On the extinction and burning limits of stretched premixed ammonia flames at elevated pressures
In this study, one-dimensional detailed simulations of stretched premixed counterflow flames are conducted to investigate the flame extinction, bifurcations, and burning limits of NH3/air and NH3/H2/air mixtures at elevated pressures up to 25 atm. For the NH3/air mixtures, the incorporation of radia...
Saved in:
Published in | Combustion and flame Vol. 279; p. 114248 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, one-dimensional detailed simulations of stretched premixed counterflow flames are conducted to investigate the flame extinction, bifurcations, and burning limits of NH3/air and NH3/H2/air mixtures at elevated pressures up to 25 atm. For the NH3/air mixtures, the incorporation of radiative heat loss results in a left weak flame branch at low strain rates, which exists only within a narrow strain rate range. A regime diagram is proposed to illustrate sustainable strain rate ranges of normal and weak flames at different equivalence ratios. Kinetic analyses show that the ammonia oxidation in the weak flames is governed by H2NO at the lean side and N2Hx at the rich side. Nonetheless, for the normal flames, the H2NO, NHi, and N2Hx pathways are significant under lean, near stoichiometric, and rich conditions, respectively. Furthermore, the influence of hydrogen additions on ammonia flames is investigated. The results show that hydrogen addition, e.g., ≥ 0.1 by volume, leads to the formation of a stable right weak flame branch, with the H2NO sub-chemistry being the dominant oxidization mechanism. Then, the flame bifurcation and extinction behaviors at different equivalence ratios are summarized in a regime diagram with five critical strain rates. It is shown that the low-temperature H2NO route extends the rich burning limit from 3.45 to 5.68 for the NH3/H2/air mixture at a hydrogen mole fraction of 0.1. In the end, the burning limits are determined as a function of hydrogen molar fraction and pressure, and the hydrogen addition significantly expands the burning limits both on the lean and rich side. These findings provide valuable insights into the flammability of ammonia/hydrogen flames and the underlying oxidation mechanisms subject to elevated pressure conditions.
Novelty and Significance Statement
This study fills a noticeable gap in the literature by providing a comprehensive regime diagram of extinction and burning limits for NH3/air and NH3/H2/air flames under varying mixture composition conditions. A key novelty lies in exploring NH3/H2 combustion behaviors under elevated pressures up to 25 atm, revealing distinct flame bifurcations and weak flame branches induced by radiative heat loss—phenomena not captured for NH3/H2 mixtures previously. The work also highlights those most relevant ammonia oxidation paths under different temperature and composition conditions, which is beneficial for future mechanism development. It further clarifies the influence of hydrogen enrichment and pressure on the burning limits and discusses their relationship with fundamental flammability limits derived from unstretched planar flames, which were poorly explored previously. While the simulation framework dates back to the 90s, its application to ammonia-based flames at high pressure remains novel. Therefore, these findings offer meaningful contributions to the development of ammonia-based combustion systems, supporting broader decarbonization efforts. |
---|---|
AbstractList | In this study, one-dimensional detailed simulations of stretched premixed counterflow flames are conducted to investigate the flame extinction, bifurcations, and burning limits of NH3/air and NH3/H2/air mixtures at elevated pressures up to 25 atm. For the NH3/air mixtures, the incorporation of radiative heat loss results in a left weak flame branch at low strain rates, which exists only within a narrow strain rate range. A regime diagram is proposed to illustrate sustainable strain rate ranges of normal and weak flames at different equivalence ratios. Kinetic analyses show that the ammonia oxidation in the weak flames is governed by H2NO at the lean side and N2Hx at the rich side. Nonetheless, for the normal flames, the H2NO, NHi, and N2Hx pathways are significant under lean, near stoichiometric, and rich conditions, respectively. Furthermore, the influence of hydrogen additions on ammonia flames is investigated. The results show that hydrogen addition, e.g., ≥ 0.1 by volume, leads to the formation of a stable right weak flame branch, with the H2NO sub-chemistry being the dominant oxidization mechanism. Then, the flame bifurcation and extinction behaviors at different equivalence ratios are summarized in a regime diagram with five critical strain rates. It is shown that the low-temperature H2NO route extends the rich burning limit from 3.45 to 5.68 for the NH3/H2/air mixture at a hydrogen mole fraction of 0.1. In the end, the burning limits are determined as a function of hydrogen molar fraction and pressure, and the hydrogen addition significantly expands the burning limits both on the lean and rich side. These findings provide valuable insights into the flammability of ammonia/hydrogen flames and the underlying oxidation mechanisms subject to elevated pressure conditions.
Novelty and Significance Statement
This study fills a noticeable gap in the literature by providing a comprehensive regime diagram of extinction and burning limits for NH3/air and NH3/H2/air flames under varying mixture composition conditions. A key novelty lies in exploring NH3/H2 combustion behaviors under elevated pressures up to 25 atm, revealing distinct flame bifurcations and weak flame branches induced by radiative heat loss—phenomena not captured for NH3/H2 mixtures previously. The work also highlights those most relevant ammonia oxidation paths under different temperature and composition conditions, which is beneficial for future mechanism development. It further clarifies the influence of hydrogen enrichment and pressure on the burning limits and discusses their relationship with fundamental flammability limits derived from unstretched planar flames, which were poorly explored previously. While the simulation framework dates back to the 90s, its application to ammonia-based flames at high pressure remains novel. Therefore, these findings offer meaningful contributions to the development of ammonia-based combustion systems, supporting broader decarbonization efforts. |
ArticleNumber | 114248 |
Author | Xie, Shumeng Zhang, Huangwei |
Author_xml | – sequence: 1 givenname: Shumeng orcidid: 0000-0002-9228-3938 surname: Xie fullname: Xie, Shumeng organization: Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore – sequence: 2 givenname: Huangwei surname: Zhang fullname: Zhang, Huangwei email: mpezhu@nus.edu.sg organization: Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore |
BookMark | eNqNkDtPwzAQxz0UibbwHSz2hLPzaMyGylOq1AVmy7HP1FXiVLZblW9PIAyMLHc33P-h34LM_OCRkBsGOQNW3-5zPfTtMSbbqR5zDrzKGSt52czIHIBBxlkDl2QR4x4AVmVRzIncepp2SPGcnNfJDZ4qb2h7DN75D9q53qVIB0tjCpj0Dg09BOzdeTxU3w_eKfqTF6lKFDs8qTT9xHgcxxW5sKqLeP27l-T96fFt_ZJtts-v6_tNpnktUsYNU7aqam2FsKYsi7rQrapFAUIAcAumsazm1jasYrxsUbWqhZUxTDRVY02xJHeTrw5DjAGtPATXq_ApGchvPHIv_-KR33jkhGcUP0xiHBueHAYZtUOv0biAOkkzuP_YfAGaynto |
Cites_doi | 10.1016/j.combustflame.2015.06.014 10.1115/1.3097297 10.1016/j.combustflame.2005.06.010 10.1002/aic.10263 10.1016/j.proci.2020.06.275 10.1016/0168-9274(89)90013-5 10.1016/S0010-2180(73)80180-4 10.1016/j.fuel.2018.09.131 10.1016/j.proci.2024.105231 10.1016/j.jfueco.2022.100053 10.1016/j.combustflame.2019.05.003 10.1021/acs.energyfuels.0c03685 10.1016/j.proci.2020.06.142 10.1016/j.combustflame.2022.112593 10.1016/j.combustflame.2023.112985 10.1016/j.jqsrt.2019.04.040 10.1016/S0082-0784(98)80116-1 10.1016/0010-2180(85)90139-7 10.1016/j.fuel.2025.135274 10.1016/j.combustflame.2022.112600 10.1016/j.energy.2015.03.061 10.1016/j.fuel.2022.126879 10.1016/j.jqsrt.2016.03.005 10.1016/S0082-0784(89)80173-0 10.1016/j.combustflame.2023.113239 10.1016/S0082-0784(06)80287-0 10.1016/j.fuel.2022.126150 10.1016/S0010-2180(00)00152-8 10.1016/j.pecs.2013.10.002 10.1039/C9RE00429G 10.1016/j.proci.2018.09.029 10.1080/00102209808924149 10.1021/acs.energyfuels.2c03598 10.1016/j.ijhydene.2017.01.046 10.1016/j.combustflame.2021.111653 10.1017/S0022112097005636 10.1016/j.proci.2018.05.082 10.1016/j.combustflame.2024.113528 10.1016/S0010-2180(97)00270-8 10.1016/S0010-2180(97)00050-3 10.1016/j.ijhydene.2020.05.236 10.1016/j.proci.2024.105569 10.1016/j.jqsrt.2010.05.001 10.1051/jcp/1994910365 10.1016/j.proci.2018.06.138 10.1016/j.combustflame.2019.11.032 10.1016/j.combustflame.2020.12.021 10.1016/j.proci.2020.06.310 |
ContentType | Journal Article |
Copyright | 2025 The Combustion Institute |
Copyright_xml | – notice: 2025 The Combustion Institute |
DBID | AAYXX CITATION |
DOI | 10.1016/j.combustflame.2025.114248 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_combustflame_2025_114248 S001021802500286X |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABDMP ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c269t-2d1af556cf99fd44363cba693099002f0d8f162ff815124beabab07dd19858fd3 |
IEDL.DBID | .~1 |
ISSN | 0010-2180 |
IngestDate | Thu Aug 21 00:01:03 EDT 2025 Sat Aug 30 17:17:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ammonia Premixed counterflow Burning limits Hydrogen Weak flame Radiation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c269t-2d1af556cf99fd44363cba693099002f0d8f162ff815124beabab07dd19858fd3 |
ORCID | 0000-0002-9228-3938 |
ParticipantIDs | crossref_primary_10_1016_j_combustflame_2025_114248 elsevier_sciencedirect_doi_10_1016_j_combustflame_2025_114248 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Combustion and flame |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fang, Papas, Sung, Stevens, Smith (b30) 2024; 40 Ju (b48) 1998; 113 Han, Wang, Costa, Sun, He, Cen (b20) 2019; 206 Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli (b22) 2020; 5 Kang, Pan, Zhang, Wang, Tang (b13) 2023; 332 Kobayashi, Hayakawa, Somarathne, Okafor (b1) 2019; 37 Hayakawa, Arakawa, Mimoto, Somarathne, Kudo, Kobayashi (b4) 2017; 42 Khateeb, Guiberti, Zhu, Younes, Jamal, Roberts (b14) 2020; 45 Ronney, Wachman (b10) 1985; 62 Valera-Medina, Amer-Hatem, Azad, Dedoussi, de Joannon, Fernandes, Glarborg, Hashemi, He, Mashruk, McGowan, Mounaim-Rouselle, Ortiz-Prado, Ortiz-Valera, Rossetti, Shu, Yehia, Xiao, Costa (b2) 2021; 35 Coward, Jones (b11) 1952 Lee, Guahk, Kim, Lee, Lee (b27) 2023; 248 Xue, Zhang, Zhang, Zhou, Ren (b51) 2023; 337 Law (b19) 2006 Sánchez, Williams (b18) 2014; 41 Kochanov, Gordon, Rothman, Wcisło, Hill, Wilzewski (b39) 2016; 177 Guo, Ju, Maruta, Niioka, Liu (b47) 1997; 109 Abbud-Madrid, Ronney (b36) 1991; 23 Lovachev, Babkin, Bunev, V’yun, Krivulin, Baratov (b9) 1973; 20 Han, Wang, He, Zhu, Cen (b21) 2020; 213 Li, Zhang, Zhou, Ren (b25) 2019; 237 Lin, Reuter, Ju (b34) 2019; 37 Ronney (b38) 1989; 22 Rothman, Gordon, Barber, Dothe, Gamache, Goldman, Perevalov, Tashkun, Tennyson (b40) 2010; 111 Ju, Reuter, Won (b50) 2015; 162 Revel, Boettner, Cathonnet, Bachman (b45) 1994; 91 Vigarinho De Campos, Guiberti, Es-sebbar, Lacoste (b28) 2024; 40 Pugh, Runyon, Bowen, Giles, Valera-Medina, Marsh, Goktepe, Hewlett (b26) 2021; 38 Androulakis, Grenda, Bozzelli (b46) 2004; 50 Choi, Lee, Kwon (b29) 2015; 85 Guo, Ju, Maruta, Niioka, Liu (b52) 1998; 135 Wei, Zhang, Wang, Huang (b16) 2023; 249 Giovangigli, Smooke (b43) 1989; 5 Okafor, Tsukamoto, Hayakawa, Somarathne, Kudo, Tsujimura, Kobayashi (b6) 2021; 38 Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (b17) 2000; 123 Liao, Wang, Chu, Tao, Yang (b42) 2023; 256 Zhu, Curran, Girhe, Murakami, Pitsch, Senecal, Yang, Zhou (b24) 2024; 260 Elbaz, Wang, Guiberti, Roberts (b3) 2022; 10 Goldmann, Dinkelacker (b15) 2021; 226 Ju, Guo, Maruta, Liu (b49) 1997; 342 Xia, Matsumoto, Colson, Kudo, Tanji, Kovaleva, Hayakawa, Kobayashi (b33) 2025; 396 Kee, Coltrin, Glarborg, Zhu (b35) 2018 Hargreaves, Gordon, Rothman, Tashkun, Perevalov, Lukashevskaya, Yurchenko, Tennyson, Müller (b41) 2019; 232 Nakamura, Shindo (b32) 2019; 37 Xie, Zhang (b31) 2024; 266 Zhang, Moosakutty, Rajan, Younes, Sarathy (b23) 2021; 234 Ju, Masuya, Ronney (b37) 1998; 27 Zhu, Khateeb, Guiberti, Roberts (b5) 2021; 38 Ciccarelli, Jackson, Verreault (b12) 2006; 144 Mendiburu, Carvalho, Ju (b8) 2023; 37 Goodwin, Speth, Moffat, Weber (b44) 2024 Ju, Maruta, Niioka (b7) 2001; 54 Coward (10.1016/j.combustflame.2025.114248_b11) 1952 Goodwin (10.1016/j.combustflame.2025.114248_b44) 2024 Xie (10.1016/j.combustflame.2025.114248_b31) 2024; 266 Giovangigli (10.1016/j.combustflame.2025.114248_b43) 1989; 5 Lovachev (10.1016/j.combustflame.2025.114248_b9) 1973; 20 Li (10.1016/j.combustflame.2025.114248_b25) 2019; 237 Pfahl (10.1016/j.combustflame.2025.114248_b17) 2000; 123 Valera-Medina (10.1016/j.combustflame.2025.114248_b2) 2021; 35 Androulakis (10.1016/j.combustflame.2025.114248_b46) 2004; 50 Kochanov (10.1016/j.combustflame.2025.114248_b39) 2016; 177 Han (10.1016/j.combustflame.2025.114248_b21) 2020; 213 Revel (10.1016/j.combustflame.2025.114248_b45) 1994; 91 Ju (10.1016/j.combustflame.2025.114248_b49) 1997; 342 Abbud-Madrid (10.1016/j.combustflame.2025.114248_b36) 1991; 23 Sánchez (10.1016/j.combustflame.2025.114248_b18) 2014; 41 Elbaz (10.1016/j.combustflame.2025.114248_b3) 2022; 10 Choi (10.1016/j.combustflame.2025.114248_b29) 2015; 85 Stagni (10.1016/j.combustflame.2025.114248_b22) 2020; 5 Ju (10.1016/j.combustflame.2025.114248_b48) 1998; 113 Hayakawa (10.1016/j.combustflame.2025.114248_b4) 2017; 42 Ju (10.1016/j.combustflame.2025.114248_b37) 1998; 27 Hargreaves (10.1016/j.combustflame.2025.114248_b41) 2019; 232 Zhu (10.1016/j.combustflame.2025.114248_b5) 2021; 38 Vigarinho De Campos (10.1016/j.combustflame.2025.114248_b28) 2024; 40 Han (10.1016/j.combustflame.2025.114248_b20) 2019; 206 Guo (10.1016/j.combustflame.2025.114248_b47) 1997; 109 Pugh (10.1016/j.combustflame.2025.114248_b26) 2021; 38 Ciccarelli (10.1016/j.combustflame.2025.114248_b12) 2006; 144 Zhang (10.1016/j.combustflame.2025.114248_b23) 2021; 234 Kang (10.1016/j.combustflame.2025.114248_b13) 2023; 332 Lin (10.1016/j.combustflame.2025.114248_b34) 2019; 37 Liao (10.1016/j.combustflame.2025.114248_b42) 2023; 256 Xue (10.1016/j.combustflame.2025.114248_b51) 2023; 337 Lee (10.1016/j.combustflame.2025.114248_b27) 2023; 248 Khateeb (10.1016/j.combustflame.2025.114248_b14) 2020; 45 Ju (10.1016/j.combustflame.2025.114248_b50) 2015; 162 Okafor (10.1016/j.combustflame.2025.114248_b6) 2021; 38 Mendiburu (10.1016/j.combustflame.2025.114248_b8) 2023; 37 Wei (10.1016/j.combustflame.2025.114248_b16) 2023; 249 Guo (10.1016/j.combustflame.2025.114248_b52) 1998; 135 Ronney (10.1016/j.combustflame.2025.114248_b10) 1985; 62 Xia (10.1016/j.combustflame.2025.114248_b33) 2025; 396 Ju (10.1016/j.combustflame.2025.114248_b7) 2001; 54 Goldmann (10.1016/j.combustflame.2025.114248_b15) 2021; 226 Ronney (10.1016/j.combustflame.2025.114248_b38) 1989; 22 Nakamura (10.1016/j.combustflame.2025.114248_b32) 2019; 37 Kobayashi (10.1016/j.combustflame.2025.114248_b1) 2019; 37 Zhu (10.1016/j.combustflame.2025.114248_b24) 2024; 260 Fang (10.1016/j.combustflame.2025.114248_b30) 2024; 40 Kee (10.1016/j.combustflame.2025.114248_b35) 2018 Rothman (10.1016/j.combustflame.2025.114248_b40) 2010; 111 Law (10.1016/j.combustflame.2025.114248_b19) 2006 |
References_xml | – volume: 37 start-page: 1791 year: 2019 end-page: 1798 ident: b34 article-title: Dynamics and burning limits of near-limit hot, warm, and cool diffusion flames of dimethyl ether at elevated pressures publication-title: Proc. Combust. Inst. – volume: 23 start-page: 423 year: 1991 end-page: 431 ident: b36 article-title: Effects of radiative and diffusive transport processes on premixed flames near flammability limits publication-title: Symp. (Int.) Combust. – volume: 206 start-page: 214 year: 2019 end-page: 226 ident: b20 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames publication-title: Combust. Flame – volume: 342 start-page: 315 year: 1997 end-page: 334 ident: b49 article-title: On the extinction limit and flammability limit of non-adiabatic stretched methane–air premixed flames publication-title: J. Fluid Mech. – volume: 27 start-page: 2619 year: 1998 end-page: 2626 ident: b37 article-title: Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames publication-title: Symp. (Int.) Combust. – volume: 396 year: 2025 ident: b33 article-title: Gas radiation characteristics of non-premixed ammonia–oxygen–nitrogen turbulent jet flames and comparison with methane jet flames under oxygen-enriched conditions publication-title: Fuel – volume: 266 year: 2024 ident: b31 article-title: Existence and chemistry of stretched ammonia/hydrogen weak flames at elevated pressures publication-title: Combust. Flame – volume: 20 start-page: 259 year: 1973 end-page: 289 ident: b9 article-title: Flammability limits: an invited review publication-title: Combust. Flame – volume: 50 start-page: 2956 year: 2004 end-page: 2970 ident: b46 article-title: Timeintegrated pointers for enabling the analysis of detailed reaction mechanisms publication-title: AIChE J. – volume: 54 start-page: 257 year: 2001 end-page: 277 ident: b7 article-title: Combustion Limits publication-title: Appl. Mech. Rev. – volume: 256 year: 2023 ident: b42 article-title: Chemical insights into the two-stage ignition behavior of NH3/H2 mixtures in an RCM publication-title: Combust. Flame – volume: 162 start-page: 3580 year: 2015 end-page: 3588 ident: b50 article-title: Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures publication-title: Combust. Flame – volume: 123 start-page: 140 year: 2000 end-page: 158 ident: b17 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust. Flame – volume: 337 year: 2023 ident: b51 article-title: Analysis of low emission characteristics of NH3/H2/air mixtures under low temperature combustion conditions publication-title: Fuel – volume: 37 start-page: 109 year: 2019 end-page: 133 ident: b1 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. – volume: 42 start-page: 14010 year: 2017 end-page: 14018 ident: b4 article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor publication-title: Int. J. Hydrog. Energy – volume: 111 start-page: 2139 year: 2010 end-page: 2150 ident: b40 article-title: HITEMP, the high-temperature molecular spectroscopic database publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 91 start-page: 365 year: 1994 end-page: 382 ident: b45 article-title: Derivation of a global chemical kinetic mechanism for methane ignition and combustion publication-title: J. Chim. Phys. – volume: 45 start-page: 22008 year: 2020 end-page: 22018 ident: b14 article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames publication-title: Int. J. Hydrog. Energy – volume: 232 start-page: 35 year: 2019 end-page: 53 ident: b41 article-title: Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 248 year: 2023 ident: b27 article-title: Stability and emission characteristics of ammonia-air flames in a lean-lean fuel staging tangential injection combustor publication-title: Combust. Flame – volume: 41 start-page: 1 year: 2014 end-page: 55 ident: b18 article-title: Recent advances in understanding of flammability characteristics of hydrogen publication-title: Prog. Energy Combust. Sci. – volume: 135 start-page: 49 year: 1998 end-page: 64 ident: b52 article-title: Numerical Investigation of CH publication-title: Combust. Sci. Technol. – volume: 144 start-page: 53 year: 2006 end-page: 63 ident: b12 article-title: Flammability limits of NH3–H2–N2–air mixtures at elevated initial temperatures publication-title: Combust. Flame – volume: 40 year: 2024 ident: b30 article-title: Effects of radiative heat loss on extinction limits of counterflow premixed ammonia-air flames publication-title: Proc. Combust. Inst. – volume: 109 start-page: 639 year: 1997 end-page: 646 ident: b47 article-title: Radiation extinction limit of counterflow premixed lean methane-air flames publication-title: Combust. Flame – volume: 177 start-page: 15 year: 2016 end-page: 30 ident: b39 article-title: HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 37 start-page: 1741 year: 2019 end-page: 1748 ident: b32 article-title: Effects of radiation heat loss on laminar premixed ammonia/air flames publication-title: Proc. Combust. Inst. – volume: 260 year: 2024 ident: b24 article-title: The combustion chemistry of ammonia and ammonia/hydrogen mixtures: A comprehensive chemical kinetic modeling study publication-title: Combust. Flame – year: 1952 ident: b11 article-title: Limits of Flammability of Gases and Vapors – year: 2018 ident: b35 article-title: Chemically reacting flow: theory, modeling, and simulation – volume: 38 start-page: 5155 year: 2021 end-page: 5162 ident: b5 article-title: NO and OH* emission characteristics of very-lean to stoichiometric ammonia–hydrogen–air swirl flames publication-title: Proc. Combust. Inst. – volume: 234 year: 2021 ident: b23 article-title: Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust. Flame – volume: 249 year: 2023 ident: b16 article-title: Investigation on lean blow-off characteristics and stabilization mechanism of premixed hydrogen enhanced ammonia/air swirl flames in a gas turbine combustor publication-title: Combust. Flame – volume: 38 start-page: 6451 year: 2021 end-page: 6459 ident: b26 article-title: An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions publication-title: Proc. Combust. Inst. – volume: 332 year: 2023 ident: b13 article-title: A review on ammonia blends combustion for industrial applications publication-title: Fuel – volume: 40 year: 2024 ident: b28 article-title: Effects of reactants stratification and pre-heating on the stabilization and emissions of partially cracked ammonia swirl flames publication-title: Proc. Combust. Inst. – volume: 38 start-page: 5139 year: 2021 end-page: 5146 ident: b6 article-title: Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall publication-title: Proc. Combust. Inst. – volume: 213 start-page: 1 year: 2020 end-page: 13 ident: b21 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/Syngas/air premixed flames publication-title: Combust. Flame – volume: 85 start-page: 503 year: 2015 end-page: 510 ident: b29 article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures publication-title: Energy – volume: 22 start-page: 1615 year: 1989 end-page: 1623 ident: b38 article-title: On the mechanisms of flame propagation limits and extinguishment-processes at microgravity publication-title: Symp. (Int.) Combust. – volume: 113 start-page: 603 year: 1998 end-page: 614 ident: b48 article-title: Flame Bifurcations and Flammable Regions of Radiative Counterflow Premixed Flames with General Lewis Numbers publication-title: Combust. Flame – volume: 37 start-page: 4151 year: 2023 end-page: 4197 ident: b8 article-title: Flammability limits: a comprehensive review of theory, experiments, and estimation methods publication-title: Energy Fuel – volume: 10 year: 2022 ident: b3 article-title: Review on the recent advances on ammonia combustion from the fundamentals to the applications publication-title: Fuel Commun. – volume: 5 start-page: 696 year: 2020 end-page: 711 ident: b22 article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia publication-title: React. Chem. Eng. – year: 2006 ident: b19 article-title: Combustion Physics – volume: 5 start-page: 305 year: 1989 end-page: 331 ident: b43 article-title: Adaptive continuation algorithms with application to combustion problems publication-title: Appl. Numer. Math. – volume: 62 start-page: 107 year: 1985 end-page: 119 ident: b10 article-title: Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities publication-title: Combust. Flame – volume: 226 start-page: 362 year: 2021 end-page: 379 ident: b15 article-title: Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames publication-title: Combust. Flame – year: 2024 ident: b44 article-title: Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes – volume: 35 start-page: 6964 year: 2021 end-page: 7029 ident: b2 article-title: Review on Ammonia as a Potential Fuel: From Synthesis to Economics publication-title: Energy Fuel – volume: 237 start-page: 50 year: 2019 end-page: 59 ident: b25 article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors publication-title: Fuel – volume: 162 start-page: 3580 year: 2015 ident: 10.1016/j.combustflame.2025.114248_b50 article-title: Numerical simulations of premixed cool flames of dimethyl ether/oxygen mixtures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.06.014 – volume: 54 start-page: 257 year: 2001 ident: 10.1016/j.combustflame.2025.114248_b7 article-title: Combustion Limits publication-title: Appl. Mech. Rev. doi: 10.1115/1.3097297 – volume: 144 start-page: 53 year: 2006 ident: 10.1016/j.combustflame.2025.114248_b12 article-title: Flammability limits of NH3–H2–N2–air mixtures at elevated initial temperatures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.06.010 – volume: 50 start-page: 2956 year: 2004 ident: 10.1016/j.combustflame.2025.114248_b46 article-title: Timeintegrated pointers for enabling the analysis of detailed reaction mechanisms publication-title: AIChE J. doi: 10.1002/aic.10263 – volume: 38 start-page: 5155 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b5 article-title: NO and OH* emission characteristics of very-lean to stoichiometric ammonia–hydrogen–air swirl flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.275 – volume: 5 start-page: 305 year: 1989 ident: 10.1016/j.combustflame.2025.114248_b43 article-title: Adaptive continuation algorithms with application to combustion problems publication-title: Appl. Numer. Math. doi: 10.1016/0168-9274(89)90013-5 – volume: 20 start-page: 259 year: 1973 ident: 10.1016/j.combustflame.2025.114248_b9 article-title: Flammability limits: an invited review publication-title: Combust. Flame doi: 10.1016/S0010-2180(73)80180-4 – year: 2006 ident: 10.1016/j.combustflame.2025.114248_b19 – volume: 237 start-page: 50 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b25 article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors publication-title: Fuel doi: 10.1016/j.fuel.2018.09.131 – volume: 40 year: 2024 ident: 10.1016/j.combustflame.2025.114248_b28 article-title: Effects of reactants stratification and pre-heating on the stabilization and emissions of partially cracked ammonia swirl flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2024.105231 – volume: 10 year: 2022 ident: 10.1016/j.combustflame.2025.114248_b3 article-title: Review on the recent advances on ammonia combustion from the fundamentals to the applications publication-title: Fuel Commun. doi: 10.1016/j.jfueco.2022.100053 – volume: 206 start-page: 214 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b20 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.05.003 – year: 2018 ident: 10.1016/j.combustflame.2025.114248_b35 – volume: 35 start-page: 6964 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b2 article-title: Review on Ammonia as a Potential Fuel: From Synthesis to Economics publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c03685 – volume: 38 start-page: 5139 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b6 article-title: Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.142 – volume: 248 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b27 article-title: Stability and emission characteristics of ammonia-air flames in a lean-lean fuel staging tangential injection combustor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.112593 – volume: 256 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b42 article-title: Chemical insights into the two-stage ignition behavior of NH3/H2 mixtures in an RCM publication-title: Combust. Flame doi: 10.1016/j.combustflame.2023.112985 – volume: 232 start-page: 35 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b41 article-title: Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2019.04.040 – volume: 27 start-page: 2619 year: 1998 ident: 10.1016/j.combustflame.2025.114248_b37 article-title: Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(98)80116-1 – volume: 62 start-page: 107 year: 1985 ident: 10.1016/j.combustflame.2025.114248_b10 article-title: Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities publication-title: Combust. Flame doi: 10.1016/0010-2180(85)90139-7 – volume: 396 year: 2025 ident: 10.1016/j.combustflame.2025.114248_b33 article-title: Gas radiation characteristics of non-premixed ammonia–oxygen–nitrogen turbulent jet flames and comparison with methane jet flames under oxygen-enriched conditions publication-title: Fuel doi: 10.1016/j.fuel.2025.135274 – volume: 249 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b16 article-title: Investigation on lean blow-off characteristics and stabilization mechanism of premixed hydrogen enhanced ammonia/air swirl flames in a gas turbine combustor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.112600 – volume: 85 start-page: 503 year: 2015 ident: 10.1016/j.combustflame.2025.114248_b29 article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures publication-title: Energy doi: 10.1016/j.energy.2015.03.061 – volume: 337 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b51 article-title: Analysis of low emission characteristics of NH3/H2/air mixtures under low temperature combustion conditions publication-title: Fuel doi: 10.1016/j.fuel.2022.126879 – volume: 177 start-page: 15 year: 2016 ident: 10.1016/j.combustflame.2025.114248_b39 article-title: HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2016.03.005 – volume: 22 start-page: 1615 year: 1989 ident: 10.1016/j.combustflame.2025.114248_b38 article-title: On the mechanisms of flame propagation limits and extinguishment-processes at microgravity publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(89)80173-0 – volume: 260 year: 2024 ident: 10.1016/j.combustflame.2025.114248_b24 article-title: The combustion chemistry of ammonia and ammonia/hydrogen mixtures: A comprehensive chemical kinetic modeling study publication-title: Combust. Flame doi: 10.1016/j.combustflame.2023.113239 – year: 1952 ident: 10.1016/j.combustflame.2025.114248_b11 – volume: 23 start-page: 423 year: 1991 ident: 10.1016/j.combustflame.2025.114248_b36 article-title: Effects of radiative and diffusive transport processes on premixed flames near flammability limits publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(06)80287-0 – year: 2024 ident: 10.1016/j.combustflame.2025.114248_b44 – volume: 332 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b13 article-title: A review on ammonia blends combustion for industrial applications publication-title: Fuel doi: 10.1016/j.fuel.2022.126150 – volume: 123 start-page: 140 year: 2000 ident: 10.1016/j.combustflame.2025.114248_b17 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust. Flame doi: 10.1016/S0010-2180(00)00152-8 – volume: 41 start-page: 1 year: 2014 ident: 10.1016/j.combustflame.2025.114248_b18 article-title: Recent advances in understanding of flammability characteristics of hydrogen publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2013.10.002 – volume: 5 start-page: 696 year: 2020 ident: 10.1016/j.combustflame.2025.114248_b22 article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia publication-title: React. Chem. Eng. doi: 10.1039/C9RE00429G – volume: 37 start-page: 109 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b1 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.029 – volume: 135 start-page: 49 year: 1998 ident: 10.1016/j.combustflame.2025.114248_b52 article-title: Numerical Investigation of CH4 /CO2 /Air and CH4 /CO2 /O2 Counterflow Premixed Flames with Radiation Reabsorption publication-title: Combust. Sci. Technol. doi: 10.1080/00102209808924149 – volume: 37 start-page: 4151 year: 2023 ident: 10.1016/j.combustflame.2025.114248_b8 article-title: Flammability limits: a comprehensive review of theory, experiments, and estimation methods publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.2c03598 – volume: 42 start-page: 14010 year: 2017 ident: 10.1016/j.combustflame.2025.114248_b4 article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.01.046 – volume: 234 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b23 article-title: Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111653 – volume: 342 start-page: 315 year: 1997 ident: 10.1016/j.combustflame.2025.114248_b49 article-title: On the extinction limit and flammability limit of non-adiabatic stretched methane–air premixed flames publication-title: J. Fluid Mech. doi: 10.1017/S0022112097005636 – volume: 37 start-page: 1791 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b34 article-title: Dynamics and burning limits of near-limit hot, warm, and cool diffusion flames of dimethyl ether at elevated pressures publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.05.082 – volume: 266 year: 2024 ident: 10.1016/j.combustflame.2025.114248_b31 article-title: Existence and chemistry of stretched ammonia/hydrogen weak flames at elevated pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2024.113528 – volume: 113 start-page: 603 year: 1998 ident: 10.1016/j.combustflame.2025.114248_b48 article-title: Flame Bifurcations and Flammable Regions of Radiative Counterflow Premixed Flames with General Lewis Numbers publication-title: Combust. Flame doi: 10.1016/S0010-2180(97)00270-8 – volume: 109 start-page: 639 year: 1997 ident: 10.1016/j.combustflame.2025.114248_b47 article-title: Radiation extinction limit of counterflow premixed lean methane-air flames publication-title: Combust. Flame doi: 10.1016/S0010-2180(97)00050-3 – volume: 45 start-page: 22008 year: 2020 ident: 10.1016/j.combustflame.2025.114248_b14 article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.05.236 – volume: 40 year: 2024 ident: 10.1016/j.combustflame.2025.114248_b30 article-title: Effects of radiative heat loss on extinction limits of counterflow premixed ammonia-air flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2024.105569 – volume: 111 start-page: 2139 year: 2010 ident: 10.1016/j.combustflame.2025.114248_b40 article-title: HITEMP, the high-temperature molecular spectroscopic database publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2010.05.001 – volume: 91 start-page: 365 year: 1994 ident: 10.1016/j.combustflame.2025.114248_b45 article-title: Derivation of a global chemical kinetic mechanism for methane ignition and combustion publication-title: J. Chim. Phys. doi: 10.1051/jcp/1994910365 – volume: 37 start-page: 1741 year: 2019 ident: 10.1016/j.combustflame.2025.114248_b32 article-title: Effects of radiation heat loss on laminar premixed ammonia/air flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.06.138 – volume: 213 start-page: 1 year: 2020 ident: 10.1016/j.combustflame.2025.114248_b21 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/Syngas/air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.11.032 – volume: 226 start-page: 362 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b15 article-title: Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.12.021 – volume: 38 start-page: 6451 year: 2021 ident: 10.1016/j.combustflame.2025.114248_b26 article-title: An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.310 |
SSID | ssj0007433 |
Score | 2.4714057 |
Snippet | In this study, one-dimensional detailed simulations of stretched premixed counterflow flames are conducted to investigate the flame extinction, bifurcations,... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114248 |
SubjectTerms | Ammonia Burning limits Hydrogen Premixed counterflow Radiation Weak flame |
Title | On the extinction and burning limits of stretched premixed ammonia flames at elevated pressures |
URI | https://dx.doi.org/10.1016/j.combustflame.2025.114248 |
Volume | 279 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jHtSD6FScP0YOXuvaLE2Tg4cxlKk4Lw52K0nTQEW6sXbgyb_d9_oDJ3gQvLUlCeF74XuP9H3vEXKtApMynvqectJ5nJkAeNA3nhMySv0wFYKj3vl5JqZz_rgIFx0yabUwmFbZcH_N6RVbN1-GDZrDVZahxhfbUkt04uAkxQIV7DzCU37z-Z3mAR6y_ssMfIOj28KjVY4XrG02RekAfCyZyUIsncuwF9BvTmrL8dwfkoMmYqTjelNHpJPmPbI7aRu19cj-Vk3BYxK_5BSCOgqkm-WVaIHq3FLADm9A6DsKmgq6dBRVImgyS1drWOsDHjQeykzTaqcF1SVF9TlEo9WYAi8TixMyv797nUy9pouClzChSo_ZQLswFIlTylnOR2KUGI0dEMER-cz5VrpAMOckOn9uUm208SNrAyVD6ezolHTzZZ6eEQqxlJMaLGsM48JPFEtUAvFABDGRTqKoT0YtbPGqLpYRt1lkb_E22DGCHddg98lti3D8w_QxsPof5p__c_4F2cO3OnHsknTL9Sa9gkijNIPqKA3IzvjhaTr7AtUc1dc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qe6geRKti_dyD12CyTTbJwUMpltZ-eKnQ27KbZKEiaWlS8Oc7kw-p4EHwFpLsEt4u7w2beTMAD6GjE-4mthWawFgu1w7yoK0tIwI_sb1ECJf8zrO5GL25L0tv2YBB7YWhtMqK-0tOL9i6uvNYofm4Wa3I40ttqQMScRRJsTyAFlWn8prQ6o8no_k3IaNIlj-akXJoQF17tEjzwun1LssN4k9VM7lH1XM5tQP6Taf2tGd4AsdV0Mj65XedQiNJO9Ae1L3aOnC0V1bwDORryjCuY8i7q7TwLTCVxgzho0MQ9kGepoytDSOjCK1azDZbnOsTLxTty5VixZdmTOWMDOgYkBbvZHSemJ3D2_B5MRhZVSMFK-IizC0eO8p4nohMGJrYdXuiF2lFTRBRi2xu7DgwjuDGBKT_rk6UVtr249gJAy8wce8Cmuk6TS6BYThlAoWLqzV3hR2FPAojDAl8DItU5Ptd6NWwyU1ZL0PWiWTvch9sSWDLEuwuPNUIyx-rL5HY_zD-6p_j76E9WsymcjqeT67hkJ6UeWQ30My3u-QWA49c31Ub6wsv89iI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+extinction+and+burning+limits+of+stretched+premixed+ammonia+flames+at+elevated+pressures&rft.jtitle=Combustion+and+flame&rft.au=Xie%2C+Shumeng&rft.au=Zhang%2C+Huangwei&rft.date=2025-09-01&rft.issn=0010-2180&rft.volume=279&rft.spage=114248&rft_id=info:doi/10.1016%2Fj.combustflame.2025.114248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2025_114248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |