Optimal design of light microclimate and planting strategy for Chinese solar greenhouses using 3D light environment simulations
Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D mod...
Saved in:
Published in | Energy (Oxford) Vol. 302; p. 131805 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG.
•The optimal lighting structure of CSG was determined through model analysis.•The average air temperature of the optimized greenhouse was increased by 1.37 °C.•A calculation model for light interception of individual melon leaf was established.•The feasibility of E-W row planting configuration within greenhouse were clarified. |
---|---|
AbstractList | Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG. Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding planting strategy of Chinese solar greenhouses (CSG). Taking CSG-grown melons as the experimental subject, we have developed a detailed 3D model capable of calculating the light interception at a single organ level, e.g., for individual leaves. The quantitative research was carried out after verifying the proposed model using field data. The results indicated that the reasonable ridge height for the most common 9 m span CSG was 4.9 m, and the horizontal projection on rear roof was 1.6 m in Shenyang area. In comparison with the experimental greenhouse, the optimized greenhouse improved crop light interception by 0.5 % and increased the average air temperature by 9.3 % during winter. The suitable planting strategy was E-W row orientation, with a ridge spacing of 1.2 m, a row spacing of 0.4 m, and a plant spacing of 0.38 m. Compared with the N–S row orientation, the crop light interception increased by 7.1 % and 10.8 % in the two growing seasons, respectively. The model described herein can serve as a foundation for the production of CSG. •The optimal lighting structure of CSG was determined through model analysis.•The average air temperature of the optimized greenhouse was increased by 1.37 °C.•A calculation model for light interception of individual melon leaf was established.•The feasibility of E-W row planting configuration within greenhouse were clarified. |
ArticleNumber | 131805 |
Author | Li, Yiming Zhang, Yue Liu, Anhua Henke, Michael Liu, Xingan Xu, Demin Li, Tianlai |
Author_xml | – sequence: 1 givenname: Demin surname: Xu fullname: Xu, Demin organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China – sequence: 2 givenname: Michael orcidid: 0000-0003-0673-3873 surname: Henke fullname: Henke, Michael organization: College of Agronomy, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China – sequence: 3 givenname: Yiming surname: Li fullname: Li, Yiming organization: National & Local Joint Engineering Research Centre of Northern Horticultural Facilities Design & Application Technology (Liaoning), No. 120 Dongling Road, Shenhe District, 110866, PR China – sequence: 4 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China – sequence: 5 givenname: Anhua surname: Liu fullname: Liu, Anhua organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China – sequence: 6 givenname: Xingan orcidid: 0000-0003-3360-0806 surname: Liu fullname: Liu, Xingan email: lxa10157@syau.edu.cn organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China – sequence: 7 givenname: Tianlai surname: Li fullname: Li, Tianlai email: ltl@syau.edu.cn organization: College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, 110866, PR China |
BookMark | eNqFkDFvFDEQhV0EiSTwDyhc0txhr9e7NgUSOgggRUoDteV4x3s-ee3D44t0FX8dH5uKAqqRZt57mvfdkKuUExDyhrMtZ3x4d9hCgjKftx3r-i0XXDF5Ra6ZGNhG9n33ktwgHhhjUml9TX49HGtYbKQTYJgTzZ7GMO8rXYIr2cV2q0Btmugx2lRDminW0nbzmfpc6G4fEiBQzNEWOheAtM8nBKQnvIjFp-c8SE-h5LRAqhTDcoq2hpzwFXnhbUR4_TxvyY-7z993Xzf3D1--7T7eb1w36LrR4PTEtR-dsx2oqR-YHXUHYlIerJYAIyh4FG7wyuu-GxXvFRNS6kHy8dGLW_J2zT2W_PMEWM0S0EFspaD9awSXQqpRDqJJ36_SBgCxgDcu1D_ftuIhGs7MhbQ5mJW0uZA2K-lm7v8yH0tjWM7_s31YbdAYPAUoBl2A5GAKBVw1Uw7_DvgNaUKh3A |
CitedBy_id | crossref_primary_10_3390_agronomy15030586 crossref_primary_10_1016_j_solener_2024_113034 |
Cites_doi | 10.1371/journal.pone.0242002 10.1016/j.enbuild.2011.11.010 10.17660/ActaHortic.2012.956.20 10.1111/nph.13416 10.1016/j.applthermaleng.2020.115698 10.1016/j.biosystemseng.2023.01.010 10.1016/j.agrformet.2021.108494 10.1016/j.renene.2020.06.144 10.1016/j.proeng.2017.10.361 10.14715/cmb/2021.67.6.43 10.2480/agrmet.D-20-00030 10.1016/j.solener.2021.10.050 10.1016/j.solener.2022.03.013 10.1093/aob/mcr190 10.1093/jxb/erq025 10.1016/j.renene.2019.06.090 10.3389/fpls.2021.747142 10.21273/HORTSCI15241-20 10.1016/j.biosystemseng.2018.10.008 10.1016/j.energy.2020.117215 10.1093/aob/mcu100 10.1093/aob/mcr006 10.1093/aob/mcq264 10.1016/j.energy.2023.127193 10.1016/j.jclepro.2022.133212 10.1093/jxb/erab077 10.1016/j.solener.2020.05.055 10.1016/j.scienta.2015.02.032 10.1093/aob/mcaa046 10.1016/j.biosystemseng.2020.06.009 10.1016/j.enconman.2015.08.066 10.1093/aobpla/plab055 10.1093/insilicoplants/diab025 10.1016/j.solener.2018.02.022 10.1016/j.apenergy.2018.02.130 10.1016/j.biosystemseng.2021.08.008 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2024.131805 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2024_131805 S0360544224015780 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SSH WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c269t-9ec9d19f7cca2e8d460a792e3d8fea95ee7e8eb3c6f8f94278148035596517bf3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Wed Jul 02 03:06:24 EDT 2025 Tue Jul 01 04:20:28 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Sat Feb 08 15:52:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional-structural plant model (FSPM) Light distribution Energy utilization rate Greenhouse structure 3D virtual canopy Planting strategy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-9ec9d19f7cca2e8d460a792e3d8fea95ee7e8eb3c6f8f94278148035596517bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3360-0806 0000-0003-0673-3873 |
PQID | 3153587563 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153587563 crossref_citationtrail_10_1016_j_energy_2024_131805 crossref_primary_10_1016_j_energy_2024_131805 elsevier_sciencedirect_doi_10_1016_j_energy_2024_131805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gupta, Tiwari, Kumar, Gupta (bib14) 2012; 47 Zheng, Zhang, Zheng, Zhao, Wang, Cheng (bib22) 2020; 55 Zhu, Liu, Xie, Guo, Li, Ma (bib23) 2020; 126 Gao, Yang, Guan, Bai, Zhang, Hu (bib43) 2017; 205 Zheng, Zhang, Zheng, Zhao, Wang, Cheng (bib29) 2020; 55 Mellalou, Riad, Mouaky, Bacaoui, Outzourhit (bib15) 2021; 230 Chen, Li, Li, Wei, Yang, Ling (bib13) 2018; 165 Chen, Henke, De Visser, Buck-Sorlin, Wiechers, Kahlen (bib28) 2014; 114 Zhang, Henke, Li, Xu, Liu, Liu (bib4) 2022; 236 Trentacoste, Connor, Gómez-del-Campo (bib20) 2015; 187 Wen, Wang, Wu, Liu, Gu, Guo (bib36) 2021; 13 Ohashi, Torii, Ishigami, Goto (bib26) 2020; 76 China issues No. 1 central document for 2023, highlights rural vitalization tasks. Zhang, Henke, Li, Sun, Li, Liu (bib48) 2024; 14 Dong, Gruda, Li, Cai, Zhang, Duan (bib1) 2022; 369 Henke, Buck-Sorlin (bib35) 2017; 36 Buck-Sorlin, de Visser, Henke, Sarlikioti, van der Heijden, Marcelis (bib33) 2011; 108 . Wang, Sun, Bai, Zhang, Zhang, Wang (bib39) 2021; 8 Liu, Xu, Henke, Zhang, Li, Liu (bib19) 2022; 14 Zhang, Henke, Li, Yue, Xu, Liu (bib31) 2020; 160 Baglivo, Mazzeo, Panico, Bonuso, Matera, Congedo (bib10) 2020; 179 Esmaeli, Roshandel (bib11) 2020; 145 Rojo, Dhillon, Upadhyaya, Jenkins (bib17) 2020; 198 Chen (bib45) 2021; 67 Zhang, Henke, Buck-Sorlin, Li, Xu, Liu (bib46) 2021; 307 Tong, Sun, Sigrimis, Li (bib5) 2018; 176 Chen, Ling, Zhai, Li, Yang, Han (bib9) 2018; 216 Wu, Li, Jiang, Wang, Liu, Li (bib16) 2023; 273 Chen, Ma, Pang (bib8) 2020; 205 de Visser, Buck-Sorlin, van der Heijden, Marcelis (bib34) 2012; 956 Xie, Yu, Chen, Feng, Li, Zhao (bib2) 2017; vol. 145 Liu, Liu, Liu, Yang, Bárcena, Li (bib18) 2021; 210 van der Meer, de Visser, Heuvelink, Marcelis (bib21) 2021; 3 Wu, Yang, Zhang, Fang, Feng, Zheng (bib42) 2020; 197 El-Maghlany, Teamah, Tanaka (bib7) 2015; 105 Li, Henke, Zhang, Wang, Wei (bib49) 2024; 14 Xu, Henke, Zhu, Kurth, Buck-Sorlin (bib30) 2011; 107 Li, Qi, Meng (bib47) 2022; 49 Li, Van Der Werf, Zhu, Guo, Li, Ma (bib37) 2021; 72 Evers, Vos, Yin, Romero, van der Putten, Struik (bib32) 2010; 61 Zhang, Lv, Xie, Yu, Zhang, Tang (bib3) 2020; 13 Xu, Li, Zhang, Xu, Li, Liu (bib12) 2020; 15 Zhu, van der Werf, Anten, Vos, Evers (bib38) 2015; 207 Sarlikioti, De Visser, Marcelis (bib44) 2011; 107 Zhang, Liu, Zhu, Zhang, Ge, Cai (bib40) 2022; 53 Soualiou, Wang, Sun, de Reffye, Collins, Louarn (bib25) 2021; 12 Hwang, Yoon, Kim, Kang, Kim, Son (bib6) 2023; 226 Wen, Guo, Li, Wang, Wang, Yu (bib24) 2019; 276–277 Zhang, Henke, Li, Xu, Liu, Liu (bib27) 2022; 13 Chen (10.1016/j.energy.2024.131805_bib9) 2018; 216 Xu (10.1016/j.energy.2024.131805_bib30) 2011; 107 Zhang (10.1016/j.energy.2024.131805_bib27) 2022; 13 Zhang (10.1016/j.energy.2024.131805_bib31) 2020; 160 Gao (10.1016/j.energy.2024.131805_bib43) 2017; 205 Wen (10.1016/j.energy.2024.131805_bib24) 2019; 276–277 Chen (10.1016/j.energy.2024.131805_bib13) 2018; 165 Esmaeli (10.1016/j.energy.2024.131805_bib11) 2020; 145 de Visser (10.1016/j.energy.2024.131805_bib34) 2012; 956 Wang (10.1016/j.energy.2024.131805_bib39) 2021; 8 Zhu (10.1016/j.energy.2024.131805_bib38) 2015; 207 Wu (10.1016/j.energy.2024.131805_bib42) 2020; 197 Gupta (10.1016/j.energy.2024.131805_bib14) 2012; 47 Tong (10.1016/j.energy.2024.131805_bib5) 2018; 176 Liu (10.1016/j.energy.2024.131805_bib18) 2021; 210 Chen (10.1016/j.energy.2024.131805_bib45) 2021; 67 Mellalou (10.1016/j.energy.2024.131805_bib15) 2021; 230 Zhang (10.1016/j.energy.2024.131805_bib46) 2021; 307 Hwang (10.1016/j.energy.2024.131805_bib6) 2023; 226 El-Maghlany (10.1016/j.energy.2024.131805_bib7) 2015; 105 Wu (10.1016/j.energy.2024.131805_bib16) 2023; 273 Li (10.1016/j.energy.2024.131805_bib49) 2024; 14 Li (10.1016/j.energy.2024.131805_bib47) 2022; 49 Chen (10.1016/j.energy.2024.131805_bib8) 2020; 205 Zhang (10.1016/j.energy.2024.131805_bib3) 2020; 13 van der Meer (10.1016/j.energy.2024.131805_bib21) 2021; 3 Trentacoste (10.1016/j.energy.2024.131805_bib20) 2015; 187 Zhang (10.1016/j.energy.2024.131805_bib40) 2022; 53 Rojo (10.1016/j.energy.2024.131805_bib17) 2020; 198 Zheng (10.1016/j.energy.2024.131805_bib29) 2020; 55 Wen (10.1016/j.energy.2024.131805_bib36) 2021; 13 Zheng (10.1016/j.energy.2024.131805_bib22) 2020; 55 Ohashi (10.1016/j.energy.2024.131805_bib26) 2020; 76 Evers (10.1016/j.energy.2024.131805_bib32) 2010; 61 Henke (10.1016/j.energy.2024.131805_bib35) 2017; 36 Sarlikioti (10.1016/j.energy.2024.131805_bib44) 2011; 107 Xu (10.1016/j.energy.2024.131805_bib12) 2020; 15 Zhang (10.1016/j.energy.2024.131805_bib4) 2022; 236 Liu (10.1016/j.energy.2024.131805_bib19) 2022; 14 Buck-Sorlin (10.1016/j.energy.2024.131805_bib33) 2011; 108 Soualiou (10.1016/j.energy.2024.131805_bib25) 2021; 12 Li (10.1016/j.energy.2024.131805_bib37) 2021; 72 Xie (10.1016/j.energy.2024.131805_bib2) 2017; vol. 145 10.1016/j.energy.2024.131805_bib41 Zhu (10.1016/j.energy.2024.131805_bib23) 2020; 126 Chen (10.1016/j.energy.2024.131805_bib28) 2014; 114 Zhang (10.1016/j.energy.2024.131805_bib48) 2024; 14 Dong (10.1016/j.energy.2024.131805_bib1) 2022; 369 Baglivo (10.1016/j.energy.2024.131805_bib10) 2020; 179 |
References_xml | – volume: 13 start-page: 1 year: 2021 end-page: 13 ident: bib36 article-title: 3D phytomer-based geometric modelling method for plants—the case of maize publication-title: AoB Plants – volume: 47 start-page: 27 year: 2012 end-page: 34 ident: bib14 article-title: Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD publication-title: Energy Build – volume: 15 start-page: 1 year: 2020 end-page: 17 ident: bib12 article-title: Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse publication-title: PLoS One – volume: 107 start-page: 875 year: 2011 end-page: 883 ident: bib44 article-title: Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functionalstructural plant model publication-title: Ann Bot – volume: 61 start-page: 2203 year: 2010 end-page: 2216 ident: bib32 article-title: Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation publication-title: J Exp Bot – volume: vol. 145 start-page: 1 year: 2017 end-page: 42 ident: bib2 article-title: Facility cultivation systems “facility agriculture”: a Chinese model for the planet publication-title: Advances in Agronomy – volume: 107 start-page: 817 year: 2011 end-page: 828 ident: bib30 article-title: A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes publication-title: Ann Bot – volume: 14 year: 2024 ident: bib48 article-title: Estimating the light interception and photosynthesis of greenhouse-cultivated tomato crops under different canopy configurations publication-title: Agronomy – volume: 216 start-page: 602 year: 2018 end-page: 612 ident: bib9 article-title: Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses publication-title: Appl Energy – volume: 67 start-page: 330 year: 2021 end-page: 338 ident: bib45 article-title: Study of non-pollution cultivation techniques of organic ecotype of melon crops considering population characteristics publication-title: Cell Mol Biol – volume: 72 start-page: 3630 year: 2021 end-page: 3646 ident: bib37 article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping publication-title: J Exp Bot – volume: 176 start-page: 88 year: 2018 end-page: 102 ident: bib5 article-title: Energy sustainability performance of a sliding cover solar greenhouse: solar energy capture aspects publication-title: Biosyst Eng – volume: 230 start-page: 321 year: 2021 end-page: 332 ident: bib15 article-title: Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint publication-title: Sol Energy – volume: 8 start-page: 432 year: 2021 end-page: 446 ident: bib39 article-title: Light interception and use efficiency differ with maize plant density in maize-peanut intercropping publication-title: Front Agric Sci Eng – volume: 13 start-page: 1 year: 2022 end-page: 19 ident: bib27 article-title: Analyzing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter publication-title: Front Plant Sci – volume: 105 start-page: 1096 year: 2015 end-page: 1104 ident: bib7 article-title: Optimum design and orientation of the greenhouses for maximum capture of solar energy in North Tropical Region publication-title: Energy Convers Manag – volume: 3 start-page: 1 year: 2021 end-page: 10 ident: bib21 article-title: Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops publication-title: Silico plants – volume: 179 year: 2020 ident: bib10 article-title: Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs publication-title: Appl Therm Eng – volume: 187 start-page: 15 year: 2015 end-page: 29 ident: bib20 article-title: Row orientation: applications to productivity and design of hedgerows in horticultural and olive orchards publication-title: Sci Hortic – volume: 210 start-page: 310 year: 2021 end-page: 329 ident: bib18 article-title: A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse publication-title: Biosyst Eng – volume: 205 start-page: 380 year: 2020 end-page: 389 ident: bib8 article-title: A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China publication-title: Sol Energy – volume: 12 year: 2021 ident: bib25 article-title: Functional–structural plant models mission in advancing crop science: opportunities and prospects publication-title: Front Plant Sci – volume: 205 start-page: 1230 year: 2017 end-page: 1236 ident: bib43 article-title: Length determination of the solar greenhouse north wall in Lanzhou publication-title: Procedia Eng – volume: 13 year: 2020 ident: bib3 article-title: Solar radiation allocation and spatial distribution in Chinese solar greenhouses: model development and application publication-title: Energies – volume: 49 start-page: 2119 year: 2022 end-page: 2130 ident: bib47 article-title: Sixty years of facility horticulture development in China: achievements and prospects publication-title: Acta Hortic Sin – volume: 108 start-page: 1121 year: 2011 end-page: 1134 ident: bib33 article-title: Towards a functional structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure publication-title: Ann Bot – volume: 114 start-page: 677 year: 2014 end-page: 688 ident: bib28 article-title: What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy? publication-title: Ann Bot – volume: 307 year: 2021 ident: bib46 article-title: Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model publication-title: Agric For Meteorol – volume: 160 start-page: 730 year: 2020 end-page: 745 ident: bib31 article-title: High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure publication-title: Renew Energy – volume: 276–277 year: 2019 ident: bib24 article-title: Estimating canopy gap fraction and diffuse light interception in 3D maize canopy using hierarchical hemispheres publication-title: Agric For Meteorol – reference: China issues No. 1 central document for 2023, highlights rural vitalization tasks. – volume: 273 year: 2023 ident: bib16 article-title: A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance publication-title: Energy – volume: 14 year: 2024 ident: bib49 article-title: Optimized tomato production in Chinese solar greenhouses: the impact of an east–west orientation and wide row spacing publication-title: Agronomy – volume: 165 start-page: 19 year: 2018 end-page: 26 ident: bib13 article-title: A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China publication-title: Sol Energy – volume: 55 start-page: 1605 year: 2020 end-page: 1613 ident: bib22 article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes publication-title: Hortscience – volume: 53 year: 2022 ident: bib40 article-title: Optimal design for solar greenhouses based on canopy height publication-title: J Build Eng – volume: 198 start-page: 120 year: 2020 end-page: 136 ident: bib17 article-title: Development of a dynamic model to estimate canopy par interception publication-title: Biosyst Eng – volume: 36 start-page: 1492 year: 2017 end-page: 1522 ident: bib35 article-title: Using a full spectral raytracer for calculating light microclimate in functional-structural plant modelling publication-title: Comput Inf – volume: 76 start-page: 188 year: 2020 end-page: 193 ident: bib26 article-title: Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing publication-title: J Agric Meteorol – volume: 126 start-page: 701 year: 2020 end-page: 712 ident: bib23 article-title: Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season publication-title: Ann Bot – volume: 236 start-page: 320 year: 2022 end-page: 334 ident: bib4 article-title: Towards the maximization of energy performance of an energy-saving Chinese solar greenhouse: a systematic analysis of common greenhouse shapes publication-title: Sol Energy – volume: 55 start-page: 1605 year: 2020 end-page: 1613 ident: bib29 article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes publication-title: Hortscience – volume: 207 start-page: 1213 year: 2015 end-page: 1222 ident: bib38 article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures publication-title: New Phytol – reference: . – volume: 145 start-page: 1255 year: 2020 end-page: 1265 ident: bib11 article-title: Optimal design for solar greenhouses based on climate conditions publication-title: Renew Energy – volume: 226 start-page: 252 year: 2023 end-page: 265 ident: bib6 article-title: Evaluation of the effects of supplemental lighting and stem number on greenhouse sweet pepper growth and yield via ray-tracing simulation with 3D plant models publication-title: Biosyst Eng – volume: 369 year: 2022 ident: bib1 article-title: Global vegetable supply towards sustainable food production and a healthy diet publication-title: J Clean Prod – volume: 956 start-page: 195 year: 2012 end-page: 200 ident: bib34 article-title: A 3D model of illumination, light distribution and crop photosynthesis to simulate lighting strategies in greenhouses publication-title: Acta Hortic – volume: 14 year: 2022 ident: bib19 article-title: Determination of the optimal orientation of Chinese solar greenhouses using 3D light environment simulations publication-title: Rem Sens – volume: 197 year: 2020 ident: bib42 article-title: Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse publication-title: Energy – volume: 15 start-page: 1 year: 2020 ident: 10.1016/j.energy.2024.131805_bib12 article-title: Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse publication-title: PLoS One doi: 10.1371/journal.pone.0242002 – volume: 47 start-page: 27 year: 2012 ident: 10.1016/j.energy.2024.131805_bib14 article-title: Calculation of total solar fraction for different orientation of greenhouse using 3D-shadow analysis in Auto-CAD publication-title: Energy Build doi: 10.1016/j.enbuild.2011.11.010 – volume: 956 start-page: 195 year: 2012 ident: 10.1016/j.energy.2024.131805_bib34 article-title: A 3D model of illumination, light distribution and crop photosynthesis to simulate lighting strategies in greenhouses publication-title: Acta Hortic doi: 10.17660/ActaHortic.2012.956.20 – volume: 207 start-page: 1213 year: 2015 ident: 10.1016/j.energy.2024.131805_bib38 article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures publication-title: New Phytol doi: 10.1111/nph.13416 – volume: 13 year: 2020 ident: 10.1016/j.energy.2024.131805_bib3 article-title: Solar radiation allocation and spatial distribution in Chinese solar greenhouses: model development and application publication-title: Energies – volume: 179 year: 2020 ident: 10.1016/j.energy.2024.131805_bib10 article-title: Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115698 – volume: 226 start-page: 252 year: 2023 ident: 10.1016/j.energy.2024.131805_bib6 article-title: Evaluation of the effects of supplemental lighting and stem number on greenhouse sweet pepper growth and yield via ray-tracing simulation with 3D plant models publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2023.01.010 – volume: 307 year: 2021 ident: 10.1016/j.energy.2024.131805_bib46 article-title: Estimating canopy leaf physiology of tomato plants grown in a solar greenhouse: evidence from simulations of light and thermal microclimate using a Functional-Structural Plant Model publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2021.108494 – volume: 160 start-page: 730 year: 2020 ident: 10.1016/j.energy.2024.131805_bib31 article-title: High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure publication-title: Renew Energy doi: 10.1016/j.renene.2020.06.144 – volume: 205 start-page: 1230 year: 2017 ident: 10.1016/j.energy.2024.131805_bib43 article-title: Length determination of the solar greenhouse north wall in Lanzhou publication-title: Procedia Eng doi: 10.1016/j.proeng.2017.10.361 – volume: 67 start-page: 330 year: 2021 ident: 10.1016/j.energy.2024.131805_bib45 article-title: Study of non-pollution cultivation techniques of organic ecotype of melon crops considering population characteristics publication-title: Cell Mol Biol doi: 10.14715/cmb/2021.67.6.43 – volume: 76 start-page: 188 year: 2020 ident: 10.1016/j.energy.2024.131805_bib26 article-title: Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing publication-title: J Agric Meteorol doi: 10.2480/agrmet.D-20-00030 – volume: 230 start-page: 321 year: 2021 ident: 10.1016/j.energy.2024.131805_bib15 article-title: Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint publication-title: Sol Energy doi: 10.1016/j.solener.2021.10.050 – volume: 14 year: 2024 ident: 10.1016/j.energy.2024.131805_bib49 article-title: Optimized tomato production in Chinese solar greenhouses: the impact of an east–west orientation and wide row spacing publication-title: Agronomy – volume: 236 start-page: 320 year: 2022 ident: 10.1016/j.energy.2024.131805_bib4 article-title: Towards the maximization of energy performance of an energy-saving Chinese solar greenhouse: a systematic analysis of common greenhouse shapes publication-title: Sol Energy doi: 10.1016/j.solener.2022.03.013 – volume: 108 start-page: 1121 year: 2011 ident: 10.1016/j.energy.2024.131805_bib33 article-title: Towards a functional structural plant model of cut-rose: simulation of light environment, light absorption, photosynthesis and interference with the plant structure publication-title: Ann Bot doi: 10.1093/aob/mcr190 – volume: 61 start-page: 2203 year: 2010 ident: 10.1016/j.energy.2024.131805_bib32 article-title: Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation publication-title: J Exp Bot doi: 10.1093/jxb/erq025 – volume: 145 start-page: 1255 year: 2020 ident: 10.1016/j.energy.2024.131805_bib11 article-title: Optimal design for solar greenhouses based on climate conditions publication-title: Renew Energy doi: 10.1016/j.renene.2019.06.090 – volume: 12 year: 2021 ident: 10.1016/j.energy.2024.131805_bib25 article-title: Functional–structural plant models mission in advancing crop science: opportunities and prospects publication-title: Front Plant Sci doi: 10.3389/fpls.2021.747142 – volume: 55 start-page: 1605 year: 2020 ident: 10.1016/j.energy.2024.131805_bib22 article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes publication-title: Hortscience doi: 10.21273/HORTSCI15241-20 – volume: 176 start-page: 88 year: 2018 ident: 10.1016/j.energy.2024.131805_bib5 article-title: Energy sustainability performance of a sliding cover solar greenhouse: solar energy capture aspects publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2018.10.008 – volume: 197 year: 2020 ident: 10.1016/j.energy.2024.131805_bib42 article-title: Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse publication-title: Energy doi: 10.1016/j.energy.2020.117215 – volume: 114 start-page: 677 year: 2014 ident: 10.1016/j.energy.2024.131805_bib28 article-title: What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy? publication-title: Ann Bot doi: 10.1093/aob/mcu100 – volume: 107 start-page: 875 year: 2011 ident: 10.1016/j.energy.2024.131805_bib44 article-title: Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functionalstructural plant model publication-title: Ann Bot doi: 10.1093/aob/mcr006 – volume: 14 year: 2022 ident: 10.1016/j.energy.2024.131805_bib19 article-title: Determination of the optimal orientation of Chinese solar greenhouses using 3D light environment simulations publication-title: Rem Sens – volume: 53 year: 2022 ident: 10.1016/j.energy.2024.131805_bib40 article-title: Optimal design for solar greenhouses based on canopy height publication-title: J Build Eng – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.energy.2024.131805_bib27 article-title: Analyzing the impact of greenhouse planting strategy and plant architecture on tomato plant physiology and estimated dry matter publication-title: Front Plant Sci – volume: 55 start-page: 1605 year: 2020 ident: 10.1016/j.energy.2024.131805_bib29 article-title: Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes publication-title: Hortscience doi: 10.21273/HORTSCI15241-20 – volume: 107 start-page: 817 year: 2011 ident: 10.1016/j.energy.2024.131805_bib30 article-title: A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes publication-title: Ann Bot doi: 10.1093/aob/mcq264 – volume: 273 year: 2023 ident: 10.1016/j.energy.2024.131805_bib16 article-title: A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance publication-title: Energy doi: 10.1016/j.energy.2023.127193 – volume: 369 year: 2022 ident: 10.1016/j.energy.2024.131805_bib1 article-title: Global vegetable supply towards sustainable food production and a healthy diet publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.133212 – volume: 72 start-page: 3630 year: 2021 ident: 10.1016/j.energy.2024.131805_bib37 article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping publication-title: J Exp Bot doi: 10.1093/jxb/erab077 – volume: 205 start-page: 380 year: 2020 ident: 10.1016/j.energy.2024.131805_bib8 article-title: A mathematical model of global solar radiation to select the optimal shape and orientation of the greenhouses in southern China publication-title: Sol Energy doi: 10.1016/j.solener.2020.05.055 – volume: 14 year: 2024 ident: 10.1016/j.energy.2024.131805_bib48 article-title: Estimating the light interception and photosynthesis of greenhouse-cultivated tomato crops under different canopy configurations publication-title: Agronomy – volume: 187 start-page: 15 year: 2015 ident: 10.1016/j.energy.2024.131805_bib20 article-title: Row orientation: applications to productivity and design of hedgerows in horticultural and olive orchards publication-title: Sci Hortic doi: 10.1016/j.scienta.2015.02.032 – volume: 49 start-page: 2119 issue: 10 year: 2022 ident: 10.1016/j.energy.2024.131805_bib47 article-title: Sixty years of facility horticulture development in China: achievements and prospects publication-title: Acta Hortic Sin – volume: 126 start-page: 701 year: 2020 ident: 10.1016/j.energy.2024.131805_bib23 article-title: Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season publication-title: Ann Bot doi: 10.1093/aob/mcaa046 – volume: 8 start-page: 432 year: 2021 ident: 10.1016/j.energy.2024.131805_bib39 article-title: Light interception and use efficiency differ with maize plant density in maize-peanut intercropping publication-title: Front Agric Sci Eng – volume: 198 start-page: 120 year: 2020 ident: 10.1016/j.energy.2024.131805_bib17 article-title: Development of a dynamic model to estimate canopy par interception publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2020.06.009 – volume: 36 start-page: 1492 year: 2017 ident: 10.1016/j.energy.2024.131805_bib35 article-title: Using a full spectral raytracer for calculating light microclimate in functional-structural plant modelling publication-title: Comput Inf – volume: 105 start-page: 1096 year: 2015 ident: 10.1016/j.energy.2024.131805_bib7 article-title: Optimum design and orientation of the greenhouses for maximum capture of solar energy in North Tropical Region publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.08.066 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.energy.2024.131805_bib36 article-title: 3D phytomer-based geometric modelling method for plants—the case of maize publication-title: AoB Plants doi: 10.1093/aobpla/plab055 – volume: vol. 145 start-page: 1 year: 2017 ident: 10.1016/j.energy.2024.131805_bib2 article-title: Facility cultivation systems “facility agriculture”: a Chinese model for the planet – volume: 3 start-page: 1 year: 2021 ident: 10.1016/j.energy.2024.131805_bib21 article-title: Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops publication-title: Silico plants doi: 10.1093/insilicoplants/diab025 – volume: 165 start-page: 19 year: 2018 ident: 10.1016/j.energy.2024.131805_bib13 article-title: A computational model to determine the optimal orientation for solar greenhouses located at different latitudes in China publication-title: Sol Energy doi: 10.1016/j.solener.2018.02.022 – volume: 216 start-page: 602 year: 2018 ident: 10.1016/j.energy.2024.131805_bib9 article-title: Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.130 – volume: 210 start-page: 310 year: 2021 ident: 10.1016/j.energy.2024.131805_bib18 article-title: A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2021.08.008 – volume: 276–277 year: 2019 ident: 10.1016/j.energy.2024.131805_bib24 article-title: Estimating canopy gap fraction and diffuse light interception in 3D maize canopy using hierarchical hemispheres publication-title: Agric For Meteorol – ident: 10.1016/j.energy.2024.131805_bib41 |
SSID | ssj0005899 |
Score | 2.4686997 |
Snippet | Light has a significant impact on crop production. The objective of this study was to explore the optimal lighting structure parameters and the corresponding... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131805 |
SubjectTerms | 3D virtual canopy air temperature China crop production energy Energy utilization rate Functional-structural plant model (FSPM) Greenhouse structure greenhouses Light distribution microclimate Planting strategy quantitative analysis winter |
Title | Optimal design of light microclimate and planting strategy for Chinese solar greenhouses using 3D light environment simulations |
URI | https://dx.doi.org/10.1016/j.energy.2024.131805 https://www.proquest.com/docview/3153587563 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOCCymMFtCAjcfU-Eiexj4iHtq20HACJm-V1xnSr3eyq3j300v71ziROu6BKSBzjjK3IM56H8o0_xi584voZaCmUdU5IaaWw2mrhxgl45VK6oYXQFqN8-Ci_PGVPG-yq7YUhWGX0_Y1Pr711HOnF3ewtJpPePfpezDckxaQB2h3V7VIWZOXdX2swD1VzSJKwIOm2fa7GeEHdX4dVYiK7A7RuIrH7f3h65ajr6HP7ge3GtJFfNl-2xzag2mfbbVdx2Gedm38daygYj2w4YL_v0CnMcKissRp87vmUCnI-Iyiem-K7JXBblXwxtTVtBA_NjbU_OSa0nAi2IQAPVAPzZ4LpfJuvAgROkPlnnl7H9dZa5niYzCItWDhkj7c3D1dDEVkXhEtyvRQanC4H2heo2wRUKfO-LXQCaak8WJ0BFKCwBHe5V14TUwdWVH1MW3SeDYqxTztss5pXcMS4QuVkiZNE7yFlqVVajr3XoBKbl33IjlnabrZx8UpyYsaYmhZ79t00KjKkItOo6JiJv7MWzZUcb8gXrR7NC9MyGDXemHneqt3gqaNfKbYC3GOTYqDIsNTL05N3r_6R7dBTA1j7xDaXP1ZwihnOcnxWm_AZ27r8_HU4-gMKmP6N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V6aFcEBQqCgWMxNUk2fXu2seqtEppCQdaqTfL8Y5LqmQT4fTQE3-dmV0vBYRUiatfWnnG89B-Mx_A-5D5UYFGSe28l0o5JZ1xRvpZhkH7nDu0MNpiWk4u1aer4moLjvpaGIZVJtvf2fTWWqeRYbrN4Xo-H34l20vxhmKfNCa9o7x9m7tTFQPYPjw9m0zvkR66pZHk9ZI39BV0LcwL2xI7ShQz9WFMCs48dv_2UH_Z6tYBnTyBxylyFIfdxz2FLWx2YacvLI67sHd8X7RGC9Orjc_gxxeyC0saqlu4hlgFseCcXCwZjecXNLdB4ZparBeuZY4QsWtaeycophXMsY0RReQ0WFwzUufb6jZiFIyavxb5x3Teb1VzIs6XiRksPofLk-OLo4lMxAvSZ6XZSIPe1GMTKhJvhrpW5chVJsO81gGdKRAr1JSF-zLoYJisg5KqEUUupizG1SzkezBoVg2-AKFJPkXmFTN8KFUbndezEAzqzJX1CIt9yPvLtj51JWdyjIXt4Wc3thORZRHZTkT7IH_tWnddOR5YX_VytH9olyXH8cDOd73YLT08_pviGqQ7tjn5ioKyvTJ_-d-nv4WdycXnc3t-Oj17BY94psOvHcBg8_0WX1PAs5m9SQr9E7dkAU0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+light+microclimate+and+planting+strategy+for+Chinese+solar+greenhouses+using+3D+light+environment+simulations&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Demin&rft.au=Henke%2C+Michael&rft.au=Li%2C+Yiming&rft.au=Zhang%2C+Yue&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=302&rft_id=info:doi/10.1016%2Fj.energy.2024.131805&rft.externalDocID=S0360544224015780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |