Adaptive Sign Language Recognition for Deaf Users: Integrating Markov Chains with Niching Genetic Algorithm
Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users....
Saved in:
Published in | AI (Basel) Vol. 6; no. 8; p. 189 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-2688 2673-2688 |
DOI | 10.3390/ai6080189 |
Cover
Loading…
Abstract | Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users. Traditional Markov Chain-based models struggle with generalizing across different signers, often leading to reduced recognition accuracy and increased uncertainty. These limitations arise from the inability of conventional models to effectively capture diverse gesture dynamics while maintaining robustness to inter-user variability. To address these challenges, this study proposes an adaptive SLR framework that integrates Markov Chains with a Niching Genetic Algorithm (NGA). The NGA optimizes the transition probabilities and structural parameters of the Markov Chain model, enabling it to learn diverse signing patterns while avoiding premature convergence to suboptimal solutions. In the proposed SLR framework, GA is employed to determine the optimal transition probabilities for the Markov Chain components operating across multiple signing contexts. To enhance the diversity of the initial population and improve the model’s adaptability to signer variations, a niche model is integrated using a Context-Based Clearing (CBC) technique. This approach mitigates premature convergence by promoting genetic diversity, ensuring that the population maintains a wide range of potential solutions. By minimizing gene association within chromosomes, the CBC technique enhances the model’s ability to learn diverse gesture transitions and movement dynamics across different users. This optimization process enables the Markov Chain to better generalize subject-independent sign language recognition, leading to improved classification accuracy, robustness against signer variability, and reduced misclassification rates. Experimental evaluations demonstrate a significant improvement in recognition performance, reduced error rates, and enhanced generalization across unseen signers, validating the effectiveness of the proposed approach. |
---|---|
AbstractList | Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving subject-independent SLR remains a significant challenge due to variations in signing styles, hand shapes, and movement patterns among users. Traditional Markov Chain-based models struggle with generalizing across different signers, often leading to reduced recognition accuracy and increased uncertainty. These limitations arise from the inability of conventional models to effectively capture diverse gesture dynamics while maintaining robustness to inter-user variability. To address these challenges, this study proposes an adaptive SLR framework that integrates Markov Chains with a Niching Genetic Algorithm (NGA). The NGA optimizes the transition probabilities and structural parameters of the Markov Chain model, enabling it to learn diverse signing patterns while avoiding premature convergence to suboptimal solutions. In the proposed SLR framework, GA is employed to determine the optimal transition probabilities for the Markov Chain components operating across multiple signing contexts. To enhance the diversity of the initial population and improve the model’s adaptability to signer variations, a niche model is integrated using a Context-Based Clearing (CBC) technique. This approach mitigates premature convergence by promoting genetic diversity, ensuring that the population maintains a wide range of potential solutions. By minimizing gene association within chromosomes, the CBC technique enhances the model’s ability to learn diverse gesture transitions and movement dynamics across different users. This optimization process enables the Markov Chain to better generalize subject-independent sign language recognition, leading to improved classification accuracy, robustness against signer variability, and reduced misclassification rates. Experimental evaluations demonstrate a significant improvement in recognition performance, reduced error rates, and enhanced generalization across unseen signers, validating the effectiveness of the proposed approach. |
Author | Hassen, Oday Ali Al-Saidi, Muslem Darwish, Saad M. Ballagi, Áron |
Author_xml | – sequence: 1 givenname: Muslem surname: Al-Saidi fullname: Al-Saidi, Muslem – sequence: 2 givenname: Áron surname: Ballagi fullname: Ballagi, Áron – sequence: 3 givenname: Oday Ali surname: Hassen fullname: Hassen, Oday Ali – sequence: 4 givenname: Saad M. orcidid: 0000-0003-2723-1549 surname: Darwish fullname: Darwish, Saad M. |
BookMark | eNpNUctOwzAQtBBIPA_8gSVOHAobO3EdblV5VSog8ThbG2eTuhS72CmIvyelCHHa1c5qZjSzz7Z98MTYcQZnUpZwjk6BhkyXW2xPqKEcCKX19r99lx2lNAcAUWQil7DHXkc1Ljv3QfzJtZ5P0bcrbIk_kg2td50Lnjch8kvChr8kiumCT3xHbcTO-ZbfYXwNH3w8Q-cT_3TdjN87O1tDN-Spc5aPFm2IPfB2yHYaXCQ6-p0H7OX66nl8O5g-3EzGo-nAiiGUA6WRCltLWxWVAC2rUha1gkZaQhA6h8rW0GQklKzzWpNCAMo0QWmrpsmlPGCTDW8dcG6W0b1h_DIBnfk5hNgajL2zBRlBQiqhSOdFmQthK2WrIfRRVRlSbXXPdbLhWsbwvqLUmXlYRd_bN7JPsFRFqdaKp5svG0NKkZo_1QzMuhrzV438BtfGggE |
Cites_doi | 10.1109/ICCEA62105.2024.10603746 10.1016/j.eswa.2024.125878 10.19139/soic-2310-5070-2306 10.1088/1361-6501/ad2a33 10.1109/ISCTT62319.2024.10875560 10.1142/S0219467826500087 10.18280/ts.410415 10.1016/j.jare.2010.09.001 10.3390/a17100448 10.1109/LRA.2025.3528229 10.1080/23311916.2016.1251730 10.1109/ACCESS.2024.3457692 10.1038/s41598-024-82785-x 10.1007/978-3-031-21438-7_67 10.1109/ACCESS.2024.3398806 10.1080/0952813X.2023.2183269 10.1109/CEC.2017.7969587 10.1109/ACCESS.2024.3399839 10.1109/ICDSNS62112.2024.10691206 10.1109/ICoICI62503.2024.10696047 10.3390/s23167156 10.1007/s00521-025-11132-6 10.1109/IDCIOT64235.2025.10914713 10.1109/ASSIC60049.2024.10507916 10.1016/j.eswa.2022.118559 10.1371/journal.pone.0316298 10.1109/ICSEC62781.2024.10770704 10.3390/s24030826 10.1109/ACCESS.2024.3421992 10.1007/s11042-021-10569-w 10.1109/ACCESS.2022.3192391 10.3390/electronics10141739 10.1109/AUTOCOM60220.2024.10486099 10.1109/ICPS59941.2024.10640040 10.1109/ACCESS.2024.3456436 10.1007/s11042-021-10593-w |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/ai6080189 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2673-2688 |
ExternalDocumentID | oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8 10_3390_ai6080189 |
GroupedDBID | AADQD AAYXX ABDBF ACUHS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD IGS ISR ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c2709-68ae5cd3cb5b2083b935d60f3cea02840bcd0f1e263d4d8e6a00e18e09cbff433 |
IEDL.DBID | DOA |
ISSN | 2673-2688 |
IngestDate | Mon Sep 01 19:39:27 EDT 2025 Wed Aug 27 12:54:18 EDT 2025 Thu Aug 21 00:18:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2709-68ae5cd3cb5b2083b935d60f3cea02840bcd0f1e263d4d8e6a00e18e09cbff433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2723-1549 |
OpenAccessLink | https://doaj.org/article/2e23626e8459422cb6cb70268b1aedc8 |
PQID | 3243965963 |
PQPubID | 5046920 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8 proquest_journals_3243965963 crossref_primary_10_3390_ai6080189 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | AI (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Darwish (ref_32) 2021; 80 Benmachiche (ref_17) 2020; 24 ref_14 Milu (ref_25) 2024; 12 ref_36 Zalat (ref_33) 2022; 10 ref_35 Hashi (ref_6) 2024; 12 ref_12 Gupta (ref_26) 2024; 20 Du (ref_34) 2025; 37 ref_11 Kaluri (ref_21) 2016; 3 ref_30 Fayek (ref_27) 2010; 1 ref_19 ref_16 ref_37 Tasfia (ref_4) 2024; 14 Mahmoud (ref_20) 2024; 41 Peng (ref_38) 2025; 10 Shin (ref_13) 2024; 12 Damaneh (ref_31) 2023; 211 Soukaina (ref_10) 2025; 13 Amoudi (ref_15) 2024; 12 John (ref_23) 2025; 37 ref_22 Peng (ref_39) 2025; 264 Shin (ref_29) 2024; 12 ref_3 ref_2 Ren (ref_18) 2024; 35 ref_28 Tao (ref_1) 2024; 12 Tur (ref_24) 2021; 80 ref_9 ref_8 ref_5 ref_7 |
References_xml | – ident: ref_3 doi: 10.1109/ICCEA62105.2024.10603746 – volume: 264 start-page: 125878 year: 2025 ident: ref_39 article-title: Predicting flow status of a flexible rectifier using cognitive computing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125878 – volume: 13 start-page: 2027 year: 2025 ident: ref_10 article-title: Geometric Feature-Based Machine Learning for Efficient Hand Sign Gesture Recognition publication-title: Stat. Optim. Inf. Comput. doi: 10.19139/soic-2310-5070-2306 – volume: 35 start-page: 056122 year: 2024 ident: ref_18 article-title: Real-time continuous gesture recognition system based on PSO-PNN publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad2a33 – ident: ref_14 doi: 10.1109/ISCTT62319.2024.10875560 – volume: 20 start-page: 2650008 year: 2024 ident: ref_26 article-title: Hand Gesture Recognition System Based on Indian Sign Language Using SVM and CNN publication-title: Int. J. Image Graph. doi: 10.1142/S0219467826500087 – volume: 41 start-page: 1835 year: 2024 ident: ref_20 article-title: Optimized Hybrid Convolution Neural Network with Machine Learning for Arabic Sign Language Recognition publication-title: Trait. Du Signal. doi: 10.18280/ts.410415 – volume: 1 start-page: 301 year: 2010 ident: ref_27 article-title: Context based clearing procedure: A niching method for genetic algorithms publication-title: J. Adv. Res. doi: 10.1016/j.jare.2010.09.001 – ident: ref_11 doi: 10.3390/a17100448 – volume: 10 start-page: 1944 year: 2025 ident: ref_38 article-title: Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2025.3528229 – volume: 3 start-page: 1251730 year: 2016 ident: ref_21 article-title: A framework for sign gesture recognition using improved genetic algorithm and adaptive filter publication-title: Cogent Eng. doi: 10.1080/23311916.2016.1251730 – volume: 12 start-page: 128871 year: 2024 ident: ref_15 article-title: Advancements in Sign Language Recognition: A Comprehensive Review and Future Prospects publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3457692 – ident: ref_22 doi: 10.1038/s41598-024-82785-x – ident: ref_16 doi: 10.1007/978-3-031-21438-7_67 – volume: 24 start-page: 171 year: 2020 ident: ref_17 article-title: Optimization learning of hidden Markov model using the bacterial foraging optimization algorithm for speech recognition publication-title: Int. J. Knowl. Based Intell. Eng. Syst. – volume: 12 start-page: 75034 year: 2024 ident: ref_1 article-title: Sign language recognition: A comprehensive review of traditional and deep learning approaches, datasets, and challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3398806 – volume: 14 start-page: 45 year: 2024 ident: ref_4 article-title: An overview of hand gesture recognition based on computer vision publication-title: Int. J. Electr. Comput. Eng. – volume: 37 start-page: 75 year: 2025 ident: ref_23 article-title: Intelligent hybrid hand gesture recognition system using deep recurrent neural network with chaos game optimization publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2023.2183269 – ident: ref_28 doi: 10.1109/CEC.2017.7969587 – volume: 12 start-page: 68303 year: 2024 ident: ref_29 article-title: Korean sign language alphabet recognition through the integration of handcrafted and deep learning-based two-stream feature extraction approach publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3399839 – ident: ref_9 doi: 10.1109/ICDSNS62112.2024.10691206 – ident: ref_19 doi: 10.1109/ICoICI62503.2024.10696047 – ident: ref_35 doi: 10.3390/s23167156 – volume: 37 start-page: 11479 year: 2025 ident: ref_34 article-title: Diversity-based niche genetic algorithm for bi-objective mixed fleet vehicle routing problem with time window publication-title: Neural Comput. Appl. doi: 10.1007/s00521-025-11132-6 – ident: ref_5 doi: 10.1109/IDCIOT64235.2025.10914713 – ident: ref_8 doi: 10.1109/ASSIC60049.2024.10507916 – volume: 211 start-page: 118559 year: 2023 ident: ref_31 article-title: Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and Gabor filter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118559 – ident: ref_37 doi: 10.1371/journal.pone.0316298 – volume: 12 start-page: 139 year: 2024 ident: ref_25 article-title: Design and Implementation of hand gesture detection system using HM model for sign language recognition development publication-title: J. Data Anal. Inf. Process. – ident: ref_12 doi: 10.1109/ICSEC62781.2024.10770704 – ident: ref_30 doi: 10.3390/s24030826 – volume: 12 start-page: 143599 year: 2024 ident: ref_6 article-title: A Systematic Review of Hand Gesture Recognition: An Update from 2018 to 2024 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3421992 – volume: 80 start-page: 14829 year: 2021 ident: ref_32 article-title: Feature extraction of finger-vein patterns based on boosting evolutionary algorithm and its application for loT identity and access management publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10569-w – volume: 10 start-page: 76752 year: 2022 ident: ref_33 article-title: An adaptive offloading mechanism for mobile cloud computing: A niching genetic algorithm perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3192391 – ident: ref_36 doi: 10.3390/electronics10141739 – ident: ref_2 doi: 10.1109/AUTOCOM60220.2024.10486099 – ident: ref_7 doi: 10.1109/ICPS59941.2024.10640040 – volume: 12 start-page: 142606 year: 2024 ident: ref_13 article-title: A methodological and structural review of hand gesture recognition across diverse data modalities publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3456436 – volume: 80 start-page: 19137 year: 2021 ident: ref_24 article-title: Evaluation of hidden markov models using deep CNN features in isolated sign recognition publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10593-w |
SSID | ssj0002512430 |
Score | 2.2996442 |
Snippet | Sign language recognition (SLR) plays a crucial role in bridging the communication gap between deaf individuals and the hearing population. However, achieving... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 189 |
SubjectTerms | Accuracy Communication Convergence Deafness Deep learning Feature selection Genetic algorithms Genetic diversity gesture dynamics and variability Markov analysis Markov Chain optimization Markov chains Neural networks Niching Genetic Algorithm (NGA) Optimization Optimization techniques Public spaces Recognition Robustness (mathematics) Sign language subject-independent sign language recognition Transition probabilities |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF614dJLKQVEIFQrxNXK2rte272gBIgoahECInGz9plEgJ0mgd_fGWedVkLq1ba88szO0zvfR8ipiDOHLNERL7iIhPVgc06lEUSu3DGdccNwwPnXjbwai-vH9DE03JbhWGXrExtHbWuDPfI-BH6O4HeSn81_R8gahX9XA4XGR7IFLjhPO2RreHlze7fpsmD0FpytIYU41Pd9NZOQJMVI6_5PIGrw-t-54ybGjL6QzyE5pIO1NnfIB1d9Jdst8QINdrhLngZWzdFP0fvZpKI_Q8-R3rWngeqKQjJKL5zydIzzlN_pj4ALAaGK4oBO_UbPp2pWLSm2YinsCOxFUYShhtXp4HkCX7-avuyR8ejy4fwqCqwJkUkyVkQyVy41lhud6gQSLF3w1ErmuXEKkgnBtLHMxy6R3AqbO6kYczEopjDae8H5PulUdeUOCPVMWCVFZrz2QsVMeQP1lkmtSHCppEtOWhGW8zU4RglFBcq53Mi5S4Yo3M0DiGfdXKgXkzKYR5m4BHFxXC7SAl5utDQ6g_Iw17Fy1uRd0mtVUwYjW5Z_t8Th_28fkU8J0vY25_Z6pLNavLpjyCVW-lvYMH8AFvTKgg priority: 102 providerName: ProQuest |
Title | Adaptive Sign Language Recognition for Deaf Users: Integrating Markov Chains with Niching Genetic Algorithm |
URI | https://www.proquest.com/docview/3243965963 https://doaj.org/article/2e23626e8459422cb6cb70268b1aedc8 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54XLjwRozHFCGuFWmSpi23MTYeAoSASdyqPGECOsTryG_HbrtpEgcuXHpoI6WyY_tzZH8mZF_Gqccp0ZHIhYykC2BzXicRRK7MM5MKy7DB-fJKnQ7k-X1yPzXqC2vCanrgWnAH3HNkTPGZTHLJuTXKmhQSh8zE2jtbtflCzJtKptAHY9SWgtVUQgLy-gM9VACOYhznPhWAKp7-X264ii39ZbLYgELaqX9mhcz4cpUsjQcu0Mb-1shTx-lX9E_0dvhQ0ovmrpHejKuARiUFEEqPvQ50gH2Uh_Ss4YOAEEWxMWf0RbuPeli-U7yCpXAS8A6KIv007E47zw-jN_jwsk4G_d5d9zRqpiVElqcsj1SmfWKdsCYxHICVyUXiFAvCeg0gQjJjHQux50o46TKvNGM-BoXk1oQghdggc-Wo9JuEBiadVjK1wQSpY6aDhTzLJg4UAFvxFtkbi7B4rUkxCkgmUM7FRM4tcoTCnSxAHuvqBWi3aLRb_KXdFtkZq6ZojOu9AAwokAdRia3_2GObLHAc6ltV9e2QuY-3T78LSOPDtMls1j9pk_mj3tX1Tbs6YvC8_O79AJl21PQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLSXvqumpe2qKkeL9e56bSNVVXgpKSFClEjc3H2GCGoHkhbxp_iNzDh2WgmJG1fb8lqz8_bO9xHyVcapR5boSORCRtIFsDmvkwgiV-aZSYVlOOB8OFS9kfxxmpyukNt2FgaPVbY-sXbUrrLYI9-EwC8Q_E6J79PLCFmj8O9qS6GxUIsDf3MNJdvsW38X9neD8_29k51e1LAKRJanLI9Upn1inbAmMRwSEJOLxCkWhPUagq1kxjoWYs-VcNJlXmnGfAwfnlsTgsQGKLj8NUgzcrCite294dHxsquD2YIUbAFhJETONvVEQVIWI438f4Gv5ge45_7rmLb_gjxrklHaXWjPS7Liy1fkeUv0QBu7f03Ou05P0S_Sn5NxSQdNj5Met6ePqpJC8kt3vQ50hPObW7Tf4FBAaKQ4EFT9pTtnelLOKLZ-KWgg9r4owl7D6rR7MQZpz89-vyGjR5HnW7JaVqV_R2hg0mklUxtMkDpmOlio72ziJMeleId8aUVYTBdgHAUUMSjnYinnDtlG4S4fQPzs-kJ1NS4acyy454jD4zOZ5PBya5Q1KZSjmYm1dzbrkPV2a4rGqGfFPxV8__Dtz-RJ7-RwUAz6w4MP5ClHyuD6zOA6WZ1f_fEfIY-Zm0-N8lDy67H19Q7oRwga |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK88I3oGGAheIzq2I6TICHUratWNqppUGlvwZ9dBSRlLSD-Nf467lKnICHxttckipXz-X53l7v7EfJCprlHluhElEIm0gU4c15nCSBX4ZnJhWXY4Pxuqo5n8u1FdrFDfnW9MFhW2dnE1lC7xmKOfADAL3D4nRKDEMsizkbjN8uvCTJI4Z_Wjk5joyIn_ucPCN9Wrycj2OuXnI-PPhweJ5FhILE8Z2WiCu0z64Q1meHgjJhSZE6xIKzXALySGetYSD1XwklXeKUZ8yl8RGlNCBKToWD-d3NAxaJHdg-Opmfn2wwPeg5SsM04IyFKNtALBQ5aipTyf4FgyxXwDxS0-Da-Q25Fx5QON5p0l-z4-h653ZE-0GgD7pNPQ6eXaCPp-8W8pqcx30nPu0qkpqbgCNOR14HOsJfzFZ3EmRQAkxSbg5rv9PBSL-oVxTQwBW3EPBjFEdiwOh1-noO015dfHpDZtcjzIenVTe0fERqYdFrJ3AYTpE6ZDhZiPZs5yXEp3ifPOxFWy81gjgoCGpRztZVznxygcLcP4Czt9kJzNa_i0ay45ziTxxcyK-Hl1ihrcghNC5Nq72zRJ_vd1lTxgK-qP-q49__bz8gN0NPqdDI9eUxucmQPbssH90lvffXNPwGXZm2eRt2h5ON1q-tvt3IMRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Sign+Language+Recognition+for+Deaf+Users%3A+Integrating+Markov+Chains+with+Niching+Genetic+Algorithm&rft.jtitle=AI+%28Basel%29&rft.au=Muslem+Al-Saidi&rft.au=%C3%81ron+Ballagi&rft.au=Oday+Ali+Hassen&rft.au=Saad+M.+Darwish&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2673-2688&rft.volume=6&rft.issue=8&rft.spage=189&rft_id=info:doi/10.3390%2Fai6080189&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e23626e8459422cb6cb70268b1aedc8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-2688&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-2688&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-2688&client=summon |