolution Equations contributor: fullname: Vishik – year: 2002 ident: CR15 publication-title: Von Karman Evolution Equations: Well-Posedness and Long Time Dynamics contributor: fullname: Lasiecka – year: 2004 ident: CR7 publication-title: Global Attractors of Non-autonomous Dissipative Dynamical Systems doi: 10.1142/5643 contributor: fullname: Cheban – year: 2017 ident: CR26 publication-title: Analytic Inequalities and Their Applications in PDEs doi: 10.1007/978-3-319-00831-8 contributor: fullname: Qin – year: 2001 ident: CR8 publication-title: Attractors of Equations of Mathematical Physics. Colloquium Publications contributor: fullname: Vishik – volume: 16 start-page: 469 year: 2004 end-page: 512 ident: CR10 article-title: Attractors for second order evolution equations with a nonlinear damping publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-004-4289-x contributor: fullname: Lasiecka – volume: 36 start-page: 952 year: 2020 end-page: 974 ident: CR34 article-title: Regularity of invariant sets in variable internal damped wave equations publication-title: Acta Math. Appl. Sin. Engl. Ser doi: 10.1007/s10255-020-0978-4 contributor: fullname: Yang – volume: 32 start-page: 39 year: 2007 end-page: 62 ident: CR5 article-title: Upper semicontinuity of attractors for the discretization of strongly damped wave equations publication-title: Mat. Contemp. contributor: fullname: Carvalho – volume: 56 start-page: 1 year: 2021 end-page: 19 ident: CR33 article-title: Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation publication-title: Bound. Value Probl. contributor: fullname: Qin – year: 2004 ident: CR35 publication-title: Nonlinear Evolution Equations. Monographs and Surveys in Pure and Applied Mathmatics contributor: fullname: Zheng – year: 2016 ident: CR25 publication-title: Integral and Discrete Inequalities and Their Applications doi: 10.1007/978-3-319-33304-5 contributor: fullname: Qin – ident: CR9 – volume: 58 start-page: 195 year: 2008 end-page: 241 ident: CR11 article-title: Attractors and long-time behavior of von Karman thermoelastic plates publication-title: Appl. Math. Optim. Equ. doi: 10.1007/s00245-007-9031-8 contributor: fullname: Lasiecka – volume: 8 start-page: 27 year: 2021 end-page: 45 ident: CR16 article-title: Quasi-stability and continuity of attractors for nonlinear system of wave equations publication-title: Nonauton. Dyn. Syst. doi: 10.1515/msds-2020-0125 contributor: fullname: Santos – year: 2016 ident: CR19 publication-title: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids doi: 10.1007/978-3-319-10151-4 contributor: fullname: Novotny – year: 2010 ident: CR13 publication-title: Von Karman Evolution Equations doi: 10.1007/978-0-387-87712-9 contributor: fullname: Lasiecka – year: 2020 ident: CR4 publication-title: Attractors Under Autonomous and Non-autonomous Perturbations. Mathemathical Surveys and Monographs doi: 10.1090/surv/246 contributor: fullname: Langa – volume: 83 start-page: 1353 year: 2021 end-page: 1385 ident: CR17 article-title: Existence and upper-semicontinuity of global attractors for binary mixtures solids with fractional damping publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09590-1 contributor: fullname: Santos – year: 2022 ident: CR27 publication-title: Attractors for Nonlinear Autonomous Dynamical Systems doi: 10.1051/978-2-7598-2703-9 contributor: fullname: Su – volume: 27 start-page: 1901 year: 2002 end-page: 1951 ident: CR14 article-title: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation publication-title: Commun. Partial Differ. Equ. doi: 10.1081/PDE-120016132 contributor: fullname: Lasiecka – volume: 36 year: 2019 ident: CR30 article-title: Attractors for damped semilinear wave equations with a robin-acoustic boundary perturbation publication-title: Nonlinear Anal. doi: 10.1016/j.na.2019.111582 contributor: fullname: Shomberg – ident: #cr-split#-10072_CR9.1 – volume: 9 start-page: 1 year: 2003 ident: 10072_CR22 publication-title: Discret. Contin. Dyn. Syst. doi: 10.3934/dcds.2003.9.1 contributor: fullname: A Miranville – volume-title: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors year: 2001 ident: 10072_CR28 doi: 10.1007/978-94-010-0732-0 contributor: fullname: JC Robinson – volume: 146 start-page: 65 issue: 4 year: 1987 ident: 10072_CR31 publication-title: Ann. Mat. Pura Appl. contributor: fullname: J Simon – volume: 83 start-page: 1353 year: 2021 ident: 10072_CR17 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09590-1 contributor: fullname: MM Freitas – volume-title: Infinite-Dimensional Dynamical System in Mechanics and Physics year: 1997 ident: 10072_CR32 doi: 10.1007/978-1-4612-0645-3 contributor: fullname: R Temam – volume-title: Analytic Inequalities and Their Applications in PDEs year: 2017 ident: 10072_CR26 doi: 10.1007/978-3-319-00831-8 contributor: fullname: Y Qin – volume-title: Attractors of Evolution Equations year: 1992 ident: 10072_CR3 contributor: fullname: AV Babin – volume: 58 start-page: 195 year: 2008 ident: 10072_CR11 publication-title: Appl. Math. Optim. Equ. doi: 10.1007/s00245-007-9031-8 contributor: fullname: I Chueshov – volume-title: Asymptotic Behavior of Disssipative Systems. Mathemathical Surveys and Monographs year: 1988 ident: 10072_CR20 contributor: fullname: JK Hale – volume-title: Integral and Discrete Inequalities and Their Applications year: 2016 ident: 10072_CR25 doi: 10.1007/978-3-319-33304-5 contributor: fullname: Y Qin – volume-title: Attractors Under Autonomous and Non-autonomous Perturbations. Mathemathical Surveys and Monographs year: 2020 ident: 10072_CR4 doi: 10.1090/surv/246 contributor: fullname: MC Bortolan – volume-title: Von Karman Evolution Equations year: 2010 ident: 10072_CR13 doi: 10.1007/978-0-387-87712-9 contributor: fullname: I Chueshov – volume: 176 start-page: 1 year: 2021 ident: 10072_CR2 publication-title: Acta. Appl. Math. doi: 10.1007/s10440-021-00462-x contributor: fullname: M Aouadi – volume: 912 start-page: 1 year: 2008 ident: 10072_CR12 publication-title: Mem. AMS contributor: fullname: I Chueshov – volume: 36 year: 2019 ident: 10072_CR30 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2019.111582 contributor: fullname: JL Shomberg – volume-title: Attractors for Infinite-dimensional Non-autonomous Dynamical Systems year: 2013 ident: 10072_CR6 doi: 10.1007/978-1-4614-4581-4 contributor: fullname: A Carvalho – volume-title: Integral and Discrete Inequalities and Their Applications year: 2016 ident: 10072_CR24 doi: 10.1007/978-3-319-33304-5 contributor: fullname: Y Qin – volume-title: Dynamics of Evolutionary Equations year: 2002 ident: 10072_CR29 doi: 10.1007/978-1-4757-5037-9 contributor: fullname: GR Sell – ident: #cr-split#-10072_CR9.2 – volume-title: Geometric Theory of Semilinear Parabolic Equations year: 1981 ident: 10072_CR21 doi: 10.1007/BFb0089647 contributor: fullname: DB Henry – volume-title: Handbook of Differential Equations Evolutionary Equations year: 2008 ident: 10072_CR23 contributor: fullname: A Miranville – volume-title: Global Attractors of Non-autonomous Dissipative Dynamical Systems year: 2004 ident: 10072_CR7 doi: 10.1142/5643 contributor: fullname: DN Cheban – volume: 27 start-page: 1901 year: 2002 ident: 10072_CR14 publication-title: Commun. Partial Differ. Equ. doi: 10.1081/PDE-120016132 contributor: fullname: I Chueshov – volume-title: Nonlinear Evolution Equations. Monographs and Surveys in Pure and Applied Mathmatics year: 2004 ident: 10072_CR35 contributor: fullname: S Zheng – volume: 32 start-page: 39 year: 2007 ident: 10072_CR5 publication-title: Mat. Contemp. contributor: fullname: SM Bruschi – volume: 145 start-page: 586 year: 2020 ident: 10072_CR1 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12331 contributor: fullname: M Aouadi – volume: 85 start-page: 9 year: 2022 ident: 10072_CR18 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-022-09849-0 contributor: fullname: MM Freitas – volume: 36 start-page: 952 year: 2020 ident: 10072_CR34 publication-title: Acta Math. Appl. Sin. Engl. Ser doi: 10.1007/s10255-020-0978-4 contributor: fullname: G Yue – volume: 16 start-page: 469 year: 2004 ident: 10072_CR10 publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-004-4289-x contributor: fullname: I Chueshov – volume-title: Attractors for Nonlinear Autonomous Dynamical Systems year: 2022 ident: 10072_CR27 doi: 10.1051/978-2-7598-2703-9 contributor: fullname: Y Qin – volume-title: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids year: 2016 ident: 10072_CR19 doi: 10.1007/978-3-319-10151-4 contributor: fullname: Y Giga – volume: 56 start-page: 1 year: 2021 ident: 10072_CR33 publication-title: Bound. Value Probl. contributor: fullname: Y Wang – volume-title: Von Karman Evolution Equations: Well-Posedness and Long Time Dynamics year: 2002 ident: 10072_CR15 contributor: fullname: I Chueshov – volume: 8 start-page: 27 year: 2021 ident: 10072_CR16 publication-title: Nonauton. Dyn. Syst. doi: 10.1515/msds-2020-0125 contributor: fullname: MM Freitas – volume-title: Attractors of Equations of Mathematical Physics. Colloquium Publications year: 2001 ident: 10072_CR8 contributor: fullname: VV Chepyzhov |
SSID | ssj0002363 |
Score | 2.3828735 |
Snippet | This paper deals with the long-time dynamics of a nonlinear system of coupled wave equations with fractional damping term and subjected to small perturbations... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 26 |
SubjectTerms | Applied mathematics Attractors (mathematics) Calculus of Variations and Optimal Control; Optimization Control Damping Dynamic stability Dynamical systems Hilbert space Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Metric space Nonlinear dynamics Nonlinear systems Numerical and Computational Physics Optimization Simulation Systems Theory Theoretical Wave equations |
Title | Quasi-stability and Upper Semicontinuity for Coupled Wave Equations with Fractional Damping |
URI | https://link.springer.com/article/10.1007/s00245-023-10072-8 https://www.proquest.com/docview/2912121836 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BuJQD0AciPCIfuLVGuxuvYx8DJEVFIKESlaqHlZ8SApKQZJHg1zPeR1JaOHCc9cqr9YxnPtvzjQH2tY-E59ZQK7mlAcBTLQWnKlKIR4R0WgRy8tk5PxmwH1fp1YLHXSS71yeShaOec92KQ0KKIYYGGafxMqxUxNOV7vffp725A07a1QVqMqWMx7ziyrzey8t4tACZ_5yLFuGmvw6XNWmnzDK5Ochn-sA8_V_D8T1_sgFrFfwk3dJePsKSG36C1b-KEqJ0Nq_kOv0Mfy5yNb2miCGLLNpHooaWDMZjNyE_Q179KNw0kYcGRL_kaJSPb50lv9SDI737soz4lITNXtKflBwK_Pyxugs0rS8w6Pcuj05odSEDNUknmtE45j4sCTvMei9SZ5lBRUfWeO5Yx2tnE8U1ui2jmeUqSkXHaqtkxJRkCXPtTWgMR0O3BcRLY6xDb4ErJqZTqYVrpzriQrm47U3chK-1WrJxWXcjm1dYLgYwwwEs5CQTTditNZdVc3CaJTJG80CXxZvwrdbEovnt3rbf9_oOfEjwWZnKvQuN2SR3e4hUZrqFltk_PDxvVRbaguVB0n0G_N7hUQ |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-pBfGK1ag7eNLCPbJocS22p2hbELgoeljxB0HbttoL_3mQfrYoePA6zZGGyM_NlZ-YLAOfCeNQQJZFiRCEH4JFglCDucYtHKNOCuuHkwZD0YnzzGD2WQ2FZ1e1elSTzSL0YdsurhMjmGORk68erYM3xqzvG_DhoLeJvEJb3p7EIYeKTclTm9zW-p6MlxvxRFs2zTXcbbJUwEbaKfd0BK3q8Cza_kAdaabBgXM32wNPdnGfPyGK9vNv1A_KxgnGa6im8d_3vE3cjxNwpLEqF7ck8fdEKPvB3DTtvBd13Bt1PWdidFrMO9vVX_NWNU-2DuNsZtXuovDgByaDpzZDvE-OObk2sjKGRVljaDfGUNETjphFaBZwIG16kwIpwL6JNJRRnHuYMB1iHB6A2noz1IYCGSam09Wp7ssEiYoLqMBIeoVz7oZF-HVxU9kvSgh8jWTAh59ZOrLVzOUhoHTQqEyelr2RJwHybP21oIXVwWZl9qf57taP_PX4G1nujQT_pXw9vj8FGYPVF-3UD1GbTuT6x6GImTvOP6ROSYcXW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrFaNQdvGrqPbJocS2upTxQtFjwsySYBQbdrH4L_3snutlXRg8dhlixMdma-7Mw3QehYWY9bphOiBdPEAXiiBGdEehLwCBdGcUdOvr5h3R696Ef9Lyz-vNt9WpIsOA1uSlM6rmfa1mfEt7xiSCDfECeDTy-iJUhFoWvq6wXNWSwOwvIuNRERynxW0mZ-X-N7aprjzR8l0jzzdNbRWgkZcbPY4w20YNJNtPplkCBI17Ppq6Mt9HQ3kaNnArgv73z9wDLVuJdlZojvXS_8wN0OMXEKQKy4NZhkL0bjR_lu8NlbMfp7hN0PWtwZFrwHeH1bvjpq1Tbqdc4eWl1SXqJAkqDhjYnvM-uOcQ2qreWR0TSBzfF0YpmhDauMDiRTEGoSRTWTXsQbWmkpPCoFDagJd1AlHaRmF2ErkkQb8HA45VAVCcVNGCmPcWn80CZ-FZ1M7RdnxayMeDYVObd2DNbO5SDmVVSbmjgu_WYUB8KHXAphhlXR6dTsc_Xfq-397_EjtHzb7sRX5zeX-2glAHXRiV1DlfFwYg4AaIzVYf4tfQJS5Mob |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-stability+and+Upper+Semicontinuity+for+Coupled+Wave+Equations+with+Fractional+Damping&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Qin%2C+Yuming&rft.au=Han%2C+Xiaoyue&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=89&rft.issue=1&rft.spage=26&rft_id=info:doi/10.1007%2Fs00245-023-10072-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |