Adaptive Sign Language Recognition for Deaf Users: Integrating Markov Chains with Niching Genetic Algorithm

Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users....

Full description

Saved in:
Bibliographic Details
Published inAI (Basel) Vol. 6; no. 8; p. 189
Main Authors Al-Saidi, Muslem, Ballagi, Áron, Hassen, Oday Ali, Darwish, Saad M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2673-2688
2673-2688
DOI10.3390/ai6080189

Cover

Loading…
Abstract Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users. Traditional Markov Chain-based models struggle with generalizing across different signers, often leading to reduced recognition accuracy and increased uncertainty. These limitations arise from the inability of conventional models to effectively capture diverse gesture dynamics while maintaining robustness to inter-user variability. To address these challenges, this study proposes an adaptive SLR framework that integrates Markov Chains with a Niching Genetic Algorithm (NGA). The NGA optimizes the transition probabilities and structural parameters of the Markov Chain model, enabling it to learn diverse signing patterns while avoiding premature convergence to suboptimal solutions. In the proposed SLR framework, GA is employed to determine the optimal transition probabilities for the Markov Chain components operating across multiple signing contexts. To enhance the diversity of the initial population and improve the model’s adaptability to signer variations, a niche model is integrated using a Context-Based Clearing (CBC) technique. This approach mitigates premature convergence by promoting genetic diversity, ensuring that the population maintains a wide range of potential solutions. By minimizing gene association within chromosomes, the CBC technique enhances the model’s ability to learn diverse gesture transitions and movement dynamics across different users. This optimization process enables the Markov Chain to better generalize subject-independent sign language recognition, leading to improved classification accuracy, robustness against signer variability, and reduced misclassification rates. Experimental evaluations demonstrate a significant improvement in recognition performance, reduced error rates, and enhanced generalization across unseen signers, validating the effectiveness of the proposed approach.
AbstractList Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users. Traditional Markov Chain-based models struggle with generalizing across different signers, often leading to reduced recognition accuracy and increased uncertainty. These limitations arise from the inability of conventional models to effectively capture diverse gesture dynamics while maintaining robustness to inter-user variability. To address these challenges, this study proposes an adaptive SLR framework that integrates Markov Chains with a Niching Genetic Algorithm (NGA). The NGA optimizes the transition probabilities and structural parameters of the Markov Chain model, enabling it to learn diverse signing patterns while avoiding premature convergence to suboptimal solutions. In the proposed SLR framework, GA is employed to determine the optimal transition probabilities for the Markov Chain components operating across multiple signing contexts. To enhance the diversity of the initial population and improve the model’s adaptability to signer variations, a niche model is integrated using a Context-Based Clearing (CBC) technique. This approach mitigates premature convergence by promoting genetic diversity, ensuring that the population maintains a wide range of potential solutions. By minimizing gene association within chromosomes, the CBC technique enhances the model’s ability to learn diverse gesture transitions and movement dynamics across different users. This optimization process enables the Markov Chain to better generalize subject-independent sign language recognition, leading to improved classification accuracy, robustness against signer variability, and reduced misclassification rates. Experimental evaluations demonstrate a significant improvement in recognition performance, reduced error rates, and enhanced generalization across unseen signers, validating the effectiveness of the proposed approach.
Author Hassen, Oday Ali
Al-Saidi, Muslem
Darwish, Saad M.
Ballagi, Áron
Author_xml – sequence: 1
  givenname: Muslem
  surname: Al-Saidi
  fullname: Al-Saidi, Muslem
– sequence: 2
  givenname: Áron
  surname: Ballagi
  fullname: Ballagi, Áron
– sequence: 3
  givenname: Oday Ali
  surname: Hassen
  fullname: Hassen, Oday Ali
– sequence: 4
  givenname: Saad M.
  orcidid: 0000-0003-2723-1549
  surname: Darwish
  fullname: Darwish, Saad M.
BookMark eNpNUctOwzAQtBBIPA_8gSVOHAobO3EdblV5VSog8ThbG2eTuhS72CmIvyelCHHa1c5qZjSzz7Z98MTYcQZnUpZwjk6BhkyXW2xPqKEcCKX19r99lx2lNAcAUWQil7DHXkc1Ljv3QfzJtZ5P0bcrbIk_kg2td50Lnjch8kvChr8kiumCT3xHbcTO-ZbfYXwNH3w8Q-cT_3TdjN87O1tDN-Spc5aPFm2IPfB2yHYaXCQ6-p0H7OX66nl8O5g-3EzGo-nAiiGUA6WRCltLWxWVAC2rUha1gkZaQhA6h8rW0GQklKzzWpNCAMo0QWmrpsmlPGCTDW8dcG6W0b1h_DIBnfk5hNgajL2zBRlBQiqhSOdFmQthK2WrIfRRVRlSbXXPdbLhWsbwvqLUmXlYRd_bN7JPsFRFqdaKp5svG0NKkZo_1QzMuhrzV438BtfGggE
Cites_doi 10.1109/ICCEA62105.2024.10603746
10.1016/j.eswa.2024.125878
10.19139/soic-2310-5070-2306
10.1088/1361-6501/ad2a33
10.1109/ISCTT62319.2024.10875560
10.1142/S0219467826500087
10.18280/ts.410415
10.1016/j.jare.2010.09.001
10.3390/a17100448
10.1109/LRA.2025.3528229
10.1080/23311916.2016.1251730
10.1109/ACCESS.2024.3457692
10.1038/s41598-024-82785-x
10.1007/978-3-031-21438-7_67
10.1109/ACCESS.2024.3398806
10.1080/0952813X.2023.2183269
10.1109/CEC.2017.7969587
10.1109/ACCESS.2024.3399839
10.1109/ICDSNS62112.2024.10691206
10.1109/ICoICI62503.2024.10696047
10.3390/s23167156
10.1007/s00521-025-11132-6
10.1109/IDCIOT64235.2025.10914713
10.1109/ASSIC60049.2024.10507916
10.1016/j.eswa.2022.118559
10.1371/journal.pone.0316298
10.1109/ICSEC62781.2024.10770704
10.3390/s24030826
10.1109/ACCESS.2024.3421992
10.1007/s11042-021-10569-w
10.1109/ACCESS.2022.3192391
10.3390/electronics10141739
10.1109/AUTOCOM60220.2024.10486099
10.1109/ICPS59941.2024.10640040
10.1109/ACCESS.2024.3456436
10.1007/s11042-021-10593-w
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/ai6080189
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2673-2688
ExternalDocumentID oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8
10_3390_ai6080189
GroupedDBID AADQD
AAYXX
ABDBF
ACUHS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
IGS
ISR
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c2709-68ae5cd3cb5b2083b935d60f3cea02840bcd0f1e263d4d8e6a00e18e09cbff433
IEDL.DBID DOA
ISSN 2673-2688
IngestDate Mon Sep 01 19:39:27 EDT 2025
Wed Aug 27 12:54:18 EDT 2025
Thu Aug 21 00:18:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2709-68ae5cd3cb5b2083b935d60f3cea02840bcd0f1e263d4d8e6a00e18e09cbff433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2723-1549
OpenAccessLink https://doaj.org/article/2e23626e8459422cb6cb70268b1aedc8
PQID 3243965963
PQPubID 5046920
ParticipantIDs doaj_primary_oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8
proquest_journals_3243965963
crossref_primary_10_3390_ai6080189
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AI (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Darwish (ref_32) 2021; 80
Benmachiche (ref_17) 2020; 24
ref_14
Milu (ref_25) 2024; 12
ref_36
Zalat (ref_33) 2022; 10
ref_35
Hashi (ref_6) 2024; 12
ref_12
Gupta (ref_26) 2024; 20
Du (ref_34) 2025; 37
ref_11
Kaluri (ref_21) 2016; 3
ref_30
Fayek (ref_27) 2010; 1
ref_19
ref_16
ref_37
Tasfia (ref_4) 2024; 14
Mahmoud (ref_20) 2024; 41
Peng (ref_38) 2025; 10
Shin (ref_13) 2024; 12
Damaneh (ref_31) 2023; 211
Soukaina (ref_10) 2025; 13
Amoudi (ref_15) 2024; 12
John (ref_23) 2025; 37
ref_22
Peng (ref_39) 2025; 264
Shin (ref_29) 2024; 12
ref_3
ref_2
Ren (ref_18) 2024; 35
ref_28
Tao (ref_1) 2024; 12
Tur (ref_24) 2021; 80
ref_9
ref_8
ref_5
ref_7
References_xml – ident: ref_3
  doi: 10.1109/ICCEA62105.2024.10603746
– volume: 264
  start-page: 125878
  year: 2025
  ident: ref_39
  article-title: Predicting flow status of a flexible rectifier using cognitive computing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125878
– volume: 13
  start-page: 2027
  year: 2025
  ident: ref_10
  article-title: Geometric Feature-Based Machine Learning for Efficient Hand Sign Gesture Recognition
  publication-title: Stat. Optim. Inf. Comput.
  doi: 10.19139/soic-2310-5070-2306
– volume: 35
  start-page: 056122
  year: 2024
  ident: ref_18
  article-title: Real-time continuous gesture recognition system based on PSO-PNN
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad2a33
– ident: ref_14
  doi: 10.1109/ISCTT62319.2024.10875560
– volume: 20
  start-page: 2650008
  year: 2024
  ident: ref_26
  article-title: Hand Gesture Recognition System Based on Indian Sign Language Using SVM and CNN
  publication-title: Int. J. Image Graph.
  doi: 10.1142/S0219467826500087
– volume: 41
  start-page: 1835
  year: 2024
  ident: ref_20
  article-title: Optimized Hybrid Convolution Neural Network with Machine Learning for Arabic Sign Language Recognition
  publication-title: Trait. Du Signal.
  doi: 10.18280/ts.410415
– volume: 1
  start-page: 301
  year: 2010
  ident: ref_27
  article-title: Context based clearing procedure: A niching method for genetic algorithms
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2010.09.001
– ident: ref_11
  doi: 10.3390/a17100448
– volume: 10
  start-page: 1944
  year: 2025
  ident: ref_38
  article-title: Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2025.3528229
– volume: 3
  start-page: 1251730
  year: 2016
  ident: ref_21
  article-title: A framework for sign gesture recognition using improved genetic algorithm and adaptive filter
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2016.1251730
– volume: 12
  start-page: 128871
  year: 2024
  ident: ref_15
  article-title: Advancements in Sign Language Recognition: A Comprehensive Review and Future Prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3457692
– ident: ref_22
  doi: 10.1038/s41598-024-82785-x
– ident: ref_16
  doi: 10.1007/978-3-031-21438-7_67
– volume: 24
  start-page: 171
  year: 2020
  ident: ref_17
  article-title: Optimization learning of hidden Markov model using the bacterial foraging optimization algorithm for speech recognition
  publication-title: Int. J. Knowl. Based Intell. Eng. Syst.
– volume: 12
  start-page: 75034
  year: 2024
  ident: ref_1
  article-title: Sign language recognition: A comprehensive review of traditional and deep learning approaches, datasets, and challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3398806
– volume: 14
  start-page: 45
  year: 2024
  ident: ref_4
  article-title: An overview of hand gesture recognition based on computer vision
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 37
  start-page: 75
  year: 2025
  ident: ref_23
  article-title: Intelligent hybrid hand gesture recognition system using deep recurrent neural network with chaos game optimization
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2023.2183269
– ident: ref_28
  doi: 10.1109/CEC.2017.7969587
– volume: 12
  start-page: 68303
  year: 2024
  ident: ref_29
  article-title: Korean sign language alphabet recognition through the integration of handcrafted and deep learning-based two-stream feature extraction approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3399839
– ident: ref_9
  doi: 10.1109/ICDSNS62112.2024.10691206
– ident: ref_19
  doi: 10.1109/ICoICI62503.2024.10696047
– ident: ref_35
  doi: 10.3390/s23167156
– volume: 37
  start-page: 11479
  year: 2025
  ident: ref_34
  article-title: Diversity-based niche genetic algorithm for bi-objective mixed fleet vehicle routing problem with time window
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-025-11132-6
– ident: ref_5
  doi: 10.1109/IDCIOT64235.2025.10914713
– ident: ref_8
  doi: 10.1109/ASSIC60049.2024.10507916
– volume: 211
  start-page: 118559
  year: 2023
  ident: ref_31
  article-title: Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and Gabor filter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118559
– ident: ref_37
  doi: 10.1371/journal.pone.0316298
– volume: 12
  start-page: 139
  year: 2024
  ident: ref_25
  article-title: Design and Implementation of hand gesture detection system using HM model for sign language recognition development
  publication-title: J. Data Anal. Inf. Process.
– ident: ref_12
  doi: 10.1109/ICSEC62781.2024.10770704
– ident: ref_30
  doi: 10.3390/s24030826
– volume: 12
  start-page: 143599
  year: 2024
  ident: ref_6
  article-title: A Systematic Review of Hand Gesture Recognition: An Update from 2018 to 2024
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3421992
– volume: 80
  start-page: 14829
  year: 2021
  ident: ref_32
  article-title: Feature extraction of finger-vein patterns based on boosting evolutionary algorithm and its application for loT identity and access management
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10569-w
– volume: 10
  start-page: 76752
  year: 2022
  ident: ref_33
  article-title: An adaptive offloading mechanism for mobile cloud computing: A niching genetic algorithm perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3192391
– ident: ref_36
  doi: 10.3390/electronics10141739
– ident: ref_2
  doi: 10.1109/AUTOCOM60220.2024.10486099
– ident: ref_7
  doi: 10.1109/ICPS59941.2024.10640040
– volume: 12
  start-page: 142606
  year: 2024
  ident: ref_13
  article-title: A methodological and structural review of hand gesture recognition across diverse data modalities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3456436
– volume: 80
  start-page: 19137
  year: 2021
  ident: ref_24
  article-title: Evaluation of hidden markov models using deep CNN features in isolated sign recognition
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10593-w
SSID ssj0002512430
Score 2.2996442
Snippet Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 189
SubjectTerms Accuracy
Communication
Convergence
Deafness
Deep learning
Feature selection
Genetic algorithms
Genetic diversity
gesture dynamics and variability
Markov analysis
Markov Chain optimization
Markov chains
Neural networks
Niching Genetic Algorithm (NGA)
Optimization
Optimization techniques
Public spaces
Recognition
Robustness (mathematics)
Sign language
subject-independent sign language recognition
Transition probabilities
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF614dJLKQVEIFQrxNXK2rte272gBIgoahECInGz9plEgJ0mgd_fGWedVkLq1ba88szO0zvfR8ipiDOHLNERL7iIhPVgc06lEUSu3DGdccNwwPnXjbwai-vH9DE03JbhWGXrExtHbWuDPfI-BH6O4HeSn81_R8gahX9XA4XGR7IFLjhPO2RreHlze7fpsmD0FpytIYU41Pd9NZOQJMVI6_5PIGrw-t-54ybGjL6QzyE5pIO1NnfIB1d9Jdst8QINdrhLngZWzdFP0fvZpKI_Q8-R3rWngeqKQjJKL5zydIzzlN_pj4ALAaGK4oBO_UbPp2pWLSm2YinsCOxFUYShhtXp4HkCX7-avuyR8ejy4fwqCqwJkUkyVkQyVy41lhud6gQSLF3w1ErmuXEKkgnBtLHMxy6R3AqbO6kYczEopjDae8H5PulUdeUOCPVMWCVFZrz2QsVMeQP1lkmtSHCppEtOWhGW8zU4RglFBcq53Mi5S4Yo3M0DiGfdXKgXkzKYR5m4BHFxXC7SAl5utDQ6g_Iw17Fy1uRd0mtVUwYjW5Z_t8Th_28fkU8J0vY25_Z6pLNavLpjyCVW-lvYMH8AFvTKgg
  priority: 102
  providerName: ProQuest
Title Adaptive Sign Language Recognition for Deaf Users: Integrating Markov Chains with Niching Genetic Algorithm
URI https://www.proquest.com/docview/3243965963
https://doaj.org/article/2e23626e8459422cb6cb70268b1aedc8
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54XLjwRozHFCGuFWmSpi23MTYeAoSASdyqPGECOsTryG_HbrtpEgcuXHpoI6WyY_tzZH8mZF_Gqccp0ZHIhYykC2BzXicRRK7MM5MKy7DB-fJKnQ7k-X1yPzXqC2vCanrgWnAH3HNkTPGZTHLJuTXKmhQSh8zE2jtbtflCzJtKptAHY9SWgtVUQgLy-gM9VACOYhznPhWAKp7-X264ii39ZbLYgELaqX9mhcz4cpUsjQcu0Mb-1shTx-lX9E_0dvhQ0ovmrpHejKuARiUFEEqPvQ50gH2Uh_Ss4YOAEEWxMWf0RbuPeli-U7yCpXAS8A6KIv007E47zw-jN_jwsk4G_d5d9zRqpiVElqcsj1SmfWKdsCYxHICVyUXiFAvCeg0gQjJjHQux50o46TKvNGM-BoXk1oQghdggc-Wo9JuEBiadVjK1wQSpY6aDhTzLJg4UAFvxFtkbi7B4rUkxCkgmUM7FRM4tcoTCnSxAHuvqBWi3aLRb_KXdFtkZq6ZojOu9AAwokAdRia3_2GObLHAc6ltV9e2QuY-3T78LSOPDtMls1j9pk_mj3tX1Tbs6YvC8_O79AJl21PQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLSXvqumpe2qKkeL9e56bSNVVXgpKSFClEjc3H2GCGoHkhbxp_iNzDh2WgmJG1fb8lqz8_bO9xHyVcapR5boSORCRtIFsDmvkwgiV-aZSYVlOOB8OFS9kfxxmpyukNt2FgaPVbY-sXbUrrLYI9-EwC8Q_E6J79PLCFmj8O9qS6GxUIsDf3MNJdvsW38X9neD8_29k51e1LAKRJanLI9Upn1inbAmMRwSEJOLxCkWhPUagq1kxjoWYs-VcNJlXmnGfAwfnlsTgsQGKLj8NUgzcrCite294dHxsquD2YIUbAFhJETONvVEQVIWI438f4Gv5ge45_7rmLb_gjxrklHaXWjPS7Liy1fkeUv0QBu7f03Ou05P0S_Sn5NxSQdNj5Met6ePqpJC8kt3vQ50hPObW7Tf4FBAaKQ4EFT9pTtnelLOKLZ-KWgg9r4owl7D6rR7MQZpz89-vyGjR5HnW7JaVqV_R2hg0mklUxtMkDpmOlio72ziJMeleId8aUVYTBdgHAUUMSjnYinnDtlG4S4fQPzs-kJ1NS4acyy454jD4zOZ5PBya5Q1KZSjmYm1dzbrkPV2a4rGqGfFPxV8__Dtz-RJ7-RwUAz6w4MP5ClHyuD6zOA6WZ1f_fEfIY-Zm0-N8lDy67H19Q7oRwga
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK88I3oGGAheIzq2I6TICHUratWNqppUGlvwZ9dBSRlLSD-Nf467lKnICHxttckipXz-X53l7v7EfJCprlHluhElEIm0gU4c15nCSBX4ZnJhWXY4Pxuqo5n8u1FdrFDfnW9MFhW2dnE1lC7xmKOfADAL3D4nRKDEMsizkbjN8uvCTJI4Z_Wjk5joyIn_ucPCN9Wrycj2OuXnI-PPhweJ5FhILE8Z2WiCu0z64Q1meHgjJhSZE6xIKzXALySGetYSD1XwklXeKUZ8yl8RGlNCBKToWD-d3NAxaJHdg-Opmfn2wwPeg5SsM04IyFKNtALBQ5aipTyf4FgyxXwDxS0-Da-Q25Fx5QON5p0l-z4-h653ZE-0GgD7pNPQ6eXaCPp-8W8pqcx30nPu0qkpqbgCNOR14HOsJfzFZ3EmRQAkxSbg5rv9PBSL-oVxTQwBW3EPBjFEdiwOh1-noO015dfHpDZtcjzIenVTe0fERqYdFrJ3AYTpE6ZDhZiPZs5yXEp3ifPOxFWy81gjgoCGpRztZVznxygcLcP4Czt9kJzNa_i0ay45ziTxxcyK-Hl1ihrcghNC5Nq72zRJ_vd1lTxgK-qP-q49__bz8gN0NPqdDI9eUxucmQPbssH90lvffXNPwGXZm2eRt2h5ON1q-tvt3IMRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Sign+Language+Recognition+for+Deaf+Users%3A+Integrating+Markov+Chains+with+Niching+Genetic+Algorithm&rft.jtitle=AI+%28Basel%29&rft.au=Muslem+Al-Saidi&rft.au=%C3%81ron+Ballagi&rft.au=Oday+Ali+Hassen&rft.au=Saad+M.+Darwish&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2673-2688&rft.volume=6&rft.issue=8&rft.spage=189&rft_id=info:doi/10.3390%2Fai6080189&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-2688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-2688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-2688&client=summon