An elliptic curve analogue of Pillai’s lower bound on primitive roots
Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and...
Saved in:
Published in | Canadian mathematical bulletin Vol. 65; no. 2; pp. 496 - 505 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Canada
Canadian Mathematical Society
01.06.2022
Cambridge University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime p of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group
$E(\mathbb {F}_p)$
. We prove unconditionally that
$r(E,p)> 0.72\log \log p$
for infinitely many p, and
$r(E,p)> 0.36 \log p$
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime. |
---|---|
AbstractList | Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime
p
of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the
x
-coordinate of a point of maximal order in the group
$E(\mathbb {F}_p)$
. We prove unconditionally that
$r(E,p)> 0.72\log \log p$
for infinitely many
p
, and
$r(E,p)> 0.36 \log p$
under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime. Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime. Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$. We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime. |
Author | Jin, Steven Washington, Lawrence C. |
Author_xml | – sequence: 1 givenname: Steven surname: Jin fullname: Jin, Steven email: sjin6816@umd.edu organization: Department of Mathematics, University of Maryland, College Park, MD 20742, USA e-mail: lcw@umd.edu – sequence: 2 givenname: Lawrence C. surname: Washington fullname: Washington, Lawrence C. email: lcw@umd.edu organization: Department of Mathematics, University of Maryland, College Park, MD 20742, USA e-mail: lcw@umd.edu |
BookMark | eNp1kM1Kw0AUhQepYFt9AHcDrqPzP5NlKVqFgoK6DpPJTZmSZupMorjzNXw9n8SECi7E1b1wvnM4nBmatKEFhM4puRRU8qtHQogRPJeMDp8Q5ghNqchVJpjREzQd5WzUT9AspS0hVEstp2i1aDE0jd933mHXx1fAtrVN2PSAQ40ffNNY__XxmXAT3iDiMvRthUOL99HvfOcHPobQpVN0XNsmwdnPnaPnm-un5W22vl_dLRfrzDGVd5mTpaBEMA6SOaZtWXFdC-MoY2WtcjCOWWVL4UBxp4nRJBe8BBCK1rYCyefo4pC7j-Glh9QV29DHoXEqmFLGSEWlHih6oFwMKUWoi7Guje8FJcW4V_Fnr8HDfzx2V0ZfbeA3-n_XNzC5bt8 |
Cites_doi | 10.1112/plms/s3-12.1.179 10.2996/kmj/1138843605 10.1007/978-1-4684-0296-4 10.1016/j.ipl.2005.09.014 10.1007/BFb0060851 10.1002/mana.19490030104 10.1007/978-1-4612-3464-7_18 10.1090/S0002-9904-1942-07767-6 10.1090/S0002-9904-1945-08291-3 10.5802/aif.3274 10.1016/j.jnt.2022.03.012 10.1090/S0025-5718-1992-1106981-9 10.2140/pjm.1957.7.861 |
ContentType | Journal Article |
Copyright | Canadian Mathematical Society 2021 |
Copyright_xml | – notice: Canadian Mathematical Society 2021 |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8FQ 8FV ABJCF ABUWG AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.4153/S0008439521000448 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Canadian Business & Current Affairs Database Canadian Business & Current Affairs Database (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central CBCA Complete (Alumni Edition) ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection CBCA Complete ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Engineering Collection |
DatabaseTitleList | CrossRef Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1496-4287 |
EndPage | 505 |
ExternalDocumentID | 10_4153_S0008439521000448 |
GroupedDBID | --Z -~X 09C 09E 5.9 69Q 6J9 8FQ AABWE AAEED AAGFV AANRG AASVR AAUKB AAYEQ AAYJJ ABBZL ABCQX ABGDZ ABJCF ABMYL ABUWG ABXAU ABZCX ABZEH ACGFO ACIPV ACKIV ACNCT ACQFJ ACYZP ACZWT ADDNB ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEBPU AENCP AETEA AFKQG AFKRA AFLVW AGABE AGBYD AGJUD AGOOT AHRGI AI. AIDBO AIOIP AJCYY AJPFC ALMA_UNASSIGNED_HOLDINGS AQJOH ARZZG ATUCA AYIQA BBLKV BCGOX BENPR BESQT BGLVJ BLZWO CCPQU CCQAD CCUQV CFBFF CGQII CHEAL CJCSC DOHLZ DWQXO EBS EGQIC EJD FRP HCIFZ HF~ IH6 IOO JHPGK KCGVB KFECR L7B LW7 M7S MVM NZEOI OHT OK1 P2P PTHSS RCA RCD ROL S10 TR2 UPT VH1 WFFJZ WH7 XJT ZCG ZMEZD 0R~ AAYXX ABVKB ABVZP ABXHF ACDLN ADIYS AFZFC AKMAY AMVHM CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c269t-c5b410423e52c27abd37f48c122bf69e8c2a6ab4ce63c70870943bee461fade53 |
IEDL.DBID | BENPR |
ISSN | 0008-4395 |
IngestDate | Fri Jul 25 11:11:42 EDT 2025 Tue Jul 01 03:30:21 EDT 2025 Wed Mar 13 06:01:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | finite fields 14H52 Elliptic curves 11G20 primitive root |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-c5b410423e52c27abd37f48c122bf69e8c2a6ab4ce63c70870943bee461fade53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2668856157 |
PQPubID | 4573633 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2668856157 crossref_primary_10_4153_S0008439521000448 cambridge_journals_10_4153_S0008439521000448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220601 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Montreal |
PublicationTitle | Canadian mathematical bulletin |
PublicationTitleAlternate | Can. Math. Bull |
PublicationYear | 2022 |
Publisher | Canadian Mathematical Society Cambridge University Press |
Publisher_xml | – name: Canadian Mathematical Society – name: Cambridge University Press |
References | 1945; 55 1944; 8 1957; 7 1955; 7 1962; 12 2006; 97 1949; 66 1992; 58 1942; 48 1949; 3 1930; 1 2019; 69 S0008439521000448_r1 Kohel (S0008439521000448_r10) 2000 S0008439521000448_r3 S0008439521000448_r2 S0008439521000448_r5 S0008439521000448_r4 S0008439521000448_r7 S0008439521000448_r9 S0008439521000448_r8 Vinogradov (S0008439521000448_r19) 1930; 1 Pillai (S0008439521000448_r14) 1944; 8 Lagarias (S0008439521000448_r11) 1977 S0008439521000448_r13 S0008439521000448_r12 S0008439521000448_r18 Fridlender (S0008439521000448_r6) 1949; 66 S0008439521000448_r17 S0008439521000448_r16 S0008439521000448_r15 |
References_xml | – volume: 1 start-page: 7 year: 1930 end-page: 11 article-title: On the least primitive root of a prime publication-title: Dokl. Akad. Nauk, S.S.S.R – volume: 55 start-page: 131 year: 1945 end-page: 132 article-title: Least primitive root of a prime publication-title: Bull. Amer. Math. Soc. – volume: 7 start-page: 861 issue: 1 year: 1957 end-page: 865 article-title: On the least primitive root of a prime publication-title: Pacific J. Math. – volume: 69 start-page: 1411 issue: 3 year: 2019 end-page: 1458 article-title: An explicit upper bound for the least prime ideal in the Chebotarev density theorem publication-title: Ann. l’Inst. Fourier – volume: 58 start-page: 369 year: 1992 end-page: 380 article-title: Searching for primitive roots in prime fields publication-title: Math. Comp. – volume: 48 start-page: 726 year: 1942 end-page: 730 article-title: On the least primitive root of a prime publication-title: Bull. Amer. Math. Soc. – volume: 8 start-page: 14 year: 1944 end-page: 17 article-title: On the smallest primitive root of a prime publication-title: J. Indian Math. Soc. – volume: 3 start-page: 7 year: 1949 end-page: 8 article-title: Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl publication-title: Math. Nachr. – volume: 12 start-page: 179 year: 1962 end-page: 192 article-title: On character sums and primitive roots publication-title: Proc. Lond. Math. Soc. (3) – volume: 66 start-page: 351 year: 1949 end-page: 352 article-title: On the least n-th power non-residue publication-title: Proc. USSR Acad. Sci. – volume: 7 start-page: 43 issue: 2 year: 1955 end-page: 44 article-title: A note on the different of the composed field publication-title: Kodai Math. Sem. Rep. – volume: 97 start-page: 41 issue: 2 year: 2006 end-page: 45 article-title: Efficient polynomial time algorithms computing industrial-strength primitive roots publication-title: Inform. Process. Lett. – volume-title: Algorithmic number theory year: 2000 ident: S0008439521000448_r10 – ident: S0008439521000448_r2 doi: 10.1112/plms/s3-12.1.179 – ident: S0008439521000448_r18 doi: 10.2996/kmj/1138843605 – volume: 1 start-page: 7 year: 1930 ident: S0008439521000448_r19 article-title: On the least primitive root of a prime publication-title: Dokl. Akad. Nauk, S.S.S.R – ident: S0008439521000448_r12 doi: 10.1007/978-1-4684-0296-4 – ident: S0008439521000448_r17 – ident: S0008439521000448_r3 doi: 10.1016/j.ipl.2005.09.014 – ident: S0008439521000448_r13 doi: 10.1007/BFb0060851 – ident: S0008439521000448_r15 doi: 10.1002/mana.19490030104 – volume: 8 start-page: 14 year: 1944 ident: S0008439521000448_r14 article-title: On the smallest primitive root of a prime publication-title: J. Indian Math. Soc. – ident: S0008439521000448_r7 doi: 10.1007/978-1-4612-3464-7_18 – ident: S0008439521000448_r8 doi: 10.1090/S0002-9904-1942-07767-6 – ident: S0008439521000448_r4 doi: 10.1090/S0002-9904-1945-08291-3 – start-page: 409 volume-title: Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) year: 1977 ident: S0008439521000448_r11 – ident: S0008439521000448_r1 doi: 10.5802/aif.3274 – ident: S0008439521000448_r9 doi: 10.1016/j.jnt.2022.03.012 – ident: S0008439521000448_r16 doi: 10.1090/S0025-5718-1992-1106981-9 – ident: S0008439521000448_r5 doi: 10.2140/pjm.1957.7.861 – volume: 66 start-page: 351 year: 1949 ident: S0008439521000448_r6 article-title: On the least n-th power non-residue publication-title: Proc. USSR Acad. Sci. |
SSID | ssj0017575 |
Score | 2.2326481 |
Snippet | Let
$E/\mathbb {Q}$
be an elliptic curve. For a prime p of good reduction, let
$r(E,p)$
be the smallest non-negative integer that gives the x-coordinate of a... Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x -coordinate of a... Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 496 |
SubjectTerms | Curves Hypotheses Lower bounds Numbers |
Title | An elliptic curve analogue of Pillai’s lower bound on primitive roots |
URI | https://www.cambridge.org/core/product/identifier/S0008439521000448/type/journal_article https://www.proquest.com/docview/2668856157 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA5uu-hB_MTpHDl4EottmjbpSabsA2FjiIPdRpImIEg7186zf8O_5y8xb9ttDmHXpuTwJnme9yN5H4RulFERjX3tGN_YACWMmBMRY8GQxpIGETAwJPSHo3Awoc_TYFol3LLqWuUKEwugjlMFOfJ7SyScW7IP2MP8wwHVKKiuVhIaNdSwEMx5HTUeu6Pxy7qOwAJWahi43LHUG5R1TUtaPrwRdjl8I15R1uR_uytss9Q2SBfM0ztCh5XLiDvlGh-jPZ2coIPhut9qdor6nQRDZ017_hVWy8WnxiIp0zI4NXgM0kJvP1_fGX4HVTQsQUwJpwmeg6oXIB62HnSenaFJr_v6NHAqiQRHkTDKHRVI6sHVFh0QRZiQsc8M5cojRJow0lwREQpJlQ59xVx7OCPqS61p6BkR68A_R_UkTfQFwrELJ1hoKj1DXWH9RiqZDcaknVEQ4TbR3do8s2qjZzMbQ4A1Z_-s2US3KwvO5mXjjF0_t1Y23ky9WfHL3cNXaJ_Ao4QiN9JC9Xyx1NfWVchlG9V4r9-udsUvzPe6iA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUAAF4hTh3AIahIW9Xl8FQhEQAiQRRSLRmd31roSEnBAHEB2_wU_wUXwJM3acECHR0drWFuPxe3N45hGyr4yKeOJqy7gGEhQ_CqyIGQBDnkjuRcjAWNBvtf1Gl1_feXcV8lnOwuBvlSUm5kCd9BTWyI-BSMIQyN4LTvtPFqpGYXe1lNAo3OJGv71CypadXJ3D-z1grH7ROWtYI1UBSzE_GlrKk9zBv0G0xxQLhEzcwPBQOYxJ40c6VEz4QnKlfVcFNvhzxF2pNfcdIxKNKhEA-bPcBSbHyfT65bhrEXhBoZhghxYQvVd0UYEiXZxItkO8xpy8iRr-3OUwzYnTlJDzXH2JLI4CVForPGqZVHS6QhZa4-2u2Sq5rKUU93gC2iiqngcvmoq0KALRnqG3KGT08PX-kdFH1GCjEqWbaC-lfdQQQ3ylEK8PszXS_RfTrZOZtJfqDUITG_FCaC4dw20BUSqXAaR-Ek4UTNhVcjQ2Tzz6rLIYMha0ZvzLmlVyWFow7hdrOv56eLu08eToiX9t_n17j8w1Oq1m3Lxq32yReYbjEHlVZpvMDAfPegeClKHczT2Dkvv_dsVvUmT1mA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSuRAFL1IN8jMQnzMMK2t1kI3YjCpVF4LEV_tu2mGEdxlqipVIEi6Na3izt_wV_wcv8R7O0mrCO7cJqEWN6fuuY-qewBWtNWJyHzjWN9ighImkZNwi85QZEoECTEwFfTPuuHhuTi-CC4m4Lm-C0PHKmufOHLUWV9TjXwDiSSOkewxgbfVsYjeXmdrcO2QghR1Wms5jRIiJ-bhHtO3YvNoD__1Kued_X-7h06lMOBoHiZDRwdKeHQyxARc80iqzI-siLXHubJhYmLNZSiV0Cb0deQithPhK2NE6FmZGVKMQPffjCgrakBzZ7_b-zvuYURBVOonuLGDtB-UPVUkTJ_uJ7sxPePeqKUav5_s8JEhPxLEiPU60zBVhatsu8TXDEyYfBZ-no1nvRZzcLCdM5rqib5HM317c2eYzMuSEOtb1iNZo8uXx6eCXZEiG1Mk5MT6ORuQohh5W4bR-7D4BeffYrzf0Mj7ufkDLHPJe0gjlGeFKzFmFSrCRFDhipJLtwXrY_Ok1SYrUsxfyJrpJ2u2YK22YDooh3Z89XG7tvHb0m9om__69TJMIgzT06PuyQL84HQ3YlSiaUNjeHNrFjFiGaqlChoM_n83Gl8B5XH7Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+elliptic+curve+analogue+of+Pillai%E2%80%99s+lower+bound+on+primitive+roots&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Jin%2C+Steven&rft.au=Washington%2C+Lawrence+C.&rft.date=2022-06-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-4395&rft.eissn=1496-4287&rft.volume=65&rft.issue=2&rft.spage=496&rft.epage=505&rft_id=info:doi/10.4153%2FS0008439521000448&rft.externalDocID=10_4153_S0008439521000448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon |