Image super-resolution by dictionary concatenation and sparse representation with approximate L0 norm minimization

[Display omitted] ► Universal dictionary and fixed sparsity are not beneficial to super-resolution. ► We use dictionary concatenation and more precise sparse representation algorithm. ► Universal dictionary is cascaded with specific one learned from given image. ► Approximate L0 norm minimization ov...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 38; no. 5; pp. 1336 - 1345
Main Authors Lu, Jinzheng, Zhang, Qiheng, Xu, Zhiyong, Peng, Zhenming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► Universal dictionary and fixed sparsity are not beneficial to super-resolution. ► We use dictionary concatenation and more precise sparse representation algorithm. ► Universal dictionary is cascaded with specific one learned from given image. ► Approximate L0 norm minimization overcomes disadvantage of fixed sparsity. ► Various reconstruction results show effectiveness of proposed framework. This paper proposes a different image super-resolution (SR) reconstruction scheme, based on the newly advanced results of sparse representation and the recently presented SR methods via this model. Firstly, we online learn a subsidiary dictionary with the degradation estimation of the given low-resolution image, and concatenate it with main one offline learned from many natural images with high quality. This strategy can strengthen the expressive ability of dictionary atoms. Secondly, the conventional matching pursuit algorithms commonly use a fixed sparsity threshold for sparse decomposition of all image patches, which is not optimal and even introduces annoying artifacts. Alternatively, we employ the approximate L0 norm minimization to decompose accurately the patch over its dictionary. Thus the coefficients of representation with variant number of nonzero items can exactly weight atoms for those complicated local structures of image. Experimental results show that the proposed method produces high-resolution images that are competitive or superior in quality to results generated by similar techniques.
AbstractList [Display omitted] ► Universal dictionary and fixed sparsity are not beneficial to super-resolution. ► We use dictionary concatenation and more precise sparse representation algorithm. ► Universal dictionary is cascaded with specific one learned from given image. ► Approximate L0 norm minimization overcomes disadvantage of fixed sparsity. ► Various reconstruction results show effectiveness of proposed framework. This paper proposes a different image super-resolution (SR) reconstruction scheme, based on the newly advanced results of sparse representation and the recently presented SR methods via this model. Firstly, we online learn a subsidiary dictionary with the degradation estimation of the given low-resolution image, and concatenate it with main one offline learned from many natural images with high quality. This strategy can strengthen the expressive ability of dictionary atoms. Secondly, the conventional matching pursuit algorithms commonly use a fixed sparsity threshold for sparse decomposition of all image patches, which is not optimal and even introduces annoying artifacts. Alternatively, we employ the approximate L0 norm minimization to decompose accurately the patch over its dictionary. Thus the coefficients of representation with variant number of nonzero items can exactly weight atoms for those complicated local structures of image. Experimental results show that the proposed method produces high-resolution images that are competitive or superior in quality to results generated by similar techniques.
This paper proposes a different image super-resolution (SR) reconstruction scheme, based on the newly advanced results of sparse representation and the recently presented SR methods via this model. Firstly, we online learn a subsidiary dictionary with the degradation estimation of the given low-resolution image, and concatenate it with main one offline learned from many natural images with high quality. This strategy can strengthen the expressive ability of dictionary atoms. Secondly, the conventional matching pursuit algorithms commonly use a fixed sparsity threshold for sparse decomposition of all image patches, which is not optimal and even introduces annoying artifacts. Alternatively, we employ the approximate L0 norm minimization to decompose accurately the patch over its dictionary. Thus the coefficients of representation with variant number of nonzero items can exactly weight atoms for those complicated local structures of image. Experimental results show that the proposed method produces high-resolution images that are competitive or superior in quality to results generated by similar techniques.
Author Zhang, Qiheng
Lu, Jinzheng
Peng, Zhenming
Xu, Zhiyong
Author_xml – sequence: 1
  givenname: Jinzheng
  surname: Lu
  fullname: Lu, Jinzheng
  email: lujinzheng@163.com
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
– sequence: 2
  givenname: Qiheng
  surname: Zhang
  fullname: Zhang, Qiheng
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
– sequence: 3
  givenname: Zhiyong
  surname: Xu
  fullname: Xu, Zhiyong
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
– sequence: 4
  givenname: Zhenming
  surname: Peng
  fullname: Peng, Zhenming
  organization: School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
BookMark eNqNkE1PwzAMhiM0JLbBfwg3Li1J2qTrEU18TJrEBc5RmrojU5uUpAXGrydbOXBEsmRbfh_LfhdoZp0FhK4pSSmh4nafatf10IIGu0sZoTSNQZg4Q3O6KsqEFJzP0JyQnCdFScQFWoSwJ7EXdDVHftOpHeAw9uATD8G142CcxdUB10YfS-UPWDur1QBWnWbK1jj0ygfAHvoIgR2myacZ3rDqe---TBcBvCXYOt_hzljTme-T6hKdN6oNcPWbl-j14f5l_ZRsnx8367ttopkoh6SivGAg9KqCuqQsaxirFNE6o7qoeZFRXnIumkqpHEDXRZ5VosqhVFCTQimeLdHNtDee8z5CGGRngoa2VRbcGCSlmeAiZ4xEaTlJtXcheGhk7-MD_iApkUef5V7-8VkefY68jD5Hdj2xEH_5MOBl0Aashtp40IOsnfnHlh-i_JJy
CitedBy_id crossref_primary_10_1016_j_compeleceng_2015_12_017
crossref_primary_10_1016_j_image_2020_116056
crossref_primary_10_1109_ACCESS_2018_2841030
Cites_doi 10.1109/TIP.2010.2050625
10.1109/TSP.2008.2007606
10.1016/j.imavis.2005.05.005
10.1109/TIP.2003.819861
10.1016/j.imavis.2006.02.026
10.1109/MSP.2003.1203207
10.1109/38.988747
10.1109/83.748893
10.1109/TIP.2009.2022440
10.1109/TIT.2006.871582
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2011.11.026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 1345
ExternalDocumentID 10_1016_j_compeleceng_2011_11_026
S0045790611002023
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c269t-b1572e6c8bed9123f22ba0cc31c7d573159556fbaa4eecd743b6b4e9aed07aa53
IEDL.DBID AIKHN
ISSN 0045-7906
IngestDate Fri Oct 25 23:22:08 EDT 2024
Thu Sep 26 18:58:03 EDT 2024
Fri Feb 23 02:32:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-b1572e6c8bed9123f22ba0cc31c7d573159556fbaa4eecd743b6b4e9aed07aa53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1136564220
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1136564220
crossref_primary_10_1016_j_compeleceng_2011_11_026
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2011_11_026
PublicationCentury 2000
PublicationDate 20120901
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 20120901
  day: 01
PublicationDecade 2010
PublicationTitle Computers & electrical engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Protter, Elad (b0040) 2009; 18
van Ouwerkerk (b0010) 2006; 24
Chang H, Yeung DY, Xiong Y. Super-resolution through neighbor embedding. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), vol. 1; 2004. p. 275–82.
Chen, Huang, Lee (b0015) 2005; 23
Mallat (b0070) 2009
Park, Park, Kang (b0005) 2003; 20
Elad, Feuer (b0045) 1999; 8
Roman Z, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proceedings of the 7th international conferences on curves and surfaces; 2010.
Yang JC, Wright J, Huang T, Ma Y. Image super-resolution as sparse representation of raw image patches. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), vol. 1; 2008. p. 1–8.
Freeman, Jones, Pasztor (b0025) 2002; 22
Donoho (b0080) 2006; 52
Yang, Wright, Huang, Ma (b0055) 2010; 19
Wang, Bovik, Sheikh (b0085) 2004; 13
Milanfar (b0035) 2010
Bruckstein, Donoho, Elad (b0075) 2009; 51
Mohimani, Massoud, Jutten (b0065) 2009; 57
Baker S, Kanade T. Limits on super-resolution and how to break them. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), vol. 2; 2000. p. 372–9.
van Ouwerkerk (10.1016/j.compeleceng.2011.11.026_b0010) 2006; 24
Donoho (10.1016/j.compeleceng.2011.11.026_b0080) 2006; 52
Chen (10.1016/j.compeleceng.2011.11.026_b0015) 2005; 23
10.1016/j.compeleceng.2011.11.026_b0060
Protter (10.1016/j.compeleceng.2011.11.026_b0040) 2009; 18
Wang (10.1016/j.compeleceng.2011.11.026_b0085) 2004; 13
Mallat (10.1016/j.compeleceng.2011.11.026_b0070) 2009
Park (10.1016/j.compeleceng.2011.11.026_b0005) 2003; 20
Freeman (10.1016/j.compeleceng.2011.11.026_b0025) 2002; 22
Milanfar (10.1016/j.compeleceng.2011.11.026_b0035) 2010
Elad (10.1016/j.compeleceng.2011.11.026_b0045) 1999; 8
Yang (10.1016/j.compeleceng.2011.11.026_b0055) 2010; 19
Mohimani (10.1016/j.compeleceng.2011.11.026_b0065) 2009; 57
10.1016/j.compeleceng.2011.11.026_b0030
10.1016/j.compeleceng.2011.11.026_b0020
Bruckstein (10.1016/j.compeleceng.2011.11.026_b0075) 2009; 51
10.1016/j.compeleceng.2011.11.026_b0050
References_xml – volume: 51
  start-page: 34
  year: 2009
  end-page: 81
  ident: b0075
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Rev Soc Ind Appl Math
  contributor:
    fullname: Elad
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0080
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
  contributor:
    fullname: Donoho
– volume: 24
  start-page: 1039
  year: 2006
  end-page: 1052
  ident: b0010
  article-title: Image super-resolution survey
  publication-title: Image Vis Comput
  contributor:
    fullname: van Ouwerkerk
– volume: 20
  start-page: 21
  year: 2003
  end-page: 36
  ident: b0005
  article-title: Super-resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Process Mag
  contributor:
    fullname: Kang
– year: 2010
  ident: b0035
  article-title: Super-resolution imaging
  contributor:
    fullname: Milanfar
– volume: 18
  start-page: 1899
  year: 2009
  end-page: 1904
  ident: b0040
  article-title: Super resolution with proballistic motion estimation
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Elad
– volume: 8
  start-page: 387
  year: 1999
  end-page: 395
  ident: b0045
  article-title: Superresolution restoration of an image sequence: adaptive filtering approach
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Feuer
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: b0055
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Ma
– volume: 23
  start-page: 791
  year: 2005
  end-page: 798
  ident: b0015
  article-title: A fast edge-oriented algorithm for image interpolation
  publication-title: Image Vis Comput
  contributor:
    fullname: Lee
– year: 2009
  ident: b0070
  article-title: A wavelet tour of signal processing, the sparse way
  contributor:
    fullname: Mallat
– volume: 22
  start-page: 56
  year: 2002
  end-page: 65
  ident: b0025
  article-title: Example-based super-resolution
  publication-title: IEEE Trans Comput Graph Appl
  contributor:
    fullname: Pasztor
– volume: 57
  start-page: 289
  year: 2009
  end-page: 301
  ident: b0065
  article-title: A fast approach for over-complete sparse decomposition based on smoothed
  publication-title: IEEE Trans Signal Process
  contributor:
    fullname: Jutten
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0085
  article-title: Image quality assessment: form error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Sheikh
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 10.1016/j.compeleceng.2011.11.026_b0055
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2050625
  contributor:
    fullname: Yang
– ident: 10.1016/j.compeleceng.2011.11.026_b0030
– volume: 57
  start-page: 289
  issue: 1
  year: 2009
  ident: 10.1016/j.compeleceng.2011.11.026_b0065
  article-title: A fast approach for over-complete sparse decomposition based on smoothed L0 norm
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.2007606
  contributor:
    fullname: Mohimani
– ident: 10.1016/j.compeleceng.2011.11.026_b0050
– year: 2010
  ident: 10.1016/j.compeleceng.2011.11.026_b0035
  contributor:
    fullname: Milanfar
– volume: 23
  start-page: 791
  year: 2005
  ident: 10.1016/j.compeleceng.2011.11.026_b0015
  article-title: A fast edge-oriented algorithm for image interpolation
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2005.05.005
  contributor:
    fullname: Chen
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.compeleceng.2011.11.026_b0085
  article-title: Image quality assessment: form error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
  contributor:
    fullname: Wang
– year: 2009
  ident: 10.1016/j.compeleceng.2011.11.026_b0070
  contributor:
    fullname: Mallat
– volume: 24
  start-page: 1039
  year: 2006
  ident: 10.1016/j.compeleceng.2011.11.026_b0010
  article-title: Image super-resolution survey
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2006.02.026
  contributor:
    fullname: van Ouwerkerk
– volume: 20
  start-page: 21
  issue: 3
  year: 2003
  ident: 10.1016/j.compeleceng.2011.11.026_b0005
  article-title: Super-resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2003.1203207
  contributor:
    fullname: Park
– volume: 22
  start-page: 56
  issue: 2
  year: 2002
  ident: 10.1016/j.compeleceng.2011.11.026_b0025
  article-title: Example-based super-resolution
  publication-title: IEEE Trans Comput Graph Appl
  doi: 10.1109/38.988747
  contributor:
    fullname: Freeman
– volume: 8
  start-page: 387
  issue: 3
  year: 1999
  ident: 10.1016/j.compeleceng.2011.11.026_b0045
  article-title: Superresolution restoration of an image sequence: adaptive filtering approach
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.748893
  contributor:
    fullname: Elad
– ident: 10.1016/j.compeleceng.2011.11.026_b0060
– ident: 10.1016/j.compeleceng.2011.11.026_b0020
– volume: 51
  start-page: 34
  issue: 1
  year: 2009
  ident: 10.1016/j.compeleceng.2011.11.026_b0075
  article-title: From sparse solutions of systems of equations to sparse modeling of signals and images
  publication-title: SIAM Rev Soc Ind Appl Math
  contributor:
    fullname: Bruckstein
– volume: 18
  start-page: 1899
  issue: 8
  year: 2009
  ident: 10.1016/j.compeleceng.2011.11.026_b0040
  article-title: Super resolution with proballistic motion estimation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2022440
  contributor:
    fullname: Protter
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.compeleceng.2011.11.026_b0080
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.871582
  contributor:
    fullname: Donoho
SSID ssj0004618
Score 2.0028257
Snippet [Display omitted] ► Universal dictionary and fixed sparsity are not beneficial to super-resolution. ► We use dictionary concatenation and more precise sparse...
This paper proposes a different image super-resolution (SR) reconstruction scheme, based on the newly advanced results of sparse representation and the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1336
SubjectTerms Decomposition
Dictionaries
Mathematical models
Minimization
Norms
Optimization
Representations
Title Image super-resolution by dictionary concatenation and sparse representation with approximate L0 norm minimization
URI https://dx.doi.org/10.1016/j.compeleceng.2011.11.026
https://search.proquest.com/docview/1136564220
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD-MTnEsFrNU2TZgteFlHW50nBW0jaqaxgXbq7oBd_u5M-cBUPgscWSss0-eabZL4vAEehRB45pwNUkgoUqfKgJ2wSuJ52uc16Uc69Gvn2Lh48yKtH9TgHZ60WxrdVNthfY3qF1s2dkyaaJ6Ph0Gt8pdIJ5SPvIkqpZx4Wqk2iDiz0L68HdzPyyLAGZOndGXm8CIdfbV6-c9ufOIPFU23o6T09vdXC72nqB2BXWehiFVYa-sj69ReuwRwW67A8Yyq4AeXlC2EEG09HWAZUTDdji7l3lg0rFYMt3xmVwb4Xql4LZLbIGEFLOUZWuVy2iqSC-XVaVhmPvw2J3CK74awgnsu8J8lLI-LchIeL8_uzQdCcrBCkIk4mgQuVFhinPYdZQrkrF8JZnqZRmOpM6Yg4jlJx7qyViGlGLMPFTmJiMePaWhVtQad4LXAbGJUkaeY0sUBuZSKVzTnKMBVCC6m1sjsg2kCaUW2gYdrOsmczE33jo08FiaHo78BpG3LzbTQYAvq_PH7Y_iZDs8VvgdgCX6dj40-wUVRyCb77v1fswRJdibrbbB86k3KKB0RPJq4L88cfYbcZhJ8HselD
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gI-D-MS3EbwW0zRptuBFRNnVdU8K3kLSTmUF69LdBf33TvrAVTwIXltKy3T6zTfpfF8AzkKJPHJOB6gkNShS5UFH2CRwHe1ym3WinHs18v0g7j7K2yf1NAdXrRbGj1U22F9jeoXWzZHzJprno-HQa3yl0gnVI-8iSqVnHhaJDSSU7IuXvbvuYEYeGdaALL07I4-X4PRrzMtPbvsdZ7B4rg09vaent1r4vUz9AOyqCt2sw1pDH9ll_YQbMIfFJqzOmApuQdl7JYxg4-kIy4Ca6Sa3mPtg2bBSMdjyg1Eb7Geh6rVAZouMEbSUY2SVy2WrSCqYX6dllfH4-5DILbI-ZwXxXOY9SV4bEec2PN5cP1x1g2ZnhSAVcTIJXKi0wDjtOMwSql25EM7yNI3CVGdKR8RxlIpzZ61ETDNiGS52EhOLGdfWqmgHFoq3AneBUUuSZk4TC-RWJlLZnKMMUyG0kForuweiDaQZ1QYapp0sezEz0Tc--tSQGIr-Hly0ITffssEQ0P_l8tP2NRn6WvwvEFvg23Rs_A42ilouwff_d4sTWO4-3PdNvze4O4AVOiPqybNDWJiUUzwiqjJxx00qfgLEXOtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+super-resolution+by+dictionary+concatenation+and+sparse+representation+with+approximate+L0+norm+minimization&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Lu%2C+Jinzheng&rft.au=Zhang%2C+Qiheng&rft.au=Xu%2C+Zhiyong&rft.au=Peng%2C+Zhenming&rft.date=2012-09-01&rft.issn=0045-7906&rft.volume=38&rft.issue=5&rft.spage=1336&rft.epage=1345&rft_id=info:doi/10.1016%2Fj.compeleceng.2011.11.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon