Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique

The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and genera...

Full description

Saved in:
Bibliographic Details
Published inAIMS energy Vol. 10; no. 4; pp. 943 - 971
Main Authors Kaur, Sunimerjit, Brar, Yadwinder Singh, Dhillon, Jaspreet Singh
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ \alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ \alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ \alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM.
AbstractList The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated α-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the α-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with α-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM.
The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ \alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ \alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ \alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM.
Author Dhillon, Jaspreet Singh
Kaur, Sunimerjit
Brar, Yadwinder Singh
Author_xml – sequence: 1
  givenname: Sunimerjit
  surname: Kaur
  fullname: Kaur, Sunimerjit
  organization: Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
– sequence: 2
  givenname: Yadwinder Singh
  surname: Brar
  fullname: Brar, Yadwinder Singh
  organization: vElectrical Engineering Department, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
– sequence: 3
  givenname: Jaspreet Singh
  surname: Dhillon
  fullname: Dhillon, Jaspreet Singh
  organization: Electrical and Instrumentation Engineering Department, Sant Longowal Institute of Engineering and Technology, Sangrur 148106, Punjab, India
BookMark eNpNkEtLAzEUhYMoWGu3rvMHUjNJJplZSvFRqLjRdcgkd2ZS5lGTjKX_3mqLuLqHe-Dj8N2gy2EcAKG7jC55ycU9DBCaw5JRxqjgF2jGOOek4Fxc_svXaBHjllKasVyVopih9nXqkidjtQWb_BfgAKYjyfeA_ZCgCSaBw3HsTCB7PziSWgi96fBu3EPAzsedSbbF1QFP0Q8N7iEZ0sIUfEze4gS2HfznBLfoqjZdhMX5ztHH0-P76oVs3p7Xq4cNsUyWiVheShDSSOVsYSqZFYYxl2eClsdCWikVpUVeGptZWVlWGCtyYWvHLc0VZXyO1ieuG81W74LvTTjo0Xj9-xhDo004LutAV4WAogalKsUEZ1klbAlSUqHqnFHujqzliWXDGGOA-o-XUf2jXZ-067N2_g1r8Xnd
Cites_doi 10.1016/j.asoc.2014.03.029
10.1016/j.energy.2018.09.069
10.1177/0144598719871628
10.1007/s00202-016-0382-5
10.1109/ICSGCE49177.2020.9275653
10.1016/j.ijepes.2012.06.049
10.1016/j.epsr.2016.05.014
10.1016/j.asoc.2020.106172
10.1007/s13369-017-2973-5
10.11591/ijece.v10i5.pp4543-4551
10.14569/IJACSA.2021.0120310
10.1109/TEVC.2005.850256
10.1016/j.enconman.2017.06.071
10.1016/j.energy.2016.02.009
10.1016/j.esr.2018.08.001
10.1016/j.aej.2020.07.026
10.1016/j.egypro.2019.01.409
10.14710/ijred.2021.35558
10.14710/ijred.2021.32245
10.1016/j.epsr.2020.106787
10.1016/j.jesit.2016.01.004
10.1016/j.epsr.2019.106018
10.14419/ijet.v7i3.11203
10.1049/iet-gtd.2017.1983
10.1016/j.ijepes.2005.06.002
10.1016/j.asoc.2018.02.006
10.1109/ICSGCE49177.2020.9275629
10.1016/j.ijepes.2020.106658
10.1016/j.energy.2020.119512
10.1016/j.egypro.2015.11.467
10.1109/ACCESS.2020.3046910
10.1016/j.egypro.2019.01.476
10.1007/978-981-15-1781-5_2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/energy.2022043
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2333-8334
EndPage 971
ExternalDocumentID oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d
10_3934_energy_2022043
GroupedDBID 5VS
AAYXX
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EBS
GROUPED_DOAJ
IAO
IGS
IPNFZ
ITC
KQ8
OK1
RAN
RIG
TUS
ID FETCH-LOGICAL-c269t-c396e46a67dc8ab618a22d5140996e6c66700859ac1c6bc28ac454cfd3c057023
IEDL.DBID DOA
ISSN 2333-8334
IngestDate Tue Oct 22 15:09:40 EDT 2024
Thu Sep 26 15:57:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-c396e46a67dc8ab618a22d5140996e6c66700859ac1c6bc28ac454cfd3c057023
OpenAccessLink https://doaj.org/article/b84e8fe77b724321b4c9e66047f5203d
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d
crossref_primary_10_3934_energy_2022043
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS energy
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/energy.2022043-40
key-10.3934/energy.2022043-21
key-10.3934/energy.2022043-22
key-10.3934/energy.2022043-41
key-10.3934/energy.2022043-20
key-10.3934/energy.2022043-25
key-10.3934/energy.2022043-26
key-10.3934/energy.2022043-23
key-10.3934/energy.2022043-24
key-10.3934/energy.2022043-18
key-10.3934/energy.2022043-19
key-10.3934/energy.2022043-16
key-10.3934/energy.2022043-38
key-10.3934/energy.2022043-17
key-10.3934/energy.2022043-39
key-10.3934/energy.2022043-2
key-10.3934/energy.2022043-1
key-10.3934/energy.2022043-6
key-10.3934/energy.2022043-5
key-10.3934/energy.2022043-4
key-10.3934/energy.2022043-3
key-10.3934/energy.2022043-9
key-10.3934/energy.2022043-8
key-10.3934/energy.2022043-7
key-10.3934/energy.2022043-10
key-10.3934/energy.2022043-32
key-10.3934/energy.2022043-11
key-10.3934/energy.2022043-33
key-10.3934/energy.2022043-30
key-10.3934/energy.2022043-31
key-10.3934/energy.2022043-14
key-10.3934/energy.2022043-36
key-10.3934/energy.2022043-15
key-10.3934/energy.2022043-37
key-10.3934/energy.2022043-12
key-10.3934/energy.2022043-34
key-10.3934/energy.2022043-13
key-10.3934/energy.2022043-35
key-10.3934/energy.2022043-29
key-10.3934/energy.2022043-27
key-10.3934/energy.2022043-28
References_xml – ident: key-10.3934/energy.2022043-5
  doi: 10.1016/j.asoc.2014.03.029
– ident: key-10.3934/energy.2022043-20
  doi: 10.1016/j.energy.2018.09.069
– ident: key-10.3934/energy.2022043-40
  doi: 10.1177/0144598719871628
– ident: key-10.3934/energy.2022043-41
– ident: key-10.3934/energy.2022043-35
  doi: 10.1007/s00202-016-0382-5
– ident: key-10.3934/energy.2022043-32
  doi: 10.1109/ICSGCE49177.2020.9275653
– ident: key-10.3934/energy.2022043-12
– ident: key-10.3934/energy.2022043-7
  doi: 10.1016/j.ijepes.2012.06.049
– ident: key-10.3934/energy.2022043-18
  doi: 10.1016/j.epsr.2016.05.014
– ident: key-10.3934/energy.2022043-25
  doi: 10.1016/j.asoc.2020.106172
– ident: key-10.3934/energy.2022043-39
– ident: key-10.3934/energy.2022043-23
  doi: 10.1007/s13369-017-2973-5
– ident: key-10.3934/energy.2022043-16
  doi: 10.11591/ijece.v10i5.pp4543-4551
– ident: key-10.3934/energy.2022043-17
  doi: 10.14569/IJACSA.2021.0120310
– ident: key-10.3934/energy.2022043-28
  doi: 10.1109/TEVC.2005.850256
– ident: key-10.3934/energy.2022043-37
– ident: key-10.3934/energy.2022043-22
  doi: 10.1016/j.enconman.2017.06.071
– ident: key-10.3934/energy.2022043-19
  doi: 10.1016/j.energy.2016.02.009
– ident: key-10.3934/energy.2022043-1
– ident: key-10.3934/energy.2022043-9
  doi: 10.1016/j.esr.2018.08.001
– ident: key-10.3934/energy.2022043-8
  doi: 10.1016/j.aej.2020.07.026
– ident: key-10.3934/energy.2022043-24
  doi: 10.1016/j.egypro.2019.01.409
– ident: key-10.3934/energy.2022043-34
  doi: 10.14710/ijred.2021.35558
– ident: key-10.3934/energy.2022043-33
  doi: 10.14710/ijred.2021.32245
– ident: key-10.3934/energy.2022043-4
  doi: 10.1016/j.epsr.2020.106787
– ident: key-10.3934/energy.2022043-27
  doi: 10.1016/j.jesit.2016.01.004
– ident: key-10.3934/energy.2022043-10
  doi: 10.1016/j.epsr.2019.106018
– ident: key-10.3934/energy.2022043-14
  doi: 10.14419/ijet.v7i3.11203
– ident: key-10.3934/energy.2022043-13
– ident: key-10.3934/energy.2022043-21
  doi: 10.1049/iet-gtd.2017.1983
– ident: key-10.3934/energy.2022043-29
  doi: 10.1016/j.ijepes.2005.06.002
– ident: key-10.3934/energy.2022043-30
– ident: key-10.3934/energy.2022043-6
  doi: 10.1016/j.asoc.2018.02.006
– ident: key-10.3934/energy.2022043-31
  doi: 10.1109/ICSGCE49177.2020.9275629
– ident: key-10.3934/energy.2022043-3
  doi: 10.1016/j.ijepes.2020.106658
– ident: key-10.3934/energy.2022043-11
  doi: 10.1016/j.energy.2020.119512
– ident: key-10.3934/energy.2022043-38
– ident: key-10.3934/energy.2022043-36
  doi: 10.1016/j.egypro.2015.11.467
– ident: key-10.3934/energy.2022043-2
  doi: 10.1109/ACCESS.2020.3046910
– ident: key-10.3934/energy.2022043-26
  doi: 10.1016/j.egypro.2019.01.476
– ident: key-10.3934/energy.2022043-15
  doi: 10.1007/978-981-15-1781-5_2
SSID ssj0001257948
Score 2.223422
Snippet The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 943
SubjectTerms fuzzy cardinal priority ranking
multi-simplexes
mutations
normal distribution
weibull distribution density factor
α-constrained simplex method
α-level comparisons
Title Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique
URI https://doaj.org/article/b84e8fe77b724321b4c9e66047f5203d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHARPobt5bfaoYimCniz0tuS1VrEPdIv4753ZrKWevHhNQgjfhJn5QuYbQi6lDXnwpmZC-QgERWjmILIybOugytxbkWGB88OjHo7k_ViN11p94Z-wJA-cgOs7I6OpY1G4gkvBcyd9GbXOZFErnonQet9crZGp9Lqi4KKZpNIoSiH7sS2lA0LIsRr0VxRaE-tvo8pgl-x06SC9TsfYIxtxtk-210QCD8ikrZFlc_eafBOFNO-NYU94utJ6CPQDKSr7BIbNMKWbwqYLbIBGwwv4DDANdV8UP7k_02lsLJvEZdJopisV10MyGtw93Q5Z1x-Bea7LhnlR6ii11QWgbZ3OjeU8KJSwggntNZbgGFVan3vtPDfWSyV9HYSHLA2C9RHZnM1n8ZhQaRxQBVFbHaIEBgMW9FkdszrT0XNR9sjVD17VIslgVEAfENkqIVt1yPbIDcK5WoXy1e0AGLXqjFr9ZdST_9jklGzhmdJ7yRnZbN6X8RwyiMZdtJflG2HMxZ0
link.rule.ids 315,786,790,870,2115,27955,27956
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+real-time+integrated+solar-wind-thermal+power+dispatch+by+using+meta-heuristic+technique&rft.jtitle=AIMS+energy&rft.au=Sunimerjit+Kaur&rft.au=Yadwinder+Singh+Brar&rft.au=Jaspreet+Singh+Dhillon&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2333-8334&rft.volume=10&rft.issue=4&rft.spage=943&rft.epage=971&rft_id=info:doi/10.3934%2Fenergy.2022043&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-8334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-8334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-8334&client=summon