An elliptic curve analogue of Pillai’s lower bound on primitive roots

Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and...

Full description

Saved in:
Bibliographic Details
Published inCanadian mathematical bulletin Vol. 65; no. 2; pp. 496 - 505
Main Authors Jin, Steven, Washington, Lawrence C.
Format Journal Article
LanguageEnglish
Published Canada Canadian Mathematical Society 01.06.2022
Cambridge University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
AbstractList Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x -coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p , and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$ . We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a point of maximal order in the group $E(\mathbb {F}_p)$. We prove unconditionally that $r(E,p)> 0.72\log \log p$ for infinitely many p, and $r(E,p)> 0.36 \log p$ under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.
Author Jin, Steven
Washington, Lawrence C.
Author_xml – sequence: 1
  givenname: Steven
  surname: Jin
  fullname: Jin, Steven
  email: sjin6816@umd.edu
  organization: Department of Mathematics, University of Maryland, College Park, MD 20742, USA e-mail: lcw@umd.edu
– sequence: 2
  givenname: Lawrence C.
  surname: Washington
  fullname: Washington, Lawrence C.
  email: lcw@umd.edu
  organization: Department of Mathematics, University of Maryland, College Park, MD 20742, USA e-mail: lcw@umd.edu
BookMark eNp1kM1Kw0AUhQepYFt9AHcDrqPzP5NlKVqFgoK6DpPJTZmSZupMorjzNXw9n8SECi7E1b1wvnM4nBmatKEFhM4puRRU8qtHQogRPJeMDp8Q5ghNqchVJpjREzQd5WzUT9AspS0hVEstp2i1aDE0jd933mHXx1fAtrVN2PSAQ40ffNNY__XxmXAT3iDiMvRthUOL99HvfOcHPobQpVN0XNsmwdnPnaPnm-un5W22vl_dLRfrzDGVd5mTpaBEMA6SOaZtWXFdC-MoY2WtcjCOWWVL4UBxp4nRJBe8BBCK1rYCyefo4pC7j-Glh9QV29DHoXEqmFLGSEWlHih6oFwMKUWoi7Guje8FJcW4V_Fnr8HDfzx2V0ZfbeA3-n_XNzC5bt8
Cites_doi 10.1112/plms/s3-12.1.179
10.2996/kmj/1138843605
10.1007/978-1-4684-0296-4
10.1016/j.ipl.2005.09.014
10.1007/BFb0060851
10.1002/mana.19490030104
10.1007/978-1-4612-3464-7_18
10.1090/S0002-9904-1942-07767-6
10.1090/S0002-9904-1945-08291-3
10.5802/aif.3274
10.1016/j.jnt.2022.03.012
10.1090/S0025-5718-1992-1106981-9
10.2140/pjm.1957.7.861
ContentType Journal Article
Copyright Canadian Mathematical Society 2021
Copyright_xml – notice: Canadian Mathematical Society 2021
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.4153/S0008439521000448
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList CrossRef

Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 505
ExternalDocumentID 10_4153_S0008439521000448
GroupedDBID --Z
-~X
09C
09E
5.9
69Q
6J9
8FQ
AABWE
AAEED
AAGFV
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABGDZ
ABJCF
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AETEA
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
XJT
ZCG
ZMEZD
0R~
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c269t-c5b410423e52c27abd37f48c122bf69e8c2a6ab4ce63c70870943bee461fade53
IEDL.DBID BENPR
ISSN 0008-4395
IngestDate Fri Jul 25 11:11:42 EDT 2025
Tue Jul 01 03:30:21 EDT 2025
Wed Mar 13 06:01:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords finite fields
14H52
Elliptic curves
11G20
primitive root
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-c5b410423e52c27abd37f48c122bf69e8c2a6ab4ce63c70870943bee461fade53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2668856157
PQPubID 4573633
PageCount 10
ParticipantIDs proquest_journals_2668856157
crossref_primary_10_4153_S0008439521000448
cambridge_journals_10_4153_S0008439521000448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 20220601
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationTitleAlternate Can. Math. Bull
PublicationYear 2022
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References 1945; 55
1944; 8
1957; 7
1955; 7
1962; 12
2006; 97
1949; 66
1992; 58
1942; 48
1949; 3
1930; 1
2019; 69
S0008439521000448_r1
Kohel (S0008439521000448_r10) 2000
S0008439521000448_r3
S0008439521000448_r2
S0008439521000448_r5
S0008439521000448_r4
S0008439521000448_r7
S0008439521000448_r9
S0008439521000448_r8
Vinogradov (S0008439521000448_r19) 1930; 1
Pillai (S0008439521000448_r14) 1944; 8
Lagarias (S0008439521000448_r11) 1977
S0008439521000448_r13
S0008439521000448_r12
S0008439521000448_r18
Fridlender (S0008439521000448_r6) 1949; 66
S0008439521000448_r17
S0008439521000448_r16
S0008439521000448_r15
References_xml – volume: 1
  start-page: 7
  year: 1930
  end-page: 11
  article-title: On the least primitive root of a prime
  publication-title: Dokl. Akad. Nauk, S.S.S.R
– volume: 55
  start-page: 131
  year: 1945
  end-page: 132
  article-title: Least primitive root of a prime
  publication-title: Bull. Amer. Math. Soc.
– volume: 7
  start-page: 861
  issue: 1
  year: 1957
  end-page: 865
  article-title: On the least primitive root of a prime
  publication-title: Pacific J. Math.
– volume: 69
  start-page: 1411
  issue: 3
  year: 2019
  end-page: 1458
  article-title: An explicit upper bound for the least prime ideal in the Chebotarev density theorem
  publication-title: Ann. l’Inst. Fourier
– volume: 58
  start-page: 369
  year: 1992
  end-page: 380
  article-title: Searching for primitive roots in prime fields
  publication-title: Math. Comp.
– volume: 48
  start-page: 726
  year: 1942
  end-page: 730
  article-title: On the least primitive root of a prime
  publication-title: Bull. Amer. Math. Soc.
– volume: 8
  start-page: 14
  year: 1944
  end-page: 17
  article-title: On the smallest primitive root of a prime
  publication-title: J. Indian Math. Soc.
– volume: 3
  start-page: 7
  year: 1949
  end-page: 8
  article-title: Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl
  publication-title: Math. Nachr.
– volume: 12
  start-page: 179
  year: 1962
  end-page: 192
  article-title: On character sums and primitive roots
  publication-title: Proc. Lond. Math. Soc. (3)
– volume: 66
  start-page: 351
  year: 1949
  end-page: 352
  article-title: On the least n-th power non-residue
  publication-title: Proc. USSR Acad. Sci.
– volume: 7
  start-page: 43
  issue: 2
  year: 1955
  end-page: 44
  article-title: A note on the different of the composed field
  publication-title: Kodai Math. Sem. Rep.
– volume: 97
  start-page: 41
  issue: 2
  year: 2006
  end-page: 45
  article-title: Efficient polynomial time algorithms computing industrial-strength primitive roots
  publication-title: Inform. Process. Lett.
– volume-title: Algorithmic number theory
  year: 2000
  ident: S0008439521000448_r10
– ident: S0008439521000448_r2
  doi: 10.1112/plms/s3-12.1.179
– ident: S0008439521000448_r18
  doi: 10.2996/kmj/1138843605
– volume: 1
  start-page: 7
  year: 1930
  ident: S0008439521000448_r19
  article-title: On the least primitive root of a prime
  publication-title: Dokl. Akad. Nauk, S.S.S.R
– ident: S0008439521000448_r12
  doi: 10.1007/978-1-4684-0296-4
– ident: S0008439521000448_r17
– ident: S0008439521000448_r3
  doi: 10.1016/j.ipl.2005.09.014
– ident: S0008439521000448_r13
  doi: 10.1007/BFb0060851
– ident: S0008439521000448_r15
  doi: 10.1002/mana.19490030104
– volume: 8
  start-page: 14
  year: 1944
  ident: S0008439521000448_r14
  article-title: On the smallest primitive root of a prime
  publication-title: J. Indian Math. Soc.
– ident: S0008439521000448_r7
  doi: 10.1007/978-1-4612-3464-7_18
– ident: S0008439521000448_r8
  doi: 10.1090/S0002-9904-1942-07767-6
– ident: S0008439521000448_r4
  doi: 10.1090/S0002-9904-1945-08291-3
– start-page: 409
  volume-title: Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975)
  year: 1977
  ident: S0008439521000448_r11
– ident: S0008439521000448_r1
  doi: 10.5802/aif.3274
– ident: S0008439521000448_r9
  doi: 10.1016/j.jnt.2022.03.012
– ident: S0008439521000448_r16
  doi: 10.1090/S0025-5718-1992-1106981-9
– ident: S0008439521000448_r5
  doi: 10.2140/pjm.1957.7.861
– volume: 66
  start-page: 351
  year: 1949
  ident: S0008439521000448_r6
  article-title: On the least n-th power non-residue
  publication-title: Proc. USSR Acad. Sci.
SSID ssj0017575
Score 2.2326481
Snippet Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a...
Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x -coordinate of a...
Let $E/\mathbb {Q}$ be an elliptic curve. For a prime p of good reduction, let $r(E,p)$ be the smallest non-negative integer that gives the x-coordinate of a...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 496
SubjectTerms Curves
Hypotheses
Lower bounds
Numbers
Title An elliptic curve analogue of Pillai’s lower bound on primitive roots
URI https://www.cambridge.org/core/product/identifier/S0008439521000448/type/journal_article
https://www.proquest.com/docview/2668856157
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA5uu-hB_MTpHDl4EottmjbpSabsA2FjiIPdRpImIEg7186zf8O_5y8xb9ttDmHXpuTwJnme9yN5H4RulFERjX3tGN_YACWMmBMRY8GQxpIGETAwJPSHo3Awoc_TYFol3LLqWuUKEwugjlMFOfJ7SyScW7IP2MP8wwHVKKiuVhIaNdSwEMx5HTUeu6Pxy7qOwAJWahi43LHUG5R1TUtaPrwRdjl8I15R1uR_uytss9Q2SBfM0ztCh5XLiDvlGh-jPZ2coIPhut9qdor6nQRDZ017_hVWy8WnxiIp0zI4NXgM0kJvP1_fGX4HVTQsQUwJpwmeg6oXIB62HnSenaFJr_v6NHAqiQRHkTDKHRVI6sHVFh0QRZiQsc8M5cojRJow0lwREQpJlQ59xVx7OCPqS61p6BkR68A_R_UkTfQFwrELJ1hoKj1DXWH9RiqZDcaknVEQ4TbR3do8s2qjZzMbQ4A1Z_-s2US3KwvO5mXjjF0_t1Y23ky9WfHL3cNXaJ_Ao4QiN9JC9Xyx1NfWVchlG9V4r9-udsUvzPe6iA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUAAF4hTh3AIahIW9Xl8FQhEQAiQRRSLRmd31roSEnBAHEB2_wU_wUXwJM3acECHR0drWFuPxe3N45hGyr4yKeOJqy7gGEhQ_CqyIGQBDnkjuRcjAWNBvtf1Gl1_feXcV8lnOwuBvlSUm5kCd9BTWyI-BSMIQyN4LTvtPFqpGYXe1lNAo3OJGv71CypadXJ3D-z1grH7ROWtYI1UBSzE_GlrKk9zBv0G0xxQLhEzcwPBQOYxJ40c6VEz4QnKlfVcFNvhzxF2pNfcdIxKNKhEA-bPcBSbHyfT65bhrEXhBoZhghxYQvVd0UYEiXZxItkO8xpy8iRr-3OUwzYnTlJDzXH2JLI4CVForPGqZVHS6QhZa4-2u2Sq5rKUU93gC2iiqngcvmoq0KALRnqG3KGT08PX-kdFH1GCjEqWbaC-lfdQQQ3ylEK8PszXS_RfTrZOZtJfqDUITG_FCaC4dw20BUSqXAaR-Ek4UTNhVcjQ2Tzz6rLIYMha0ZvzLmlVyWFow7hdrOv56eLu08eToiX9t_n17j8w1Oq1m3Lxq32yReYbjEHlVZpvMDAfPegeClKHczT2Dkvv_dsVvUmT1mA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSuRAFL1IN8jMQnzMMK2t1kI3YjCpVF4LEV_tu2mGEdxlqipVIEi6Na3izt_wV_wcv8R7O0mrCO7cJqEWN6fuuY-qewBWtNWJyHzjWN9ighImkZNwi85QZEoECTEwFfTPuuHhuTi-CC4m4Lm-C0PHKmufOHLUWV9TjXwDiSSOkewxgbfVsYjeXmdrcO2QghR1Wms5jRIiJ-bhHtO3YvNoD__1Kued_X-7h06lMOBoHiZDRwdKeHQyxARc80iqzI-siLXHubJhYmLNZSiV0Cb0deQithPhK2NE6FmZGVKMQPffjCgrakBzZ7_b-zvuYURBVOonuLGDtB-UPVUkTJ_uJ7sxPePeqKUav5_s8JEhPxLEiPU60zBVhatsu8TXDEyYfBZ-no1nvRZzcLCdM5rqib5HM317c2eYzMuSEOtb1iNZo8uXx6eCXZEiG1Mk5MT6ORuQohh5W4bR-7D4BeffYrzf0Mj7ufkDLHPJe0gjlGeFKzFmFSrCRFDhipJLtwXrY_Ok1SYrUsxfyJrpJ2u2YK22YDooh3Z89XG7tvHb0m9om__69TJMIgzT06PuyQL84HQ3YlSiaUNjeHNrFjFiGaqlChoM_n83Gl8B5XH7Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+elliptic+curve+analogue+of+Pillai%E2%80%99s+lower+bound+on+primitive+roots&rft.jtitle=Canadian+mathematical+bulletin&rft.au=Jin%2C+Steven&rft.au=Washington%2C+Lawrence+C.&rft.date=2022-06-01&rft.pub=Canadian+Mathematical+Society&rft.issn=0008-4395&rft.eissn=1496-4287&rft.volume=65&rft.issue=2&rft.spage=496&rft.epage=505&rft_id=info:doi/10.4153%2FS0008439521000448&rft.externalDocID=10_4153_S0008439521000448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon