Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique
The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and genera...
Saved in:
Published in | AIMS energy Vol. 10; no. 4; pp. 943 - 971 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ \alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ \alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ \alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM. |
---|---|
AbstractList | The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated α-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the α-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with α-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM. The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ \alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ \alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ \alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM. |
Author | Dhillon, Jaspreet Singh Kaur, Sunimerjit Brar, Yadwinder Singh |
Author_xml | – sequence: 1 givenname: Sunimerjit surname: Kaur fullname: Kaur, Sunimerjit organization: Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India – sequence: 2 givenname: Yadwinder Singh surname: Brar fullname: Brar, Yadwinder Singh organization: vElectrical Engineering Department, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India – sequence: 3 givenname: Jaspreet Singh surname: Dhillon fullname: Dhillon, Jaspreet Singh organization: Electrical and Instrumentation Engineering Department, Sant Longowal Institute of Engineering and Technology, Sangrur 148106, Punjab, India |
BookMark | eNpNkEtLAzEUhYMoWGu3rvMHUjNJJplZSvFRqLjRdcgkd2ZS5lGTjKX_3mqLuLqHe-Dj8N2gy2EcAKG7jC55ycU9DBCaw5JRxqjgF2jGOOek4Fxc_svXaBHjllKasVyVopih9nXqkidjtQWb_BfgAKYjyfeA_ZCgCSaBw3HsTCB7PziSWgi96fBu3EPAzsedSbbF1QFP0Q8N7iEZ0sIUfEze4gS2HfznBLfoqjZdhMX5ztHH0-P76oVs3p7Xq4cNsUyWiVheShDSSOVsYSqZFYYxl2eClsdCWikVpUVeGptZWVlWGCtyYWvHLc0VZXyO1ieuG81W74LvTTjo0Xj9-xhDo004LutAV4WAogalKsUEZ1klbAlSUqHqnFHujqzliWXDGGOA-o-XUf2jXZ-067N2_g1r8Xnd |
Cites_doi | 10.1016/j.asoc.2014.03.029 10.1016/j.energy.2018.09.069 10.1177/0144598719871628 10.1007/s00202-016-0382-5 10.1109/ICSGCE49177.2020.9275653 10.1016/j.ijepes.2012.06.049 10.1016/j.epsr.2016.05.014 10.1016/j.asoc.2020.106172 10.1007/s13369-017-2973-5 10.11591/ijece.v10i5.pp4543-4551 10.14569/IJACSA.2021.0120310 10.1109/TEVC.2005.850256 10.1016/j.enconman.2017.06.071 10.1016/j.energy.2016.02.009 10.1016/j.esr.2018.08.001 10.1016/j.aej.2020.07.026 10.1016/j.egypro.2019.01.409 10.14710/ijred.2021.35558 10.14710/ijred.2021.32245 10.1016/j.epsr.2020.106787 10.1016/j.jesit.2016.01.004 10.1016/j.epsr.2019.106018 10.14419/ijet.v7i3.11203 10.1049/iet-gtd.2017.1983 10.1016/j.ijepes.2005.06.002 10.1016/j.asoc.2018.02.006 10.1109/ICSGCE49177.2020.9275629 10.1016/j.ijepes.2020.106658 10.1016/j.energy.2020.119512 10.1016/j.egypro.2015.11.467 10.1109/ACCESS.2020.3046910 10.1016/j.egypro.2019.01.476 10.1007/978-981-15-1781-5_2 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/energy.2022043 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2333-8334 |
EndPage | 971 |
ExternalDocumentID | oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d 10_3934_energy_2022043 |
GroupedDBID | 5VS AAYXX ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS GROUPED_DOAJ IAO IGS IPNFZ ITC KQ8 OK1 RAN RIG TUS |
ID | FETCH-LOGICAL-c269t-c396e46a67dc8ab618a22d5140996e6c66700859ac1c6bc28ac454cfd3c057023 |
IEDL.DBID | DOA |
ISSN | 2333-8334 |
IngestDate | Tue Oct 22 15:09:40 EDT 2024 Thu Sep 26 15:57:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-c396e46a67dc8ab618a22d5140996e6c66700859ac1c6bc28ac454cfd3c057023 |
OpenAccessLink | https://doaj.org/article/b84e8fe77b724321b4c9e66047f5203d |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d crossref_primary_10_3934_energy_2022043 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS energy |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/energy.2022043-40 key-10.3934/energy.2022043-21 key-10.3934/energy.2022043-22 key-10.3934/energy.2022043-41 key-10.3934/energy.2022043-20 key-10.3934/energy.2022043-25 key-10.3934/energy.2022043-26 key-10.3934/energy.2022043-23 key-10.3934/energy.2022043-24 key-10.3934/energy.2022043-18 key-10.3934/energy.2022043-19 key-10.3934/energy.2022043-16 key-10.3934/energy.2022043-38 key-10.3934/energy.2022043-17 key-10.3934/energy.2022043-39 key-10.3934/energy.2022043-2 key-10.3934/energy.2022043-1 key-10.3934/energy.2022043-6 key-10.3934/energy.2022043-5 key-10.3934/energy.2022043-4 key-10.3934/energy.2022043-3 key-10.3934/energy.2022043-9 key-10.3934/energy.2022043-8 key-10.3934/energy.2022043-7 key-10.3934/energy.2022043-10 key-10.3934/energy.2022043-32 key-10.3934/energy.2022043-11 key-10.3934/energy.2022043-33 key-10.3934/energy.2022043-30 key-10.3934/energy.2022043-31 key-10.3934/energy.2022043-14 key-10.3934/energy.2022043-36 key-10.3934/energy.2022043-15 key-10.3934/energy.2022043-37 key-10.3934/energy.2022043-12 key-10.3934/energy.2022043-34 key-10.3934/energy.2022043-13 key-10.3934/energy.2022043-35 key-10.3934/energy.2022043-29 key-10.3934/energy.2022043-27 key-10.3934/energy.2022043-28 |
References_xml | – ident: key-10.3934/energy.2022043-5 doi: 10.1016/j.asoc.2014.03.029 – ident: key-10.3934/energy.2022043-20 doi: 10.1016/j.energy.2018.09.069 – ident: key-10.3934/energy.2022043-40 doi: 10.1177/0144598719871628 – ident: key-10.3934/energy.2022043-41 – ident: key-10.3934/energy.2022043-35 doi: 10.1007/s00202-016-0382-5 – ident: key-10.3934/energy.2022043-32 doi: 10.1109/ICSGCE49177.2020.9275653 – ident: key-10.3934/energy.2022043-12 – ident: key-10.3934/energy.2022043-7 doi: 10.1016/j.ijepes.2012.06.049 – ident: key-10.3934/energy.2022043-18 doi: 10.1016/j.epsr.2016.05.014 – ident: key-10.3934/energy.2022043-25 doi: 10.1016/j.asoc.2020.106172 – ident: key-10.3934/energy.2022043-39 – ident: key-10.3934/energy.2022043-23 doi: 10.1007/s13369-017-2973-5 – ident: key-10.3934/energy.2022043-16 doi: 10.11591/ijece.v10i5.pp4543-4551 – ident: key-10.3934/energy.2022043-17 doi: 10.14569/IJACSA.2021.0120310 – ident: key-10.3934/energy.2022043-28 doi: 10.1109/TEVC.2005.850256 – ident: key-10.3934/energy.2022043-37 – ident: key-10.3934/energy.2022043-22 doi: 10.1016/j.enconman.2017.06.071 – ident: key-10.3934/energy.2022043-19 doi: 10.1016/j.energy.2016.02.009 – ident: key-10.3934/energy.2022043-1 – ident: key-10.3934/energy.2022043-9 doi: 10.1016/j.esr.2018.08.001 – ident: key-10.3934/energy.2022043-8 doi: 10.1016/j.aej.2020.07.026 – ident: key-10.3934/energy.2022043-24 doi: 10.1016/j.egypro.2019.01.409 – ident: key-10.3934/energy.2022043-34 doi: 10.14710/ijred.2021.35558 – ident: key-10.3934/energy.2022043-33 doi: 10.14710/ijred.2021.32245 – ident: key-10.3934/energy.2022043-4 doi: 10.1016/j.epsr.2020.106787 – ident: key-10.3934/energy.2022043-27 doi: 10.1016/j.jesit.2016.01.004 – ident: key-10.3934/energy.2022043-10 doi: 10.1016/j.epsr.2019.106018 – ident: key-10.3934/energy.2022043-14 doi: 10.14419/ijet.v7i3.11203 – ident: key-10.3934/energy.2022043-13 – ident: key-10.3934/energy.2022043-21 doi: 10.1049/iet-gtd.2017.1983 – ident: key-10.3934/energy.2022043-29 doi: 10.1016/j.ijepes.2005.06.002 – ident: key-10.3934/energy.2022043-30 – ident: key-10.3934/energy.2022043-6 doi: 10.1016/j.asoc.2018.02.006 – ident: key-10.3934/energy.2022043-31 doi: 10.1109/ICSGCE49177.2020.9275629 – ident: key-10.3934/energy.2022043-3 doi: 10.1016/j.ijepes.2020.106658 – ident: key-10.3934/energy.2022043-11 doi: 10.1016/j.energy.2020.119512 – ident: key-10.3934/energy.2022043-38 – ident: key-10.3934/energy.2022043-36 doi: 10.1016/j.egypro.2015.11.467 – ident: key-10.3934/energy.2022043-2 doi: 10.1109/ACCESS.2020.3046910 – ident: key-10.3934/energy.2022043-26 doi: 10.1016/j.egypro.2019.01.476 – ident: key-10.3934/energy.2022043-15 doi: 10.1007/978-981-15-1781-5_2 |
SSID | ssj0001257948 |
Score | 2.223422 |
Snippet | The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 943 |
SubjectTerms | fuzzy cardinal priority ranking multi-simplexes mutations normal distribution weibull distribution density factor α-constrained simplex method α-level comparisons |
Title | Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique |
URI | https://doaj.org/article/b84e8fe77b724321b4c9e66047f5203d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHARPobt5bfaoYimCniz0tuS1VrEPdIv4753ZrKWevHhNQgjfhJn5QuYbQi6lDXnwpmZC-QgERWjmILIybOugytxbkWGB88OjHo7k_ViN11p94Z-wJA-cgOs7I6OpY1G4gkvBcyd9GbXOZFErnonQet9crZGp9Lqi4KKZpNIoSiH7sS2lA0LIsRr0VxRaE-tvo8pgl-x06SC9TsfYIxtxtk-210QCD8ikrZFlc_eafBOFNO-NYU94utJ6CPQDKSr7BIbNMKWbwqYLbIBGwwv4DDANdV8UP7k_02lsLJvEZdJopisV10MyGtw93Q5Z1x-Bea7LhnlR6ii11QWgbZ3OjeU8KJSwggntNZbgGFVan3vtPDfWSyV9HYSHLA2C9RHZnM1n8ZhQaRxQBVFbHaIEBgMW9FkdszrT0XNR9sjVD17VIslgVEAfENkqIVt1yPbIDcK5WoXy1e0AGLXqjFr9ZdST_9jklGzhmdJ7yRnZbN6X8RwyiMZdtJflG2HMxZ0 |
link.rule.ids | 315,786,790,870,2115,27955,27956 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+real-time+integrated+solar-wind-thermal+power+dispatch+by+using+meta-heuristic+technique&rft.jtitle=AIMS+energy&rft.au=Sunimerjit+Kaur&rft.au=Yadwinder+Singh+Brar&rft.au=Jaspreet+Singh+Dhillon&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2333-8334&rft.volume=10&rft.issue=4&rft.spage=943&rft.epage=971&rft_id=info:doi/10.3934%2Fenergy.2022043&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b84e8fe77b724321b4c9e66047f5203d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-8334&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-8334&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-8334&client=summon |