Modeling and experimental investigation of the effect of sample tilt on the machining performance in AFM-based nanofabrication
Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of theoretical analysis and experimental investigation, the impact of sample tilt on the performance of AFM-based nanoscale machining is systematica...
Saved in:
Published in | Precision engineering Vol. 96; pp. 497 - 506 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of theoretical analysis and experimental investigation, the impact of sample tilt on the performance of AFM-based nanoscale machining is systematically examined. Three typical scratching directions, along the cantilever axis, perpendicular to the cantilever axis, and away from the cantilever axis, are considered in this study. Theoretical models are developed for each of these directions, and experimental validation is conducted. The results demonstrate that sample tilt has a significant impact on machining outcomes, primarily attributed to variations in the force applied by the AFM tip and the load-bearing area. These factors are influenced by both the tilt angle and the scratching direction. Experimental tests reveal that the developed models can precisely predict the impact of sample tilt on machining outcomes. Furthermore, this study investigates the relationship between machining depth and load for the three scratching directions under tilted sample conditions. Finally, we explored the impact of the friction coefficient and probe geometry on the machining results. This research provides robust theoretical support for comprehending the influence of sample tilt on AFM-based nanoscale machining and offers significant insights into optimizing the machining process.
[Display omitted]
•Theoretical models for machining of tilted samples in different scratching directions were developed.•The accuracy of the theoretical models was validated through experimental tests.•The underlying reasons for the impact of sample tilt on machining outcomes were revealed. |
---|---|
AbstractList | Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of theoretical analysis and experimental investigation, the impact of sample tilt on the performance of AFM-based nanoscale machining is systematically examined. Three typical scratching directions, along the cantilever axis, perpendicular to the cantilever axis, and away from the cantilever axis, are considered in this study. Theoretical models are developed for each of these directions, and experimental validation is conducted. The results demonstrate that sample tilt has a significant impact on machining outcomes, primarily attributed to variations in the force applied by the AFM tip and the load-bearing area. These factors are influenced by both the tilt angle and the scratching direction. Experimental tests reveal that the developed models can precisely predict the impact of sample tilt on machining outcomes. Furthermore, this study investigates the relationship between machining depth and load for the three scratching directions under tilted sample conditions. Finally, we explored the impact of the friction coefficient and probe geometry on the machining results. This research provides robust theoretical support for comprehending the influence of sample tilt on AFM-based nanoscale machining and offers significant insights into optimizing the machining process.
[Display omitted]
•Theoretical models for machining of tilted samples in different scratching directions were developed.•The accuracy of the theoretical models was validated through experimental tests.•The underlying reasons for the impact of sample tilt on machining outcomes were revealed. |
Author | Yan, Yongda Chang, Shunyu Yan, Donglei Wu, Bin Li, Zhan Kang, Ziwen Geng, Yanquan Wang, Kuangbing |
Author_xml | – sequence: 1 givenname: Kuangbing orcidid: 0009-0005-3291-6042 surname: Wang fullname: Wang, Kuangbing organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 2 givenname: Zhan surname: Li fullname: Li, Zhan organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 3 givenname: Bin surname: Wu fullname: Wu, Bin organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 4 givenname: Donglei orcidid: 0009-0007-4967-999X surname: Yan fullname: Yan, Donglei organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 5 givenname: Ziwen surname: Kang fullname: Kang, Ziwen organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 6 givenname: Yongda surname: Yan fullname: Yan, Yongda organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 7 givenname: Shunyu surname: Chang fullname: Chang, Shunyu email: changshunyu@163.com organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China – sequence: 8 givenname: Yanquan orcidid: 0000-0003-3499-0551 surname: Geng fullname: Geng, Yanquan email: gengyanquan@hit.edu.cn organization: The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, PR China |
BookMark | eNqNkD9PwzAQxT0UibbwHSz2hHOav2xVoYDUigVmy7HPravEqWyrgoXPjtMyMDKd3p3eT_fejEzsYJGQOwYpA1beH9KjQ2m8iWu7SzPIihSqFFg2IVNgOUvKRdFck5n3BwCoasin5Hs7KOyM3VFhFcXPIzrTow2io8ae0AezEyES6aBp2CNFrVGGUXnRHzukwXRR2vOxF3Jv7AiLGD24XliJkUOX623SCo-KWmEHLVpn5Bl7Q6606Dze_s45-Vg_va9eks3b8-tquUlkVjYhaVEzaAFlBUpKEA1kedsIlpcSULCsrsuK6aJm1aKBRrFCNxKFkjmroZKFXMzJw4Ur3eC9Q82PMadwX5wBH9vjB_63PT62x6Hisb1ofryYMX54Mui4lwZjNGWiJXA1mP9gfgD-HIa_ |
Cites_doi | 10.1016/j.apsusc.2010.06.031 10.1021/acs.nanolett.3c01809 10.1007/s40820-022-00944-z 10.1016/j.vacuum.2024.113823 10.1016/j.jmatprotec.2025.118712 10.1016/j.jmatprotec.2021.117280 10.1016/j.ijmecsci.2025.109934 10.1016/j.precisioneng.2020.03.023 10.1088/2631-7990/add2e0 10.1088/2631-7990/ada218 10.1016/j.triboint.2012.10.013 10.1016/j.precisioneng.2021.06.009 10.1002/smll.201900998 10.1016/j.carbpol.2016.05.042 10.1016/j.apsusc.2018.08.090 10.1021/acsnano.0c05290 10.1016/j.ijmachtools.2015.09.004 10.1016/S0921-5093(03)00268-5 10.1039/D0TA11374C 10.1038/s41467-021-25470-1 10.1016/j.triboint.2020.106419 10.1016/S1003-6326(15)63803-1 10.1016/j.ijmachtools.2021.103701 10.1002/anie.201908291 10.1080/14786430601175516 10.1021/acsami.9b14378 10.1016/j.precisioneng.2017.10.009 10.1016/j.jmapro.2021.08.033 10.1016/j.cej.2024.151880 10.1016/j.nanoen.2020.104645 10.1016/j.precisioneng.2016.05.009 10.1002/adma.202303502 10.1007/s12274-020-3268-9 10.1016/j.jconrel.2022.02.013 10.1021/acsnano.2c12387 10.1021/acsami.9b13899 10.1016/j.jmatprotec.2023.118255 10.1007/s00170-023-10958-5 10.1016/j.ijmachtools.2024.104197 10.1016/j.ijmecsci.2022.108020 10.1016/j.jmatprotec.2022.117563 10.1016/j.ijmecsci.2021.106649 10.1088/2631-7990/ad770d 10.1016/j.polymertesting.2012.06.012 10.1016/j.precisioneng.2024.05.022 10.1016/j.talanta.2025.127670 10.1002/smll.202302365 10.1038/s41596-021-00495-4 10.1016/j.ymssp.2020.106840 10.1016/j.commatsci.2020.110014 10.1186/s10033-025-01177-y |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.precisioneng.2025.07.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 506 |
ExternalDocumentID | 10_1016_j_precisioneng_2025_07_012 S0141635925002211 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSM SST SSZ T5K TN5 UHS WH7 WUQ XPP ZMT ~G- AAYXX AFXIZ AGRNS BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c269t-bef10b0ec70dcc0a9024b9a146c0ea1288671f58173909d15f9ceadc41807c5c3 |
IEDL.DBID | .~1 |
ISSN | 0141-6359 |
IngestDate | Thu Jul 24 01:46:16 EDT 2025 Sat Aug 16 17:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scratching directions Theoretical models Atomic force microscope Sample tilt |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-bef10b0ec70dcc0a9024b9a146c0ea1288671f58173909d15f9ceadc41807c5c3 |
ORCID | 0009-0007-4967-999X 0009-0005-3291-6042 0000-0003-3499-0551 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_precisioneng_2025_07_012 elsevier_sciencedirect_doi_10_1016_j_precisioneng_2025_07_012 |
PublicationCentury | 2000 |
PublicationDate | October 2025 2025-10-00 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationTitle | Precision engineering |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yan, Li, Jia, Wang, Geng (bib45) 2021; 186 Tian, Yin, Li, Qi, Huang, Chen, Luo (bib30) 2020; 12 Zhang, Xing, Zhu, Chen, Zhang, Zhang, Lu (bib27) 2019; 11 Cui, Zhao, Liu, Sun, Xiong, Huang, Chen (bib37) 2024; 490 Lee, Kim, Yang, Cortes, Kang, Han (bib1) 2019; 58 Yan, Geng, Hu (bib21) 2015; 99 Tang, Li, Ju, Chen (bib23) 2024; 88 Bowden, Tabor (bib53) 2001 Wen, Wan, Linghu, Zhang (bib51) 2024; 556–557 Yimam, Liang, Ye, Kooi (bib11) 2024; 36 Guo, Chen, Ma, Chen, Li, Zeng, Lu (bib10) 2023; 34 Cheng, Wang, Li, Li, Hu, Jiang (bib58) 2025; 231 Seo, Kim, Park, Nam (bib4) 2019; 15 Wang, Yan, Jia, Geng (bib32) 2021; 70 Yao, Li, Xiao, Weng, Zhang (bib25) 2020; 14 Wang, Yan, Li, Geng, Luo, Fan (bib36) 2021; 72 Geng, Zhu, Zhang, Zhang, Yan, Cui (bib20) 2025; 38 Li, Liu, Gao, Yang, Zakharov, Hu (bib16) 2025; 286 Li, Wang, Zakharov, Cui, Wu, Zhao (bib17) 2025; 7 Dos Santos Ferreira, Gelinck, de Graaf, Fischer (bib55) 2010; 257 Zhang, Sewell, Zhang, Mi, Lin (bib2) 2020; 71 Li, Wang, Piao, Cui, Zakharov, Duan (bib19) 2024; 201 Wang, Yan, Li, Geng (bib29) 2023; 242 Hussain, Lamiel, Sahoo, Javed, Ahmad, Chen (bib8) 2022; 14 Liu, Guo, Li, Zhang, Chu, Che (bib9) 2021; 9 Zhu, Liu (bib41) 2020; 143 Wang, Dai, Wang, Wang, Chen, Chen (bib13) 2023; 17 Mittal, Maithani, Singh, Gosvami (bib56) 2020; 151 Wang, Zhao, Zhou, Yan, Fang, Geng (bib5) 2025; 287 Chang, Yan, Geng (bib28) 2023; 23 Geng, Jia, Li, Liu, Wang, Yan, Gan (bib24) 2021; 206 Zhan, Nie, Chen, Bell, Gu (bib6) 2019; 30 Xu, Li (bib43) 2007; 87 Wang, Yan, Cui, Liu, Li, Geng (bib33) 2025; 337 Xue, Yan, Liu, Yan, Geng (bib7) 2025; 7 Xiang, Tian, Liu (bib34) 2020; 64 Wang, Yan, Li, Geng (bib35) 2021; 162 Wang, Ge, Wang, Ma, Zhou, Wang (bib38) 2025 Smolyakov, Pruvost, Cardoso, Alonso, Belamie, Duchet-Rumeau (bib49) 2016; 151 Yan, Wang, Geng, Fang, He (bib31) 2018; 459 Huang, Langdon (bib52) 2003; 358 Ao, Gong, Huang (bib40) 2021; 298 Nie, Xiong, Zeng, Li, Chen, Xu, Fan (bib15) 2024; 35 Geng, Brousseau, Zhao, Gensheimer, Bowen (bib22) 2018; 51 Qin, Qian, Zhou, Xia, Tao (bib12) 2021; 12 Chen, Chen, Yang, Zhu, Zhang, Zhang (bib39) 2024; 324 Zhao, Ahn, Hwang, Ko, Jeong, Bok (bib14) 2021; 15 Shi, Zhao, Huang, Wan, Ma, Geng, Ren (bib44) 2013; 60 Liu, Yan, Cui, Geng, Sun, Luo, Zong (bib18) 2024; 6 Geng, Zhang, Wang, Xiao, Li, Yan (bib46) 2023; 125 Ferreiro-Vila, Blanco-Canosa, Lucas del Pozo, Vasili, Magén, Ibarra (bib26) 2019; 29 Geng, Yan, Brousseau, Yu, Qu, Hu, Zhao (bib54) 2016; 46 Cao, Xia, Li, Li, Liu, Tian (bib50) 2023; 19 Norman, Ferreira, Jowett, Bozec, Gentleman (bib48) 2021; 16 Cui, Meng, Liang, Zhang, Wang, Qu (bib42) 2022; 304 Lin, Kim (bib47) 2012; 31 Guezmil, Bensalah, Khalladi, Elleuch, Depetris-Wery, Ayedi (bib57) 2015; 25 Johnson, Sabu, Nivitha, Sankar, Ameena Shirin, Henna (bib3) 2022; 343 Geng (10.1016/j.precisioneng.2025.07.012_bib24) 2021; 206 Guo (10.1016/j.precisioneng.2025.07.012_bib10) 2023; 34 Cao (10.1016/j.precisioneng.2025.07.012_bib50) 2023; 19 Guezmil (10.1016/j.precisioneng.2025.07.012_bib57) 2015; 25 Liu (10.1016/j.precisioneng.2025.07.012_bib18) 2024; 6 Tian (10.1016/j.precisioneng.2025.07.012_bib30) 2020; 12 Geng (10.1016/j.precisioneng.2025.07.012_bib54) 2016; 46 Li (10.1016/j.precisioneng.2025.07.012_bib19) 2024; 201 Ferreiro-Vila (10.1016/j.precisioneng.2025.07.012_bib26) 2019; 29 Dos Santos Ferreira (10.1016/j.precisioneng.2025.07.012_bib55) 2010; 257 Zhu (10.1016/j.precisioneng.2025.07.012_bib41) 2020; 143 Qin (10.1016/j.precisioneng.2025.07.012_bib12) 2021; 12 Ao (10.1016/j.precisioneng.2025.07.012_bib40) 2021; 298 Lin (10.1016/j.precisioneng.2025.07.012_bib47) 2012; 31 Bowden (10.1016/j.precisioneng.2025.07.012_bib53) 2001 Cui (10.1016/j.precisioneng.2025.07.012_bib42) 2022; 304 Seo (10.1016/j.precisioneng.2025.07.012_bib4) 2019; 15 Geng (10.1016/j.precisioneng.2025.07.012_bib20) 2025; 38 Xu (10.1016/j.precisioneng.2025.07.012_bib43) 2007; 87 Norman (10.1016/j.precisioneng.2025.07.012_bib48) 2021; 16 Liu (10.1016/j.precisioneng.2025.07.012_bib9) 2021; 9 Zhang (10.1016/j.precisioneng.2025.07.012_bib27) 2019; 11 Cheng (10.1016/j.precisioneng.2025.07.012_bib58) 2025; 231 Li (10.1016/j.precisioneng.2025.07.012_bib16) 2025; 286 Yan (10.1016/j.precisioneng.2025.07.012_bib31) 2018; 459 Zhang (10.1016/j.precisioneng.2025.07.012_bib2) 2020; 71 Wang (10.1016/j.precisioneng.2025.07.012_bib13) 2023; 17 Smolyakov (10.1016/j.precisioneng.2025.07.012_bib49) 2016; 151 Geng (10.1016/j.precisioneng.2025.07.012_bib46) 2023; 125 Yao (10.1016/j.precisioneng.2025.07.012_bib25) 2020; 14 Wang (10.1016/j.precisioneng.2025.07.012_bib5) 2025; 287 Chang (10.1016/j.precisioneng.2025.07.012_bib28) 2023; 23 Li (10.1016/j.precisioneng.2025.07.012_bib17) 2025; 7 Wang (10.1016/j.precisioneng.2025.07.012_bib32) 2021; 70 Wang (10.1016/j.precisioneng.2025.07.012_bib33) 2025; 337 Xiang (10.1016/j.precisioneng.2025.07.012_bib34) 2020; 64 Wen (10.1016/j.precisioneng.2025.07.012_bib51) 2024; 556–557 Johnson (10.1016/j.precisioneng.2025.07.012_bib3) 2022; 343 Nie (10.1016/j.precisioneng.2025.07.012_bib15) 2024; 35 Mittal (10.1016/j.precisioneng.2025.07.012_bib56) 2020; 151 Geng (10.1016/j.precisioneng.2025.07.012_bib22) 2018; 51 Cui (10.1016/j.precisioneng.2025.07.012_bib37) 2024; 490 Wang (10.1016/j.precisioneng.2025.07.012_bib36) 2021; 72 Hussain (10.1016/j.precisioneng.2025.07.012_bib8) 2022; 14 Wang (10.1016/j.precisioneng.2025.07.012_bib38) 2025 Wang (10.1016/j.precisioneng.2025.07.012_bib29) 2023; 242 Lee (10.1016/j.precisioneng.2025.07.012_bib1) 2019; 58 Xue (10.1016/j.precisioneng.2025.07.012_bib7) 2025; 7 Zhan (10.1016/j.precisioneng.2025.07.012_bib6) 2019; 30 Yan (10.1016/j.precisioneng.2025.07.012_bib21) 2015; 99 Huang (10.1016/j.precisioneng.2025.07.012_bib52) 2003; 358 Yan (10.1016/j.precisioneng.2025.07.012_bib45) 2021; 186 Yimam (10.1016/j.precisioneng.2025.07.012_bib11) 2024; 36 Tang (10.1016/j.precisioneng.2025.07.012_bib23) 2024; 88 Wang (10.1016/j.precisioneng.2025.07.012_bib35) 2021; 162 Chen (10.1016/j.precisioneng.2025.07.012_bib39) 2024; 324 Zhao (10.1016/j.precisioneng.2025.07.012_bib14) 2021; 15 Shi (10.1016/j.precisioneng.2025.07.012_bib44) 2013; 60 |
References_xml | – volume: 7 year: 2025 ident: bib17 article-title: Damage evolution mechanism and low-damage grinding technology of silicon carbide ceramics publication-title: Int J Extrem Manuf – year: 2001 ident: bib53 article-title: The friction and lubrication of solids – volume: 287 year: 2025 ident: bib5 article-title: Electrochemical sensing of Hg(II) ions based on ultramicrotome-crafted strip ultramicroelectrode publication-title: Talanta – volume: 72 start-page: 480 year: 2021 end-page: 490 ident: bib36 article-title: Processing outcomes of atomic force microscope tip-based nanomilling with different trajectories on single-crystal silicon publication-title: Precis Eng – volume: 14 start-page: 198 year: 2022 end-page: 223 ident: bib8 article-title: Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review publication-title: Nano-Micro Lett – volume: 30 year: 2019 ident: bib6 article-title: Thermal transport in 3D nanostructures publication-title: Adv Funct Mater – volume: 304 year: 2022 ident: bib42 article-title: Sub-regional polishing and machining trajectory selection of complex surface based on K9 optical glass publication-title: J Mater Process Technol – volume: 14 start-page: 2654 year: 2020 end-page: 2658 ident: bib25 article-title: Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent click addition publication-title: Nano Res – volume: 459 start-page: 723 year: 2018 end-page: 731 ident: bib31 article-title: Implementation of AFM tip-based nanoscratching process on single crystal copper: study of material removal state publication-title: Appl Surf Sci – volume: 343 start-page: 724 year: 2022 end-page: 754 ident: bib3 article-title: Bioinspired and biomimetic micro- and nanostructures in biomedicine publication-title: J Contr Release – volume: 162 year: 2021 ident: bib35 article-title: Towards understanding the machining mechanism of the atomic force microscopy tip-based nanomilling process publication-title: Int J Mach Tool Manufact – volume: 556–557 year: 2024 ident: bib51 article-title: A slip-line field model for independently characterizing shearing and ploughing effects in metal cutting processes publication-title: Wear – volume: 12 start-page: 5133 year: 2021 ident: bib12 article-title: 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist publication-title: Nat Commun – volume: 298 year: 2021 ident: bib40 article-title: A smooth tool path generation method for ultraprecision turning discontinuous multi-freeform-surfaces with high machining efficiency publication-title: J Mater Process Technol – volume: 231 year: 2025 ident: bib58 article-title: Wide-temperature-range tribological properties of cu-ni-al films with multiple oxidation states publication-title: Vacuum – volume: 88 start-page: 1040 year: 2024 end-page: 1050 ident: bib23 article-title: AFM tip-based fabrication of silicon nanostructures with reduced subsurface amorphous layers publication-title: Precis Eng – volume: 490 year: 2024 ident: bib37 article-title: Multidimensional nanochannel design and regulation of ultra-thin GOQDs-AGQDs composite membranes publication-title: Chem Eng J – volume: 324 year: 2024 ident: bib39 article-title: Fabrication of the curved fresnel lens array on the spherical surface by 6-axis diamond ruling publication-title: J Mater Process Technol – volume: 38 start-page: 15 year: 2025 end-page: 40 ident: bib20 article-title: Understanding the machining process of hierarchical micro/nanograting structures used for optical variable device publication-title: Chin J Mech Eng – volume: 25 start-page: 1950 year: 2015 end-page: 1960 ident: bib57 article-title: Friction coefficient and microhardness of anodized aluminum alloys under different elaboration conditions publication-title: Trans Nonferrous Metals Soc China – volume: 99 start-page: 1 year: 2015 end-page: 18 ident: bib21 article-title: Recent advances in AFM tip-based nanomechanical machining publication-title: Int J Mach Tool Manufact – volume: 11 start-page: 38347 year: 2019 end-page: 38352 ident: bib27 article-title: Arbitrary gold nanoparticle arrays fabricated through AFM nanoxerography and interfacial seeded growth publication-title: ACS Appl Mater Interfaces – volume: 34 year: 2023 ident: bib10 article-title: Direct photolithography patterning of Quantum dot‐polymer publication-title: Adv Funct Mater – volume: 17 start-page: 4933 year: 2023 end-page: 4941 ident: bib13 article-title: All-water etching-free electron beam lithography for On-Chip nanomaterials publication-title: ACS Nano – volume: 70 start-page: 238 year: 2021 end-page: 247 ident: bib32 article-title: Study on the processing outcomes of the atomic force microscopy tip-based nanoscratching on GaAs publication-title: J Manuf Process – volume: 71 year: 2020 ident: bib2 article-title: Nanostructured photocatalysts for nitrogen fixation publication-title: Nano Energy – volume: 19 year: 2023 ident: bib50 article-title: Defect-mediated growth of crystallographic shear plane publication-title: Small – volume: 16 start-page: 2418 year: 2021 end-page: 2449 ident: bib48 article-title: Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy publication-title: Nat Protoc – volume: 337 year: 2025 ident: bib33 article-title: Towards understanding the mechanisms of material removal and deformation in GaAs during nanomilling publication-title: J Mater Process Technol – volume: 242 year: 2023 ident: bib29 article-title: Material removal mechanism and subsurface characteristics of silicon 3D nanomilling publication-title: Int J Mech Sci – volume: 257 start-page: 48 year: 2010 end-page: 55 ident: bib55 article-title: Adhesion experiments using an AFM—Parameters of influence publication-title: Appl Surf Sci – volume: 51 start-page: 536 year: 2018 end-page: 544 ident: bib22 article-title: AFM tip-based nanomachining with increased cutting speed at the tool-workpiece interface publication-title: Precis Eng – volume: 60 start-page: 64 year: 2013 end-page: 69 ident: bib44 article-title: Effects of probe tilt on nanoscratch results: an investigation by finite element analysis publication-title: Tribol Int – volume: 58 start-page: 15890 year: 2019 end-page: 15894 ident: bib1 article-title: Particle-in-a-Frame nanostructures with interior nanogaps publication-title: Angew Chem Int Ed Engl – volume: 186 year: 2021 ident: bib45 article-title: Molecular dynamics simulation of the combination effect of the tip inclination and scratching direction on nanomachining of single crystal silicon publication-title: Comput Mater Sci – year: 2025 ident: bib38 article-title: Multidimensional nanochannel regulation for high‐performance flexible hydrovoltaic sensing devices publication-title: Adv Funct Mater – volume: 286 year: 2025 ident: bib16 article-title: Atomic-scale understanding of graphene oxide lubrication-assisted grinding of GaN crystals publication-title: Int J Mech Sci – volume: 125 start-page: 3069 year: 2023 end-page: 3079 ident: bib46 article-title: Effect of the inclined angle of micromilling tool on the fabrication of the microfluidic channel publication-title: Int J Adv Des Manuf Technol – volume: 29 year: 2019 ident: bib26 article-title: Crystallographic transformation: room-temperature AFM electric-field-induced topotactic transformation between perovskite and brownmillerite SrFeO with sub-micrometer spatial resolution publication-title: Adv Funct Mater – volume: 206 year: 2021 ident: bib24 article-title: Modeling and experimental study of machining outcomes when conducting nanoscratching using dual-tip probe on single-crystal copper publication-title: Int J Mech Sci – volume: 151 start-page: 373 year: 2016 end-page: 380 ident: bib49 article-title: AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites publication-title: Carbohydr Polym – volume: 358 start-page: 114 year: 2003 end-page: 121 ident: bib52 article-title: Using atomic force microscopy to evaluate the development of mesoscopic shear planes in materials processed by severe plastic deformation publication-title: Mater Sci Eng A – volume: 64 start-page: 269 year: 2020 end-page: 279 ident: bib34 article-title: Dynamic analysis of tapping mode atomic force microscope (AFM) for critical dimension measurement publication-title: Precis Eng – volume: 201 year: 2024 ident: bib19 article-title: Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects publication-title: Int J Mach Tool Manufact – volume: 31 start-page: 926 year: 2012 end-page: 930 ident: bib47 article-title: Measurement of the elastic modulus of polymeric films using an AFM with a steel micro-spherical probe tip publication-title: Polym Test – volume: 7 year: 2025 ident: bib7 article-title: Achieving tip-based down-milling forming of nanograting structures with variable heights through precise control of nano revolving trajectories publication-title: Int J Extrem Manuf – volume: 6 year: 2024 ident: bib18 article-title: Recent advances in design and preparation of micro diamond cutting tools publication-title: Int J Extrem Manuf – volume: 143 year: 2020 ident: bib41 article-title: Recent progress of chatter prediction, detection and suppression in milling publication-title: Mech Syst Signal Process – volume: 9 start-page: 4262 year: 2021 end-page: 4272 ident: bib9 article-title: Photolithography-assisted precise patterning of nanocracks for ultrasensitive strain sensors publication-title: J Mater Chem A – volume: 36 year: 2024 ident: bib11 article-title: 3D nanostructuring of phase-change materials using focused ion beam toward versatile optoelectronics applications publication-title: Adv Mater – volume: 151 year: 2020 ident: bib56 article-title: In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy publication-title: Tribol Int – volume: 35 year: 2024 ident: bib15 article-title: Surface nanopatterning and structural coloration of liquid metal gallium through hypergravity nanoimprinting publication-title: Adv Funct Mater – volume: 46 start-page: 288 year: 2016 end-page: 300 ident: bib54 article-title: Processing outcomes of the AFM probe-based machining approach with different feed directions publication-title: Precis Eng – volume: 15 year: 2019 ident: bib4 article-title: Biocomputing with nanostructures on lipid bilayers publication-title: Small – volume: 12 start-page: 4031 year: 2020 end-page: 4040 ident: bib30 article-title: Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS(2)/Graphene heterojunction publication-title: ACS Appl Mater Interfaces – volume: 87 start-page: 2299 year: 2007 end-page: 2312 ident: bib43 article-title: Effect of sample tilt on nanoindentation behaviour of materials publication-title: Philos Mag – volume: 15 start-page: 503 year: 2021 end-page: 514 ident: bib14 article-title: Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint publication-title: ACS Nano – volume: 23 start-page: 9219 year: 2023 end-page: 9226 ident: bib28 article-title: Local nanostrain engineering of monolayer MoS(2) using atomic force microscopy-based thermomechanical nanoindentation publication-title: Nano Lett – volume: 257 start-page: 48 year: 2010 ident: 10.1016/j.precisioneng.2025.07.012_bib55 article-title: Adhesion experiments using an AFM—Parameters of influence publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2010.06.031 – volume: 23 start-page: 9219 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib28 article-title: Local nanostrain engineering of monolayer MoS(2) using atomic force microscopy-based thermomechanical nanoindentation publication-title: Nano Lett doi: 10.1021/acs.nanolett.3c01809 – volume: 14 start-page: 198 year: 2022 ident: 10.1016/j.precisioneng.2025.07.012_bib8 article-title: Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review publication-title: Nano-Micro Lett doi: 10.1007/s40820-022-00944-z – volume: 231 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib58 article-title: Wide-temperature-range tribological properties of cu-ni-al films with multiple oxidation states publication-title: Vacuum doi: 10.1016/j.vacuum.2024.113823 – volume: 337 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib33 article-title: Towards understanding the mechanisms of material removal and deformation in GaAs during nanomilling publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2025.118712 – year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib38 article-title: Multidimensional nanochannel regulation for high‐performance flexible hydrovoltaic sensing devices publication-title: Adv Funct Mater – volume: 298 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib40 article-title: A smooth tool path generation method for ultraprecision turning discontinuous multi-freeform-surfaces with high machining efficiency publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2021.117280 – volume: 30 year: 2019 ident: 10.1016/j.precisioneng.2025.07.012_bib6 article-title: Thermal transport in 3D nanostructures publication-title: Adv Funct Mater – volume: 286 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib16 article-title: Atomic-scale understanding of graphene oxide lubrication-assisted grinding of GaN crystals publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2025.109934 – volume: 64 start-page: 269 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib34 article-title: Dynamic analysis of tapping mode atomic force microscope (AFM) for critical dimension measurement publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.03.023 – volume: 7 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib7 article-title: Achieving tip-based down-milling forming of nanograting structures with variable heights through precise control of nano revolving trajectories publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/add2e0 – volume: 7 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib17 article-title: Damage evolution mechanism and low-damage grinding technology of silicon carbide ceramics publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/ada218 – volume: 60 start-page: 64 year: 2013 ident: 10.1016/j.precisioneng.2025.07.012_bib44 article-title: Effects of probe tilt on nanoscratch results: an investigation by finite element analysis publication-title: Tribol Int doi: 10.1016/j.triboint.2012.10.013 – volume: 72 start-page: 480 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib36 article-title: Processing outcomes of atomic force microscope tip-based nanomilling with different trajectories on single-crystal silicon publication-title: Precis Eng doi: 10.1016/j.precisioneng.2021.06.009 – volume: 15 year: 2019 ident: 10.1016/j.precisioneng.2025.07.012_bib4 article-title: Biocomputing with nanostructures on lipid bilayers publication-title: Small doi: 10.1002/smll.201900998 – volume: 151 start-page: 373 year: 2016 ident: 10.1016/j.precisioneng.2025.07.012_bib49 article-title: AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.05.042 – volume: 459 start-page: 723 year: 2018 ident: 10.1016/j.precisioneng.2025.07.012_bib31 article-title: Implementation of AFM tip-based nanoscratching process on single crystal copper: study of material removal state publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.08.090 – volume: 15 start-page: 503 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib14 article-title: Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint publication-title: ACS Nano doi: 10.1021/acsnano.0c05290 – volume: 99 start-page: 1 year: 2015 ident: 10.1016/j.precisioneng.2025.07.012_bib21 article-title: Recent advances in AFM tip-based nanomechanical machining publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2015.09.004 – volume: 358 start-page: 114 year: 2003 ident: 10.1016/j.precisioneng.2025.07.012_bib52 article-title: Using atomic force microscopy to evaluate the development of mesoscopic shear planes in materials processed by severe plastic deformation publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00268-5 – volume: 29 year: 2019 ident: 10.1016/j.precisioneng.2025.07.012_bib26 article-title: Crystallographic transformation: room-temperature AFM electric-field-induced topotactic transformation between perovskite and brownmillerite SrFeO with sub-micrometer spatial resolution publication-title: Adv Funct Mater – volume: 9 start-page: 4262 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib9 article-title: Photolithography-assisted precise patterning of nanocracks for ultrasensitive strain sensors publication-title: J Mater Chem A doi: 10.1039/D0TA11374C – volume: 12 start-page: 5133 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib12 article-title: 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist publication-title: Nat Commun doi: 10.1038/s41467-021-25470-1 – volume: 151 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib56 article-title: In situ microscopic study of tribology and growth of ZDDP antiwear tribofilms on an Al–Si alloy publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106419 – volume: 25 start-page: 1950 year: 2015 ident: 10.1016/j.precisioneng.2025.07.012_bib57 article-title: Friction coefficient and microhardness of anodized aluminum alloys under different elaboration conditions publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/S1003-6326(15)63803-1 – volume: 556–557 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib51 article-title: A slip-line field model for independently characterizing shearing and ploughing effects in metal cutting processes publication-title: Wear – volume: 162 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib35 article-title: Towards understanding the machining mechanism of the atomic force microscopy tip-based nanomilling process publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2021.103701 – volume: 58 start-page: 15890 year: 2019 ident: 10.1016/j.precisioneng.2025.07.012_bib1 article-title: Particle-in-a-Frame nanostructures with interior nanogaps publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201908291 – volume: 87 start-page: 2299 year: 2007 ident: 10.1016/j.precisioneng.2025.07.012_bib43 article-title: Effect of sample tilt on nanoindentation behaviour of materials publication-title: Philos Mag doi: 10.1080/14786430601175516 – volume: 12 start-page: 4031 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib30 article-title: Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS(2)/Graphene heterojunction publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b14378 – volume: 51 start-page: 536 year: 2018 ident: 10.1016/j.precisioneng.2025.07.012_bib22 article-title: AFM tip-based nanomachining with increased cutting speed at the tool-workpiece interface publication-title: Precis Eng doi: 10.1016/j.precisioneng.2017.10.009 – volume: 70 start-page: 238 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib32 article-title: Study on the processing outcomes of the atomic force microscopy tip-based nanoscratching on GaAs publication-title: J Manuf Process doi: 10.1016/j.jmapro.2021.08.033 – volume: 490 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib37 article-title: Multidimensional nanochannel design and regulation of ultra-thin GOQDs-AGQDs composite membranes publication-title: Chem Eng J doi: 10.1016/j.cej.2024.151880 – volume: 71 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib2 article-title: Nanostructured photocatalysts for nitrogen fixation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104645 – volume: 46 start-page: 288 year: 2016 ident: 10.1016/j.precisioneng.2025.07.012_bib54 article-title: Processing outcomes of the AFM probe-based machining approach with different feed directions publication-title: Precis Eng doi: 10.1016/j.precisioneng.2016.05.009 – volume: 36 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib11 article-title: 3D nanostructuring of phase-change materials using focused ion beam toward versatile optoelectronics applications publication-title: Adv Mater doi: 10.1002/adma.202303502 – volume: 14 start-page: 2654 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib25 article-title: Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent click addition publication-title: Nano Res doi: 10.1007/s12274-020-3268-9 – volume: 343 start-page: 724 year: 2022 ident: 10.1016/j.precisioneng.2025.07.012_bib3 article-title: Bioinspired and biomimetic micro- and nanostructures in biomedicine publication-title: J Contr Release doi: 10.1016/j.jconrel.2022.02.013 – volume: 17 start-page: 4933 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib13 article-title: All-water etching-free electron beam lithography for On-Chip nanomaterials publication-title: ACS Nano doi: 10.1021/acsnano.2c12387 – volume: 11 start-page: 38347 year: 2019 ident: 10.1016/j.precisioneng.2025.07.012_bib27 article-title: Arbitrary gold nanoparticle arrays fabricated through AFM nanoxerography and interfacial seeded growth publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13899 – volume: 324 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib39 article-title: Fabrication of the curved fresnel lens array on the spherical surface by 6-axis diamond ruling publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2023.118255 – volume: 125 start-page: 3069 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib46 article-title: Effect of the inclined angle of micromilling tool on the fabrication of the microfluidic channel publication-title: Int J Adv Des Manuf Technol doi: 10.1007/s00170-023-10958-5 – volume: 201 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib19 article-title: Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects publication-title: Int J Mach Tool Manufact doi: 10.1016/j.ijmachtools.2024.104197 – volume: 242 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib29 article-title: Material removal mechanism and subsurface characteristics of silicon 3D nanomilling publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.108020 – year: 2001 ident: 10.1016/j.precisioneng.2025.07.012_bib53 – volume: 304 year: 2022 ident: 10.1016/j.precisioneng.2025.07.012_bib42 article-title: Sub-regional polishing and machining trajectory selection of complex surface based on K9 optical glass publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2022.117563 – volume: 206 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib24 article-title: Modeling and experimental study of machining outcomes when conducting nanoscratching using dual-tip probe on single-crystal copper publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106649 – volume: 35 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib15 article-title: Surface nanopatterning and structural coloration of liquid metal gallium through hypergravity nanoimprinting publication-title: Adv Funct Mater – volume: 6 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib18 article-title: Recent advances in design and preparation of micro diamond cutting tools publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/ad770d – volume: 31 start-page: 926 year: 2012 ident: 10.1016/j.precisioneng.2025.07.012_bib47 article-title: Measurement of the elastic modulus of polymeric films using an AFM with a steel micro-spherical probe tip publication-title: Polym Test doi: 10.1016/j.polymertesting.2012.06.012 – volume: 88 start-page: 1040 year: 2024 ident: 10.1016/j.precisioneng.2025.07.012_bib23 article-title: AFM tip-based fabrication of silicon nanostructures with reduced subsurface amorphous layers publication-title: Precis Eng doi: 10.1016/j.precisioneng.2024.05.022 – volume: 287 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib5 article-title: Electrochemical sensing of Hg(II) ions based on ultramicrotome-crafted strip ultramicroelectrode publication-title: Talanta doi: 10.1016/j.talanta.2025.127670 – volume: 34 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib10 article-title: Direct photolithography patterning of Quantum dot‐polymer publication-title: Adv Funct Mater – volume: 19 year: 2023 ident: 10.1016/j.precisioneng.2025.07.012_bib50 article-title: Defect-mediated growth of crystallographic shear plane publication-title: Small doi: 10.1002/smll.202302365 – volume: 16 start-page: 2418 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib48 article-title: Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy publication-title: Nat Protoc doi: 10.1038/s41596-021-00495-4 – volume: 143 year: 2020 ident: 10.1016/j.precisioneng.2025.07.012_bib41 article-title: Recent progress of chatter prediction, detection and suppression in milling publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.106840 – volume: 186 year: 2021 ident: 10.1016/j.precisioneng.2025.07.012_bib45 article-title: Molecular dynamics simulation of the combination effect of the tip inclination and scratching direction on nanomachining of single crystal silicon publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2020.110014 – volume: 38 start-page: 15 year: 2025 ident: 10.1016/j.precisioneng.2025.07.012_bib20 article-title: Understanding the machining process of hierarchical micro/nanograting structures used for optical variable device publication-title: Chin J Mech Eng doi: 10.1186/s10033-025-01177-y |
SSID | ssj0007804 |
Score | 2.4227834 |
Snippet | Atomic force microscope (AFM)-based nanoscale machining has been proven to be an effective method for fabricating nanostructures. Through a combination of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 497 |
SubjectTerms | Atomic force microscope Sample tilt Scratching directions Theoretical models |
Title | Modeling and experimental investigation of the effect of sample tilt on the machining performance in AFM-based nanofabrication |
URI | https://dx.doi.org/10.1016/j.precisioneng.2025.07.012 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQVY38UGQNHUJoSFuSqYFsRjrZxaV1Ququ-e09-UFc6FDoZGRbwnwc953Fd58IuTUgIfUjwSxXwMIUgEWRBRboYYhX5Khya2A2H04X4dNSLDtk3PTCOFllnfurnF5m6_rOoEZzsM6ygZMlYTEhFJI4ElHZ3xuG0kX53XYn83AGO5WM0WPu7cZ4tNR4rTfNQTb5K_4r-qI08vT830mqRTyTI3JYV4x0VH3UMekk-Qk5aPkInpKtO9HM9ZVTnVvaNu2n2c5HY5XTVUqx4KOViMONPrVzB6ZF9o7DvHz4Ucor3WLrXVMBrkNHkxlzpGdprvNVqs2m3u87I4vJw8t4yuqDFRj4Q1Uwk6QeNzwByS0A1wqJ2iiNSRN4opGxnOldKiJPBoor64lUAUYchF7EJQgIzkk3R9AuCMX1gtCCSiNlQmshklILY5VREQQq0T0SNEjG68o_I26EZW9xG__Y4R9zGSP-PXLfgB7_iIYYE_0f5l_-c_4V2XejSrR3TbrF5iu5weKjMP0yuvpkb_T4PJ1_A-ys3sU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhGdoOpU-aPjV0FZFjK7aGDiE0JM1jSiCbkE52SWmdkLprf3tPfjQpdCh0MrKQMB_HfWfx3SdC7g2EkLQjwSyXwIIEgEWRBebrToBP5Kj8aGAy7QzmwdNCLGqkV_XCOFllmfuLnJ5n6_JNq0SztV4uW06WhMWEkEjiSESuv7fh3KlEnTS6w9Fg-p2QncdOoWT0mFtQeY_mMq_1prrLJn3G38W2yL08vfbvPLXDPf0jclgWjbRbfNcxqcXpCTnYsRI8JZ_uUjPXWk51aumubz9dbq00VildJRRrPlroONzoXTuDYJotX3GY5pNvucLSbbbe9hXgPrTbnzDHe5amOl0l2mzKI78zMu8_znoDVt6twKDdkRkzceJxw2MIuQXgWiJXG6kxbwKPNZKW871LROSFvuTSeiKRgEEHgRfxEAT456SeImgXhOJ-fmBBJpE0gbUQhaEWxkojI_BlrJvEr5BU68JCQ1Xashe1i79y-CseKsS_SR4q0NWPgFCY6_-w_vKf6-_I3mA2GavxcDq6IvtuptDwXZN6tvmIb7AWycxtGWtfjVrhdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+experimental+investigation+of+the+effect+of+sample+tilt+on+the+machining+performance+in+AFM-based+nanofabrication&rft.jtitle=Precision+engineering&rft.au=Wang%2C+Kuangbing&rft.au=Li%2C+Zhan&rft.au=Wu%2C+Bin&rft.au=Yan%2C+Donglei&rft.date=2025-10-01&rft.issn=0141-6359&rft.volume=96&rft.spage=497&rft.epage=506&rft_id=info:doi/10.1016%2Fj.precisioneng.2025.07.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_precisioneng_2025_07_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6359&client=summon |