Optimal design of light microclimate and planting strategy for Chinese solar greenhouses using 3D light environment simulations

Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D mod...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 302; p. 131805
Main Authors Xu, Demin, Henke, Michael, Li, Yiming, Zhang, Yue, Liu, Anhua, Liu, Xingan, Li, Tianlai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG. •The optimal lighting structure of CSG was determined through model analysis.•The average air temperature of the optimized greenhouse was increased by 1.37 °C.•A calculation model for light interception of individual melon leaf was established.•The feasibility of E-W row planting configuration within greenhouse were clarified.
AbstractList Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG.
Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG. •The optimal lighting structure of CSG was determined through model analysis.•The average air temperature of the optimized greenhouse was increased by 1.37 °C.•A calculation model for light interception of individual melon leaf was established.•The feasibility of E-W row planting configuration within greenhouse were clarified.
ArticleNumber 131805
Author Li, Yiming
Zhang, Yue
Liu, Anhua
Henke, Michael
Liu, Xingan
Xu, Demin
Li, Tianlai
Author_xml – sequence: 1
  givenname: Demin
  surname: Xu
  fullname: Xu, Demin
  organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China
– sequence: 2
  givenname: Michael
  orcidid: 0000-0003-0673-3873
  surname: Henke
  fullname: Henke, Michael
  organization: College of Agronomy, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China
– sequence: 3
  givenname: Yiming
  surname: Li
  fullname: Li, Yiming
  organization: National & Local Joint Engineering Research Centre of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China
– sequence: 4
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China
– sequence: 5
  givenname: Anhua
  surname: Liu
  fullname: Liu, Anhua
  organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China
– sequence: 6
  givenname: Xingan
  orcidid: 0000-0003-3360-0806
  surname: Liu
  fullname: Liu, Xingan
  email: lxa10157@syau.edu.cn
  organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China
– sequence: 7
  givenname: Tianlai
  surname: Li
  fullname: Li, Tianlai
  email: ltl@syau.edu.cn
  organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China
BookMark eNqFkDFvFDEQhV0EiSTwDyhc0txhr9e7NgUSOgggRUoDteV4x3s-ee3D44t0FX8dH5uKAqqRZt57mvfdkKuUExDyhrMtZ3x4d9hCgjKftx3r-i0XXDF5Ra6ZGNhG9n33ktwgHhhjUml9TX49HGtYbKQTYJgTzZ7GMO8rXYIr2cV2q0Btmugx2lRDminW0nbzmfpc6G4fEiBQzNEWOheAtM8nBKQnvIjFp-c8SE-h5LRAqhTDcoq2hpzwFXnhbUR4_TxvyY-7z993Xzf3D1--7T7eb1w36LrR4PTEtR-dsx2oqR-YHXUHYlIerJYAIyh4FG7wyuu-GxXvFRNS6kHy8dGLW_J2zT2W_PMEWM0S0EFspaD9awSXQqpRDqJJ36_SBgCxgDcu1D_ftuIhGs7MhbQ5mJW0uZA2K-lm7v8yH0tjWM7_s31YbdAYPAUoBl2A5GAKBVw1Uw7_DvgNaUKh3A
CitedBy_id crossref_primary_10_3390_agronomy15030586
crossref_primary_10_1016_j_solener_2024_113034
Cites_doi 10.1371/journal.pone.0242002
10.1016/j.enbuild.2011.11.010
10.17660/ActaHortic.2012.956.20
10.1111/nph.13416
10.1016/j.applthermaleng.2020.115698
10.1016/j.biosystemseng.2023.01.010
10.1016/j.agrformet.2021.108494
10.1016/j.renene.2020.06.144
10.1016/j.proeng.2017.10.361
10.14715/cmb/2021.67.6.43
10.2480/agrmet.D-20-00030
10.1016/j.solener.2021.10.050
10.1016/j.solener.2022.03.013
10.1093/aob/mcr190
10.1093/jxb/erq025
10.1016/j.renene.2019.06.090
10.3389/fpls.2021.747142
10.21273/HORTSCI15241-20
10.1016/j.biosystemseng.2018.10.008
10.1016/j.energy.2020.117215
10.1093/aob/mcu100
10.1093/aob/mcr006
10.1093/aob/mcq264
10.1016/j.energy.2023.127193
10.1016/j.jclepro.2022.133212
10.1093/jxb/erab077
10.1016/j.solener.2020.05.055
10.1016/j.scienta.2015.02.032
10.1093/aob/mcaa046
10.1016/j.biosystemseng.2020.06.009
10.1016/j.enconman.2015.08.066
10.1093/aobpla/plab055
10.1093/insilicoplants/diab025
10.1016/j.solener.2018.02.022
10.1016/j.apenergy.2018.02.130
10.1016/j.biosystemseng.2021.08.008
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.131805
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_131805
S0360544224015780
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c269t-9ec9d19f7cca2e8d460a792e3d8fea95ee7e8eb3c6f8f94278148035596517bf3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Jul 02 03:06:24 EDT 2025
Tue Jul 01 04:20:28 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Sat Feb 08 15:52:28 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Functional-structural plant model (FSPM)
Light distribution
Energy utilization rate
Greenhouse structure
3D virtual canopy
Planting strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-9ec9d19f7cca2e8d460a792e3d8fea95ee7e8eb3c6f8f94278148035596517bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3360-0806
0000-0003-0673-3873
PQID 3153587563
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153587563
crossref_citationtrail_10_1016_j_energy_2024_131805
crossref_primary_10_1016_j_energy_2024_131805
elsevier_sciencedirect_doi_10_1016_j_energy_2024_131805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gupta, Tiwari, Kumar, Gupta (bib14) 2012; 47
Zheng, Zhang, Zheng, Zhao, Wang, Cheng (bib22) 2020; 55
Zhu, Liu, Xie, Guo, Li, Ma (bib23) 2020; 126
Gao, Yang, Guan, Bai, Zhang, Hu (bib43) 2017; 205
Zheng, Zhang, Zheng, Zhao, Wang, Cheng (bib29) 2020; 55
Mellalou, Riad, Mouaky, Bacaoui, Outzourhit (bib15) 2021; 230
Chen, Li, Li, Wei, Yang, Ling (bib13) 2018; 165
Chen, Henke, De Visser, Buck-Sorlin, Wiechers, Kahlen (bib28) 2014; 114
Zhang, Henke, Li, Xu, Liu, Liu (bib4) 2022; 236
Trentacoste, Connor, Gómez-del-Campo (bib20) 2015; 187
Wen, Wang, Wu, Liu, Gu, Guo (bib36) 2021; 13
Ohashi, Torii, Ishigami, Goto (bib26) 2020; 76
China issues No. 1 central document for 2023, highlights rural vitalization tasks.
Zhang, Henke, Li, Sun, Li, Liu (bib48) 2024; 14
Dong, Gruda, Li, Cai, Zhang, Duan (bib1) 2022; 369
Henke, Buck-Sorlin (bib35) 2017; 36
Buck-Sorlin, de Visser, Henke, Sarlikioti, van der Heijden, Marcelis (bib33) 2011; 108
.
Wang, Sun, Bai, Zhang, Zhang, Wang (bib39) 2021; 8
Liu, Xu, Henke, Zhang, Li, Liu (bib19) 2022; 14
Zhang, Henke, Li, Yue, Xu, Liu (bib31) 2020; 160
Baglivo, Mazzeo, Panico, Bonuso, Matera, Congedo (bib10) 2020; 179
Esmaeli, Roshandel (bib11) 2020; 145
Rojo, Dhillon, Upadhyaya, Jenkins (bib17) 2020; 198
Chen (bib45) 2021; 67
Zhang, Henke, Buck-Sorlin, Li, Xu, Liu (bib46) 2021; 307
Tong, Sun, Sigrimis, Li (bib5) 2018; 176
Chen, Ling, Zhai, Li, Yang, Han (bib9) 2018; 216
Wu, Li, Jiang, Wang, Liu, Li (bib16) 2023; 273
Chen, Ma, Pang (bib8) 2020; 205
de Visser, Buck-Sorlin, van der Heijden, Marcelis (bib34) 2012; 956
Xie, Yu, Chen, Feng, Li, Zhao (bib2) 2017; vol. 145
Liu, Liu, Liu, Yang, Bárcena, Li (bib18) 2021; 210
van der Meer, de Visser, Heuvelink, Marcelis (bib21) 2021; 3
Wu, Yang, Zhang, Fang, Feng, Zheng (bib42) 2020; 197
El-Maghlany, Teamah, Tanaka (bib7) 2015; 105
Li, Henke, Zhang, Wang, Wei (bib49) 2024; 14
Xu, Henke, Zhu, Kurth, Buck-Sorlin (bib30) 2011; 107
Li, Qi, Meng (bib47) 2022; 49
Li, Van Der Werf, Zhu, Guo, Li, Ma (bib37) 2021; 72
Evers, Vos, Yin, Romero, van der Putten, Struik (bib32) 2010; 61
Zhang, Lv, Xie, Yu, Zhang, Tang (bib3) 2020; 13
Xu, Li, Zhang, Xu, Li, Liu (bib12) 2020; 15
Zhu, van der Werf, Anten, Vos, Evers (bib38) 2015; 207
Sarlikioti, De Visser, Marcelis (bib44) 2011; 107
Zhang, Liu, Zhu, Zhang, Ge, Cai (bib40) 2022; 53
Soualiou, Wang, Sun, de Reffye, Collins, Louarn (bib25) 2021; 12
Hwang, Yoon, Kim, Kang, Kim, Son (bib6) 2023; 226
Wen, Guo, Li, Wang, Wang, Yu (bib24) 2019; 276–277
Zhang, Henke, Li, Xu, Liu, Liu (bib27) 2022; 13
Chen (10.1016/j.energy.2024.131805_bib9) 2018; 216
Xu (10.1016/j.energy.2024.131805_bib30) 2011; 107
Zhang (10.1016/j.energy.2024.131805_bib27) 2022; 13
Zhang (10.1016/j.energy.2024.131805_bib31) 2020; 160
Gao (10.1016/j.energy.2024.131805_bib43) 2017; 205
Wen (10.1016/j.energy.2024.131805_bib24) 2019; 276–277
Chen (10.1016/j.energy.2024.131805_bib13) 2018; 165
Esmaeli (10.1016/j.energy.2024.131805_bib11) 2020; 145
de Visser (10.1016/j.energy.2024.131805_bib34) 2012; 956
Wang (10.1016/j.energy.2024.131805_bib39) 2021; 8
Zhu (10.1016/j.energy.2024.131805_bib38) 2015; 207
Wu (10.1016/j.energy.2024.131805_bib42) 2020; 197
Gupta (10.1016/j.energy.2024.131805_bib14) 2012; 47
Tong (10.1016/j.energy.2024.131805_bib5) 2018; 176
Liu (10.1016/j.energy.2024.131805_bib18) 2021; 210
Chen (10.1016/j.energy.2024.131805_bib45) 2021; 67
Mellalou (10.1016/j.energy.2024.131805_bib15) 2021; 230
Zhang (10.1016/j.energy.2024.131805_bib46) 2021; 307
Hwang (10.1016/j.energy.2024.131805_bib6) 2023; 226
El-Maghlany (10.1016/j.energy.2024.131805_bib7) 2015; 105
Wu (10.1016/j.energy.2024.131805_bib16) 2023; 273
Li (10.1016/j.energy.2024.131805_bib49) 2024; 14
Li (10.1016/j.energy.2024.131805_bib47) 2022; 49
Chen (10.1016/j.energy.2024.131805_bib8) 2020; 205
Zhang (10.1016/j.energy.2024.131805_bib3) 2020; 13
van der Meer (10.1016/j.energy.2024.131805_bib21) 2021; 3
Trentacoste (10.1016/j.energy.2024.131805_bib20) 2015; 187
Zhang (10.1016/j.energy.2024.131805_bib40) 2022; 53
Rojo (10.1016/j.energy.2024.131805_bib17) 2020; 198
Zheng (10.1016/j.energy.2024.131805_bib29) 2020; 55
Wen (10.1016/j.energy.2024.131805_bib36) 2021; 13
Zheng (10.1016/j.energy.2024.131805_bib22) 2020; 55
Ohashi (10.1016/j.energy.2024.131805_bib26) 2020; 76
Evers (10.1016/j.energy.2024.131805_bib32) 2010; 61
Henke (10.1016/j.energy.2024.131805_bib35) 2017; 36
Sarlikioti (10.1016/j.energy.2024.131805_bib44) 2011; 107
Xu (10.1016/j.energy.2024.131805_bib12) 2020; 15
Zhang (10.1016/j.energy.2024.131805_bib4) 2022; 236
Liu (10.1016/j.energy.2024.131805_bib19) 2022; 14
Buck-Sorlin (10.1016/j.energy.2024.131805_bib33) 2011; 108
Soualiou (10.1016/j.energy.2024.131805_bib25) 2021; 12
Li (10.1016/j.energy.2024.131805_bib37) 2021; 72
Xie (10.1016/j.energy.2024.131805_bib2) 2017; vol. 145
10.1016/j.energy.2024.131805_bib41
Zhu (10.1016/j.energy.2024.131805_bib23) 2020; 126
Chen (10.1016/j.energy.2024.131805_bib28) 2014; 114
Zhang (10.1016/j.energy.2024.131805_bib48) 2024; 14
Dong (10.1016/j.energy.2024.131805_bib1) 2022; 369
Baglivo (10.1016/j.energy.2024.131805_bib10) 2020; 179
References_xml – volume: 13
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib36
  article-title: 3D phytomer-based geometric modelling method for plants—the case of maize
  publication-title: AoB Plants
– volume: 47
  start-page: 27
  year: 2012
  end-page: 34
  ident: bib14
  article-title: Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD
  publication-title: Energy Build
– volume: 15
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib12
  article-title: Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse
  publication-title: PLoS One
– volume: 107
  start-page: 875
  year: 2011
  end-page: 883
  ident: bib44
  article-title: Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functionalstructural plant model
  publication-title: Ann Bot
– volume: 61
  start-page: 2203
  year: 2010
  end-page: 2216
  ident: bib32
  article-title: Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation
  publication-title: J Exp Bot
– volume: vol. 145
  start-page: 1
  year: 2017
  end-page: 42
  ident: bib2
  article-title: Facility cultivation systems “facility agriculture”: a Chinese model for the planet
  publication-title: Advances in Agronomy
– volume: 107
  start-page: 817
  year: 2011
  end-page: 828
  ident: bib30
  article-title: A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes
  publication-title: Ann Bot
– volume: 14
  year: 2024
  ident: bib48
  article-title: Estimating the light interception and photosynthesis of greenhouse-cultivated tomato crops under different canopy configurations
  publication-title: Agronomy
– volume: 216
  start-page: 602
  year: 2018
  end-page: 612
  ident: bib9
  article-title: Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses
  publication-title: Appl Energy
– volume: 67
  start-page: 330
  year: 2021
  end-page: 338
  ident: bib45
  article-title: Study of non-pollution cultivation techniques of organic ecotype of melon crops considering population characteristics
  publication-title: Cell Mol Biol
– volume: 72
  start-page: 3630
  year: 2021
  end-page: 3646
  ident: bib37
  article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping
  publication-title: J Exp Bot
– volume: 176
  start-page: 88
  year: 2018
  end-page: 102
  ident: bib5
  article-title: Energy sustainability performance of a sliding cover solar greenhouse: solar energy capture aspects
  publication-title: Biosyst Eng
– volume: 230
  start-page: 321
  year: 2021
  end-page: 332
  ident: bib15
  article-title: Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint
  publication-title: Sol Energy
– volume: 8
  start-page: 432
  year: 2021
  end-page: 446
  ident: bib39
  article-title: Light interception and use efficiency differ with maize plant density in maize-peanut intercropping
  publication-title: Front Agric Sci Eng
– volume: 13
  start-page: 1
  year: 2022
  end-page: 19
  ident: bib27
  article-title: Analyzing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter
  publication-title: Front Plant Sci
– volume: 105
  start-page: 1096
  year: 2015
  end-page: 1104
  ident: bib7
  article-title: Optimum design and orientation of the greenhouses for maximum capture of solar energy in North Tropical Region
  publication-title: Energy Convers Manag
– volume: 3
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib21
  article-title: Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops
  publication-title: Silico plants
– volume: 179
  year: 2020
  ident: bib10
  article-title: Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs
  publication-title: Appl Therm Eng
– volume: 187
  start-page: 15
  year: 2015
  end-page: 29
  ident: bib20
  article-title: Row orientation: applications to productivity and design of hedgerows in horticultural and olive orchards
  publication-title: Sci Hortic
– volume: 210
  start-page: 310
  year: 2021
  end-page: 329
  ident: bib18
  article-title: A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse
  publication-title: Biosyst Eng
– volume: 205
  start-page: 380
  year: 2020
  end-page: 389
  ident: bib8
  article-title: A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China
  publication-title: Sol Energy
– volume: 12
  year: 2021
  ident: bib25
  article-title: Functional–structural plant models mission in advancing crop science: opportunities and prospects
  publication-title: Front Plant Sci
– volume: 205
  start-page: 1230
  year: 2017
  end-page: 1236
  ident: bib43
  article-title: Length determination of the solar greenhouse north wall in Lanzhou
  publication-title: Procedia Eng
– volume: 13
  year: 2020
  ident: bib3
  article-title: Solar radiation allocation and spatial distribution in Chinese solar greenhouses: model development and application
  publication-title: Energies
– volume: 49
  start-page: 2119
  year: 2022
  end-page: 2130
  ident: bib47
  article-title: Sixty years of facility horticulture development in China: achievements and prospects
  publication-title: Acta Hortic Sin
– volume: 108
  start-page: 1121
  year: 2011
  end-page: 1134
  ident: bib33
  article-title: Towards a functional structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure
  publication-title: Ann Bot
– volume: 114
  start-page: 677
  year: 2014
  end-page: 688
  ident: bib28
  article-title: What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?
  publication-title: Ann Bot
– volume: 307
  year: 2021
  ident: bib46
  article-title: Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model
  publication-title: Agric For Meteorol
– volume: 160
  start-page: 730
  year: 2020
  end-page: 745
  ident: bib31
  article-title: High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure
  publication-title: Renew Energy
– volume: 276–277
  year: 2019
  ident: bib24
  article-title: Estimating canopy gap fraction and diffuse light interception in 3D maize canopy using hierarchical hemispheres
  publication-title: Agric For Meteorol
– reference: China issues No. 1 central document for 2023, highlights rural vitalization tasks.
– volume: 273
  year: 2023
  ident: bib16
  article-title: A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance
  publication-title: Energy
– volume: 14
  year: 2024
  ident: bib49
  article-title: Optimized tomato production in Chinese solar greenhouses: the impact of an east–west orientation and wide row spacing
  publication-title: Agronomy
– volume: 165
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib13
  article-title: A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China
  publication-title: Sol Energy
– volume: 55
  start-page: 1605
  year: 2020
  end-page: 1613
  ident: bib22
  article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes
  publication-title: Hortscience
– volume: 53
  year: 2022
  ident: bib40
  article-title: Optimal design for solar greenhouses based on canopy height
  publication-title: J Build Eng
– volume: 198
  start-page: 120
  year: 2020
  end-page: 136
  ident: bib17
  article-title: Development of a dynamic model to estimate canopy par interception
  publication-title: Biosyst Eng
– volume: 36
  start-page: 1492
  year: 2017
  end-page: 1522
  ident: bib35
  article-title: Using a full spectral raytracer for calculating light microclimate in functional-structural plant modelling
  publication-title: Comput Inf
– volume: 76
  start-page: 188
  year: 2020
  end-page: 193
  ident: bib26
  article-title: Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing
  publication-title: J Agric Meteorol
– volume: 126
  start-page: 701
  year: 2020
  end-page: 712
  ident: bib23
  article-title: Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season
  publication-title: Ann Bot
– volume: 236
  start-page: 320
  year: 2022
  end-page: 334
  ident: bib4
  article-title: Towards the maximization of energy performance of an energy-saving Chinese solar greenhouse: a systematic analysis of common greenhouse shapes
  publication-title: Sol Energy
– volume: 55
  start-page: 1605
  year: 2020
  end-page: 1613
  ident: bib29
  article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes
  publication-title: Hortscience
– volume: 207
  start-page: 1213
  year: 2015
  end-page: 1222
  ident: bib38
  article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures
  publication-title: New Phytol
– reference: .
– volume: 145
  start-page: 1255
  year: 2020
  end-page: 1265
  ident: bib11
  article-title: Optimal design for solar greenhouses based on climate conditions
  publication-title: Renew Energy
– volume: 226
  start-page: 252
  year: 2023
  end-page: 265
  ident: bib6
  article-title: Evaluation of the effects of supplemental lighting and stem number on greenhouse sweet pepper growth and yield via ray-tracing simulation with 3D plant models
  publication-title: Biosyst Eng
– volume: 369
  year: 2022
  ident: bib1
  article-title: Global vegetable supply towards sustainable food production and a healthy diet
  publication-title: J Clean Prod
– volume: 956
  start-page: 195
  year: 2012
  end-page: 200
  ident: bib34
  article-title: A 3D model of illumination, light distribution and crop photosynthesis to simulate lighting strategies in greenhouses
  publication-title: Acta Hortic
– volume: 14
  year: 2022
  ident: bib19
  article-title: Determination of the optimal orientation of Chinese solar greenhouses using 3D light environment simulations
  publication-title: Rem Sens
– volume: 197
  year: 2020
  ident: bib42
  article-title: Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse
  publication-title: Energy
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib12
  article-title: Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0242002
– volume: 47
  start-page: 27
  year: 2012
  ident: 10.1016/j.energy.2024.131805_bib14
  article-title: Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.11.010
– volume: 956
  start-page: 195
  year: 2012
  ident: 10.1016/j.energy.2024.131805_bib34
  article-title: A 3D model of illumination, light distribution and crop photosynthesis to simulate lighting strategies in greenhouses
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2012.956.20
– volume: 207
  start-page: 1213
  year: 2015
  ident: 10.1016/j.energy.2024.131805_bib38
  article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures
  publication-title: New Phytol
  doi: 10.1111/nph.13416
– volume: 13
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib3
  article-title: Solar radiation allocation and spatial distribution in Chinese solar greenhouses: model development and application
  publication-title: Energies
– volume: 179
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib10
  article-title: Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115698
– volume: 226
  start-page: 252
  year: 2023
  ident: 10.1016/j.energy.2024.131805_bib6
  article-title: Evaluation of the effects of supplemental lighting and stem number on greenhouse sweet pepper growth and yield via ray-tracing simulation with 3D plant models
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2023.01.010
– volume: 307
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib46
  article-title: Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2021.108494
– volume: 160
  start-page: 730
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib31
  article-title: High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.06.144
– volume: 205
  start-page: 1230
  year: 2017
  ident: 10.1016/j.energy.2024.131805_bib43
  article-title: Length determination of the solar greenhouse north wall in Lanzhou
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2017.10.361
– volume: 67
  start-page: 330
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib45
  article-title: Study of non-pollution cultivation techniques of organic ecotype of melon crops considering population characteristics
  publication-title: Cell Mol Biol
  doi: 10.14715/cmb/2021.67.6.43
– volume: 76
  start-page: 188
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib26
  article-title: Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing
  publication-title: J Agric Meteorol
  doi: 10.2480/agrmet.D-20-00030
– volume: 230
  start-page: 321
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib15
  article-title: Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.10.050
– volume: 14
  year: 2024
  ident: 10.1016/j.energy.2024.131805_bib49
  article-title: Optimized tomato production in Chinese solar greenhouses: the impact of an east–west orientation and wide row spacing
  publication-title: Agronomy
– volume: 236
  start-page: 320
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib4
  article-title: Towards the maximization of energy performance of an energy-saving Chinese solar greenhouse: a systematic analysis of common greenhouse shapes
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.03.013
– volume: 108
  start-page: 1121
  year: 2011
  ident: 10.1016/j.energy.2024.131805_bib33
  article-title: Towards a functional structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr190
– volume: 61
  start-page: 2203
  year: 2010
  ident: 10.1016/j.energy.2024.131805_bib32
  article-title: Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq025
– volume: 145
  start-page: 1255
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib11
  article-title: Optimal design for solar greenhouses based on climate conditions
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.06.090
– volume: 12
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib25
  article-title: Functional–structural plant models mission in advancing crop science: opportunities and prospects
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.747142
– volume: 55
  start-page: 1605
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib22
  article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes
  publication-title: Hortscience
  doi: 10.21273/HORTSCI15241-20
– volume: 176
  start-page: 88
  year: 2018
  ident: 10.1016/j.energy.2024.131805_bib5
  article-title: Energy sustainability performance of a sliding cover solar greenhouse: solar energy capture aspects
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2018.10.008
– volume: 197
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib42
  article-title: Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117215
– volume: 114
  start-page: 677
  year: 2014
  ident: 10.1016/j.energy.2024.131805_bib28
  article-title: What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?
  publication-title: Ann Bot
  doi: 10.1093/aob/mcu100
– volume: 107
  start-page: 875
  year: 2011
  ident: 10.1016/j.energy.2024.131805_bib44
  article-title: Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functionalstructural plant model
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr006
– volume: 14
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib19
  article-title: Determination of the optimal orientation of Chinese solar greenhouses using 3D light environment simulations
  publication-title: Rem Sens
– volume: 53
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib40
  article-title: Optimal design for solar greenhouses based on canopy height
  publication-title: J Build Eng
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib27
  article-title: Analyzing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter
  publication-title: Front Plant Sci
– volume: 55
  start-page: 1605
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib29
  article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes
  publication-title: Hortscience
  doi: 10.21273/HORTSCI15241-20
– volume: 107
  start-page: 817
  year: 2011
  ident: 10.1016/j.energy.2024.131805_bib30
  article-title: A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes
  publication-title: Ann Bot
  doi: 10.1093/aob/mcq264
– volume: 273
  year: 2023
  ident: 10.1016/j.energy.2024.131805_bib16
  article-title: A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127193
– volume: 369
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib1
  article-title: Global vegetable supply towards sustainable food production and a healthy diet
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.133212
– volume: 72
  start-page: 3630
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib37
  article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erab077
– volume: 205
  start-page: 380
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib8
  article-title: A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.05.055
– volume: 14
  year: 2024
  ident: 10.1016/j.energy.2024.131805_bib48
  article-title: Estimating the light interception and photosynthesis of greenhouse-cultivated tomato crops under different canopy configurations
  publication-title: Agronomy
– volume: 187
  start-page: 15
  year: 2015
  ident: 10.1016/j.energy.2024.131805_bib20
  article-title: Row orientation: applications to productivity and design of hedgerows in horticultural and olive orchards
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2015.02.032
– volume: 49
  start-page: 2119
  issue: 10
  year: 2022
  ident: 10.1016/j.energy.2024.131805_bib47
  article-title: Sixty years of facility horticulture development in China: achievements and prospects
  publication-title: Acta Hortic Sin
– volume: 126
  start-page: 701
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib23
  article-title: Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season
  publication-title: Ann Bot
  doi: 10.1093/aob/mcaa046
– volume: 8
  start-page: 432
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib39
  article-title: Light interception and use efficiency differ with maize plant density in maize-peanut intercropping
  publication-title: Front Agric Sci Eng
– volume: 198
  start-page: 120
  year: 2020
  ident: 10.1016/j.energy.2024.131805_bib17
  article-title: Development of a dynamic model to estimate canopy par interception
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2020.06.009
– volume: 36
  start-page: 1492
  year: 2017
  ident: 10.1016/j.energy.2024.131805_bib35
  article-title: Using a full spectral raytracer for calculating light microclimate in functional-structural plant modelling
  publication-title: Comput Inf
– volume: 105
  start-page: 1096
  year: 2015
  ident: 10.1016/j.energy.2024.131805_bib7
  article-title: Optimum design and orientation of the greenhouses for maximum capture of solar energy in North Tropical Region
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.08.066
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib36
  article-title: 3D phytomer-based geometric modelling method for plants—the case of maize
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plab055
– volume: vol. 145
  start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2024.131805_bib2
  article-title: Facility cultivation systems “facility agriculture”: a Chinese model for the planet
– volume: 3
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib21
  article-title: Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops
  publication-title: Silico plants
  doi: 10.1093/insilicoplants/diab025
– volume: 165
  start-page: 19
  year: 2018
  ident: 10.1016/j.energy.2024.131805_bib13
  article-title: A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.02.022
– volume: 216
  start-page: 602
  year: 2018
  ident: 10.1016/j.energy.2024.131805_bib9
  article-title: Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.130
– volume: 210
  start-page: 310
  year: 2021
  ident: 10.1016/j.energy.2024.131805_bib18
  article-title: A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2021.08.008
– volume: 276–277
  year: 2019
  ident: 10.1016/j.energy.2024.131805_bib24
  article-title: Estimating canopy gap fraction and diffuse light interception in 3D maize canopy using hierarchical hemispheres
  publication-title: Agric For Meteorol
– ident: 10.1016/j.energy.2024.131805_bib41
SSID ssj0005899
Score 2.4686997
Snippet Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131805
SubjectTerms 3D virtual canopy
air temperature
China
crop production
energy
Energy utilization rate
Functional-structural plant model (FSPM)
Greenhouse structure
greenhouses
Light distribution
microclimate
Planting strategy
quantitative analysis
winter
Title Optimal design of light microclimate and planting strategy for Chinese solar greenhouses using 3D light environment simulations
URI https://dx.doi.org/10.1016/j.energy.2024.131805
https://www.proquest.com/docview/3153587563
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOCCymMFtCAjcfU-Eiexj4iHtq20HACJm-V1xnSr3eyq3j300v71ziROu6BKSBzjjK3IM56H8o0_xi584voZaCmUdU5IaaWw2mrhxgl45VK6oYXQFqN8-Ci_PGVPG-yq7YUhWGX0_Y1Pr711HOnF3ewtJpPePfpezDckxaQB2h3V7VIWZOXdX2swD1VzSJKwIOm2fa7GeEHdX4dVYiK7A7RuIrH7f3h65ajr6HP7ge3GtJFfNl-2xzag2mfbbVdx2Gedm38daygYj2w4YL_v0CnMcKissRp87vmUCnI-Iyiem-K7JXBblXwxtTVtBA_NjbU_OSa0nAi2IQAPVAPzZ4LpfJuvAgROkPlnnl7H9dZa5niYzCItWDhkj7c3D1dDEVkXhEtyvRQanC4H2heo2wRUKfO-LXQCaak8WJ0BFKCwBHe5V14TUwdWVH1MW3SeDYqxTztss5pXcMS4QuVkiZNE7yFlqVVajr3XoBKbl33IjlnabrZx8UpyYsaYmhZ79t00KjKkItOo6JiJv7MWzZUcb8gXrR7NC9MyGDXemHneqt3gqaNfKbYC3GOTYqDIsNTL05N3r_6R7dBTA1j7xDaXP1ZwihnOcnxWm_AZ27r8_HU4-gMKmP6N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V6aFcEBQqCgWMxNUk2fXu2seqtEppCQdaqTfL8Y5LqmQT4fTQE3-dmV0vBYRUiatfWnnG89B-Mx_A-5D5UYFGSe28l0o5JZ1xRvpZhkH7nDu0MNpiWk4u1aer4moLjvpaGIZVJtvf2fTWWqeRYbrN4Xo-H34l20vxhmKfNCa9o7x9m7tTFQPYPjw9m0zvkR66pZHk9ZI39BV0LcwL2xI7ShQz9WFMCs48dv_2UH_Z6tYBnTyBxylyFIfdxz2FLWx2YacvLI67sHd8X7RGC9Orjc_gxxeyC0saqlu4hlgFseCcXCwZjecXNLdB4ZparBeuZY4QsWtaeycophXMsY0RReQ0WFwzUufb6jZiFIyavxb5x3Teb1VzIs6XiRksPofLk-OLo4lMxAvSZ6XZSIPe1GMTKhJvhrpW5chVJsO81gGdKRAr1JSF-zLoYJisg5KqEUUupizG1SzkezBoVg2-AKFJPkXmFTN8KFUbndezEAzqzJX1CIt9yPvLtj51JWdyjIXt4Wc3thORZRHZTkT7IH_tWnddOR5YX_VytH9olyXH8cDOd73YLT08_pviGqQ7tjn5ioKyvTJ_-d-nv4WdycXnc3t-Oj17BY94psOvHcBg8_0WX1PAs5m9SQr9E7dkAU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+light+microclimate+and+planting+strategy+for+Chinese+solar+greenhouses+using+3D+light+environment+simulations&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Demin&rft.au=Henke%2C+Michael&rft.au=Li%2C+Yiming&rft.au=Zhang%2C+Yue&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=302&rft_id=info:doi/10.1016%2Fj.energy.2024.131805&rft.externalDocID=S0360544224015780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon