Analysis of uterine electromyography signals using time-frequency based topological features for detection of preterm birth

Detection of preterm birth (gestational week < 37) is a global priority as it causes major health problems to neonates. Assessment of uterine contractions (burst) is required to detect and prevent the threat of preterm birth. Uterine electromyography (uEMG) is widely preferred to measure the uter...

Full description

Saved in:
Bibliographic Details
Published inCurrent directions in biomedical engineering Vol. 7; no. 2; pp. 867 - 870
Main Authors Selvaraju, Vinothini, Pa, Karthick, Swaminathan, Ramakrishnan
Format Journal Article
LanguageEnglish
Published De Gruyter 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of preterm birth (gestational week < 37) is a global priority as it causes major health problems to neonates. Assessment of uterine contractions (burst) is required to detect and prevent the threat of preterm birth. Uterine electromyography (uEMG) is widely preferred to measure the uterine contractions noninvasively. These signals are nonstationary in nature. It can be handled by topological data analysis (TDA) effectively. Therefore, TDA can be used to explore the characteristics of uEMG burst signals. In this study, an attempt has been made to distinguish term (gestational week ≥ 37) and preterm conditions using timefrequency based topological features in uEMG burst signals. These signals are obtained from the publicly available online dataset. The annotated burst signals are segmented and subjected to a short time Fourier transform. The transformed real and imaginary Fourier coefficients are plotted in the complex plane and the envelope of the data points are computed using the alpha-shape technique. Four topological features such as, area, perimeter, circularity and ellipse variance are extracted. These features are statistically analyzed. The coefficient of variation (CoV) is calculated to measure the inter-subject variations. The results show that the proposed method is able to discriminate between term and preterm conditions. The extracted features namely, area and perimeter exhibit significant difference (p < 0.05) between these two conditions. The CoV of the perimeter is observed to be low, implying that this feature can handle inter-subject variations in burst signals. The extracted topological features are useful to analyze the characteristics of term and preterm pregnancies
AbstractList Detection of preterm birth (gestational week < 37) is a global priority as it causes major health problems to neonates. Assessment of uterine contractions (burst) is required to detect and prevent the threat of preterm birth. Uterine electromyography (uEMG) is widely preferred to measure the uterine contractions noninvasively. These signals are nonstationary in nature. It can be handled by topological data analysis (TDA) effectively. Therefore, TDA can be used to explore the characteristics of uEMG burst signals. In this study, an attempt has been made to distinguish term (gestational week ≥ 37) and preterm conditions using timefrequency based topological features in uEMG burst signals. These signals are obtained from the publicly available online dataset. The annotated burst signals are segmented and subjected to a short time Fourier transform. The transformed real and imaginary Fourier coefficients are plotted in the complex plane and the envelope of the data points are computed using the alpha-shape technique. Four topological features such as, area, perimeter, circularity and ellipse variance are extracted. These features are statistically analyzed. The coefficient of variation (CoV) is calculated to measure the inter-subject variations. The results show that the proposed method is able to discriminate between term and preterm conditions. The extracted features namely, area and perimeter exhibit significant difference (p < 0.05) between these two conditions. The CoV of the perimeter is observed to be low, implying that this feature can handle inter-subject variations in burst signals. The extracted topological features are useful to analyze the characteristics of term and preterm pregnancies
Author Swaminathan, Ramakrishnan
Selvaraju, Vinothini
Pa, Karthick
Author_xml – sequence: 1
  givenname: Vinothini
  surname: Selvaraju
  fullname: Selvaraju, Vinothini
  email: vinothiniiitm@gmail.com
  organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India- 600036
– sequence: 2
  givenname: Karthick
  surname: Pa
  fullname: Pa, Karthick
  email: pakarthick@nitt.edu
  organization: Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India-620015
– sequence: 3
  givenname: Ramakrishnan
  surname: Swaminathan
  fullname: Swaminathan, Ramakrishnan
  email: sramki@iitm.ac.in
  organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India- 600036
BookMark eNp1kclq5DAQhsWQwGQ7z1Uv4IlUtmQ3zCWEyQKBXJKz0FJy1LitjmQTTF4-cnoIc8mpFur_iqr_lByNcURCfnH2mwsuLq0zO6yAAa8AgP8gJ1DLphKCNUf_5T_JRc5bxhiXIGVXn5D3q1EPSw6ZRk_nCVMYkeKAdkpxt8Q-6f3LQnPoy1imcw5jT6dQdvmErzOOdqFGZ3R0ivs4xD5YPVCPepoTZupjog6nQgtxXDfsU6nSjpqQppdzcuwLFS_-xTPyfPP36fqueni8vb--eqgstKytGs0bawRuwDUNmo33jtetbYXhDDu_gdZJD5p33oIVnQUmNHco28b4pgzXZ-T-wHVRb9U-hZ1Oi4o6qM9GTL3SaQp2QGW4QK4BtChyiaxjvgNpse6MFhstCuvywLIp5pzQf_E4U6sV6tMKtVqhViuK4s9B8aaHcrvDPs1LSdQ2zmn96nfKFjrZ1h9Qf5Ze
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/cdbme-2021-2221
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2364-5504
EndPage 870
ExternalDocumentID oai_doaj_org_article_b15e1a22a56746e080f826ce38ba59a5
10_1515_cdbme_2021_2221
10_1515_cdbme_2021_222172867
GroupedDBID 0R~
5VS
AAFWJ
ABFKT
ADBBV
ADMLS
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
EBS
GROUPED_DOAJ
KQ8
M48
M~E
OK1
QD8
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c2707-4a14cb5e92d44eb9ffd137c75b10e8f927d6f2a18fc2c58c205a1de674bf4ffd3
IEDL.DBID M48
ISSN 2364-5504
IngestDate Wed Aug 27 01:26:49 EDT 2025
Tue Jul 01 03:04:30 EDT 2025
Thu Jul 10 10:34:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2707-4a14cb5e92d44eb9ffd137c75b10e8f927d6f2a18fc2c58c205a1de674bf4ffd3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/cdbme-2021-2221
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_b15e1a22a56746e080f826ce38ba59a5
crossref_primary_10_1515_cdbme_2021_2221
walterdegruyter_journals_10_1515_cdbme_2021_222172867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Current directions in biomedical engineering
PublicationYear 2021
Publisher De Gruyter
Publisher_xml – name: De Gruyter
SSID ssj0001626683
Score 2.1594057
Snippet Detection of preterm birth (gestational week < 37) is a global priority as it causes major health problems to neonates. Assessment of uterine contractions...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 867
SubjectTerms preterm condition
time-frequency
topological data analysis
uterine electromyography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJz2In7h-kYMHL8EmTZrsUcVlEfSk4K3kY6Ie3JW1iyz-eSdpV1ZBvHhtC1Pem3ZemukbQk6ijKEsisisUY4lRypmRAAmnCmLPMAI0o_CN7fV6F5eP6iHpVFfqSestQdugTtzXAG3QlhVaVkBCpyIithDaZxVA5vdS7HmLS2m8tcV1OmVKTsvH6zZZz5gecGcEJxhSeTfylB2618j6-95hzrA43Q2bxY7ornQDDfIeqcQ6Xl7Z5tkBcZbZG3JN3CbfCysROgk0jSTAU_RbqDNy7wzoaapNQOTi6bW9keahsizOG07p-c0Va9Am3ZEQiKKRsgen28UZSwN0OQerXGKkHoS8QVO3fO0edoh98Oru8sR66YoMC90oZm0XHqnYCCClOAGMQZeaq-V4wWYOBA6VFFYbqIXXhkvCmV5AETbIZHI5C7pjSdj2CPUWpDBGRcVOGlRS1iluQThLeBKKEKfnC5ArV9bs4w6LTIQ_zrjXyf864R_n1wk0L8uSy7X-QByX3fc139x3yfqB2V19wS-_RZXC1Pp_f8IfkBWczblxr5D0mumMzhCgdK445yLn_LR6II
  priority: 102
  providerName: Directory of Open Access Journals
Title Analysis of uterine electromyography signals using time-frequency based topological features for detection of preterm birth
URI https://www.degruyter.com/doi/10.1515/cdbme-2021-2221
https://doaj.org/article/b15e1a22a56746e080f826ce38ba59a5
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWq9kIPFR9FbIGVDxx6McReO_YeUFWqllWlwgFW6i3yx3hBanchTQWr_nlmvNkCVZG4JlEcvbEzb-LJe4y9yjqnUVVl4Z0JghSphFMJhApuVBUDI6Afhc8-1JOpPj0357_tgHoAr-4t7chPatpevP75fXmAC_5tce-R5k1MmDkw3EoKzHZYCm1hWrK0Ss96rl8-uCB1r4ssJ2mmC2Tmupf6uecef2WpIua_zXZ-lA3sBLP2etmtN0xLHjp5yHZ6AskPVxF_xDZg_pht_yEr-ITdrJVG-CJzsmzAU7z3u7lc9hrVnDo3EANOne8zTh7zIrerxuolp-SWeLdyUKA48gxFAvSKI8vlCbrSwjWnEahlEd_vPHxtuy-7bHpy_PloInqTBRGVrazQXuoYDIxV0hrCOOckRzZaE2QFLo-VTXVWXrocVTQuqsp4maC2OmCcMdBP2eZ8MYdnjHsPOgUXsoGgPVINb6zUoKIHLJQyDNj-GtTm20pLo6EaBPFvCv4N4d8Q_gP2jkC_vYxEsMuBRTtr-jXVBGlAeqW8waepAblvxmIpwsgFb3DwATN3Qtas59e_xrXK1Xbv_5_zOXtQ5kzp7nvBNrv2Gl4iS-nCkG0dTt5_-jgsVf6wzMVfdkjroA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6qHiK5ekDBy7Rxo6deI-loizQlgOt1Jvlx3iLRHdRmhVa8ecZO9mlILhwTWLZmhlnPtufvwF4FWUMVVnGwmrliqRIVWgRsBBOV2UuYITpovDJaT07lx8u1MUOHG7uwiRaZcB5u1p3vULqJCz9Km2UbbUGKANPfKBkQR4WvKAExyeX3dXXW7BbE_zXI9g9mL37_OnXVguB9lpXg7DPX5r_lpOydP8e7H_Px9XbsdzIOkd3YX-Ai-yg9-892MHFfdi7ISL4AH5sdEXYMrJUoIFesaG6zdV6UKRmiadBkcYSz33OUkX5IrY9jXrNUioLrOvrJSSvsYhZ8POaEaZlAbtM2FqkHhJBkf7mzH1pu8uHcH709uxwVgwlFQovmrIppOXSO4VTEaREN40x8KrxjXK8RB2nogl1FJbr6IVX2otSWR6wbqQjr5JbH8FosVzgY2DWogxOu6jQSUvAwqqGSxTeIi2LIo7h9cao5luvnGHSioPsb7L9TbK_SfYfw5tk9O1nSfI6P1i2czPMIOO4Qm6FsIpGUyMh3UhLI4-VdlZR52NQf7jMDNPx-l_9NkLXzZP_bPcSbs_OTo7N8fvTj0_hTg6mTPJ7BqOuXeFzAiudezEE409nWOzD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELYglRA9VDxFePrAgYuVtddeO8fyCOFVkKBSb5Yf45QDSbXdqIr65xl7tyEguHDdXWusmfHOjP35G0KeJ5liXVWJOaM8y4xUzIgITHhTV6WBEeSLwp-OmvmxfH-iTnbuwmRYZYRFu950PUPqJK7COm-UbbkGMAJPQsRggRYWnGGA45OzmK6TvaaZ1nJE9g7nb79-_rXTgjl7Y-qB1-cvo38LSYW5f58cXJTT6u1UdoLO7BY5GLJFetib9za5Bss7ZH-HQ_AuubyiFaGrRHN_BnxFh-Y2PzYDITXNMA10NJph7guaG8qz1PYo6g3NkSzSrm-XkI1GExS-z3OKKS2N0BW81jJLyPhE_JlT_73tTu-R49mbb6_mbOiowILQlWbScRm8gqmIUoKfphR5rYNWnldg0lTo2CThuElBBGWCqJTjERotPRoVrXqfjJarJTwg1DmQ0RufFHjpMK9wSnMJIjjAqijBmLy4Uqo964kzbC44UP-26N9m_dus_zF5mZW-_SwzXpcHq3ZhhwVkPVfAnRBO4WwawEQ3YWUUoDbeKRQ-JuoPk9lhNZ7_S64WptEP_3PcM3Ljy-uZ_fju6MMjcrP4UoH4PSajrl3DE0xVOv908MWfCJLr6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+uterine+electromyography+signals+using+time-frequency+based+topological+features+for+detection+of+preterm+birth&rft.jtitle=Current+directions+in+biomedical+engineering&rft.au=Selvaraju%2C+Vinothini&rft.au=Pa%2C+Karthick&rft.au=Swaminathan%2C+Ramakrishnan&rft.date=2021-10-01&rft.issn=2364-5504&rft.eissn=2364-5504&rft.volume=7&rft.issue=2&rft.spage=867&rft.epage=870&rft_id=info:doi/10.1515%2Fcdbme-2021-2221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cdbme_2021_2221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-5504&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-5504&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-5504&client=summon