Bayesian Hierarchical Modelling for Uncertainty Quantification in Operational Thermal Resistance of LED Systems

Remaining useful life (RUL) prediction is central to prognostics and reliability assessment of light-emitting diode (LED) systems. Their unknown long-term service life remaining when subject to specific operating conditions is affected by various sources of uncertainty stemming from production of in...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 19; p. 10063
Main Authors Dvorzak, Michaela, Magnien, Julien, Kleb, Ulrike, Kraker, Elke, Mücke, Manfred
Format Journal Article
LanguageEnglish
Published MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app121910063

Cover

Loading…
Abstract Remaining useful life (RUL) prediction is central to prognostics and reliability assessment of light-emitting diode (LED) systems. Their unknown long-term service life remaining when subject to specific operating conditions is affected by various sources of uncertainty stemming from production of individual system components, application of the whole system, measurement and operation. To enhance the reliability of model-based predictions, it is essential to account for all of these uncertainties in a systematic manner. This paper proposes a Bayesian hierarchical modelling framework for inverse uncertainty quantification (UQ) in LED operation under thermal loading. The main focus is on the LED systems’ operational thermal resistances, which are subject to system and application variability. Posterior inference is based on a Markov chain Monte Carlo (MCMC) sampling scheme using the Metropolis–Hastings (MH) algorithm. Performance of the method is investigated for simulated data, which allow to focus on different UQ aspects in applications. Findings from an application scenario in which the impact of disregarded uncertainty on RUL prediction is discussed highlight the need for a comprehensive UQ to allow for reliable predictions.
AbstractList Remaining useful life (RUL) prediction is central to prognostics and reliability assessment of light-emitting diode (LED) systems. Their unknown long-term service life remaining when subject to specific operating conditions is affected by various sources of uncertainty stemming from production of individual system components, application of the whole system, measurement and operation. To enhance the reliability of model-based predictions, it is essential to account for all of these uncertainties in a systematic manner. This paper proposes a Bayesian hierarchical modelling framework for inverse uncertainty quantification (UQ) in LED operation under thermal loading. The main focus is on the LED systems’ operational thermal resistances, which are subject to system and application variability. Posterior inference is based on a Markov chain Monte Carlo (MCMC) sampling scheme using the Metropolis–Hastings (MH) algorithm. Performance of the method is investigated for simulated data, which allow to focus on different UQ aspects in applications. Findings from an application scenario in which the impact of disregarded uncertainty on RUL prediction is discussed highlight the need for a comprehensive UQ to allow for reliable predictions.
Author Mücke, Manfred
Dvorzak, Michaela
Kleb, Ulrike
Magnien, Julien
Kraker, Elke
Author_xml – sequence: 1
  givenname: Michaela
  surname: Dvorzak
  fullname: Dvorzak, Michaela
– sequence: 2
  givenname: Julien
  orcidid: 0000-0001-5188-8845
  surname: Magnien
  fullname: Magnien, Julien
– sequence: 3
  givenname: Ulrike
  surname: Kleb
  fullname: Kleb, Ulrike
– sequence: 4
  givenname: Elke
  orcidid: 0000-0001-7734-5603
  surname: Kraker
  fullname: Kraker, Elke
– sequence: 5
  givenname: Manfred
  orcidid: 0000-0002-3960-4296
  surname: Mücke
  fullname: Mücke, Manfred
BookMark eNptkdlKQzEQhoMouN75AHkAq1lOU3PpbqEiLr0Oc5JJjZwmJYkXfXvjBiLOzSz8388Ms0s2Y4pIyCFnx1JqdgKrFRdcc8aU3CA7gk3USHZ8svmr3iYHpbyyFprLU852SDqHNZYAkd4GzJDtS7Aw0LvkcBhCXFCfMp1Hi7lCiHVNH94g1uCbqoYUaYj0ftXAj6Zxzy-Yly0_Ns9SoXE0eTq7uqRP61JxWfbJloeh4MF33iPz66vni9vR7P5menE2G1mhdB1xhu4UNR8rmDCtgUNnvZBWi94p6NtYWM7RWcnQN4XoUXXOAdcWeuGc3CPTL1-X4NWsclhCXpsEwXwOUl4YyDXYAU0_8dBp5TiwrgMtNIBSY-eZkAgOsXmJLy-bUykZvbGhfl5cM4TBcGY-PmB-f6BBR3-gnyX-lb8DLkKMHQ
CitedBy_id crossref_primary_10_3390_app13031938
crossref_primary_10_1007_s00501_024_01457_5
crossref_primary_10_1016_j_microrel_2024_115399
crossref_primary_10_3389_fsuep_2024_1343339
Cites_doi 10.1201/b16018
10.1016/j.jmsy.2022.05.010
10.1016/j.sse.2015.05.039
10.1002/9780470684023
10.1016/j.microrel.2011.07.063
10.1080/09506608.2019.1565716
10.1007/978-3-319-23395-6
10.1016/j.eswa.2014.10.021
10.1016/j.ress.2022.108710
10.1109/TDMR.2016.2516044
10.3390/geosciences12010027
10.1093/oso/9780198522195.001.0001
10.1109/RAM.2017.7889736
10.1109/THERMINIC49743.2020.9420536
10.1016/B978-0-12-396502-8.00018-8
10.1016/j.ress.2017.11.020
10.3390/sym14061219
10.1007/978-1-4614-3067-4
10.1016/j.strusafe.2008.06.020
10.1111/j.2517-6161.1968.tb00722.x
10.3390/mi3010078
10.1109/EuroSimE.2015.7103167
10.1016/j.engappai.2020.103678
10.1117/12.2240464
10.1201/9781420011456
10.1177/0049124103257303
10.1063/1.1699114
10.1007/978-3-319-11259-6
10.1007/978-3-319-12385-1
10.1515/9780691214696
10.1080/00224065.2014.11917951
10.1109/TDMR.2012.2190415
10.1007/978-1-4471-4588-2
10.1137/1.9780898717921
10.1002/lpor.202000254
10.1016/j.eswa.2021.115627
10.1016/j.ejor.2010.11.018
10.1137/100788604
10.1080/10618600.2017.1407325
10.1016/j.ress.2015.11.009
10.1093/biomet/57.1.97
10.1007/978-1-4757-4286-2
10.36001/ijphm.2015.v6i4.2289
10.1016/j.probengmech.2015.09.007
10.1076/iaij.4.1.5.16466
10.1016/j.microrel.2018.01.005
10.1109/ICEPT52650.2021.9568181
10.1016/j.ress.2015.05.009
10.1109/TPEL.2020.3024914
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/app121910063
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b7fa496d1a044a929aa665df023eadee
10_3390_app121910063
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PUEGO
ID FETCH-LOGICAL-c269t-10ed8e9156a7099a1a4cf23c92bd6ab56a2c11edc30ef7092be64dda19cab2dd3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:23:01 EDT 2025
Tue Jul 01 00:41:38 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c269t-10ed8e9156a7099a1a4cf23c92bd6ab56a2c11edc30ef7092be64dda19cab2dd3
ORCID 0000-0002-3960-4296
0000-0001-5188-8845
0000-0001-7734-5603
OpenAccessLink https://doaj.org/article/b7fa496d1a044a929aa665df023eadee
ParticipantIDs doaj_primary_oai_doaj_org_article_b7fa496d1a044a929aa665df023eadee
crossref_citationtrail_10_3390_app121910063
crossref_primary_10_3390_app121910063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_58
Durand (ref_10) 2016; 16
ref_13
ref_56
ref_55
Umlauf (ref_44) 2018; 27
ref_53
ref_51
ref_19
ref_18
ref_15
Ibrahim (ref_42) 2021; 185
Li (ref_38) 2014; 46
Hastings (ref_61) 1970; 57
Bahrami (ref_1) 2020; 65
Mishra (ref_29) 2018; 172
ref_25
Geyer (ref_68) 1992; 7
ref_23
ref_67
ref_22
ref_66
ref_21
ref_65
Vazquez (ref_5) 2015; 111
ref_20
ref_26
Siddique (ref_11) 2022; 12
Dai (ref_28) 2022; 226
Lynch (ref_60) 2004; 32
Ibrahim (ref_33) 2020; 14
Dempster (ref_48) 1968; 30
ref_36
Sutharssan (ref_35) 2012; 3
Fan (ref_34) 2012; 12
ref_30
Qian (ref_8) 2016; 147
Zhao (ref_37) 2021; 36
Kiureghian (ref_14) 2009; 31
Peharz (ref_57) 2014; Volume 1
Si (ref_32) 2011; 213
Lall (ref_39) 2015; 137
(ref_63) 2019; 2019
Allmaras (ref_54) 2013; 55
Ferreira (ref_31) 2022; 63
Nagel (ref_24) 2016; 43
Fan (ref_40) 2015; 42
ref_47
ref_46
ref_45
ref_43
Fink (ref_17) 2020; 92
ref_41
Andrade (ref_27) 2015; 142
Gilks (ref_59) 1994; 43
ref_2
Metropolis (ref_62) 1953; 21
Magnien (ref_52) 2018; 82
ref_49
Chang (ref_3) 2012; 52
ref_9
Walker (ref_12) 2003; 4
Zhang (ref_16) 2020; 2020
ref_4
ref_7
ref_6
Roberts (ref_64) 1997; 7
References_xml – ident: ref_9
– ident: ref_23
  doi: 10.1201/b16018
– volume: 63
  start-page: 550
  year: 2022
  ident: ref_31
  article-title: Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.05.010
– ident: ref_55
– volume: 43
  start-page: 169
  year: 1994
  ident: ref_59
  article-title: A language and program for complex Bayesian modelling
  publication-title: J. R. Stat. Soc. Ser. D
– volume: 111
  start-page: 111
  year: 2015
  ident: ref_5
  article-title: High-power UV-LED degradation: Continuous and cycled working condition influence
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2015.05.039
– ident: ref_58
  doi: 10.1002/9780470684023
– ident: ref_26
– ident: ref_51
– volume: 52
  start-page: 762
  year: 2012
  ident: ref_3
  article-title: Light emitting diodes reliability review
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2011.07.063
– volume: 65
  start-page: 102
  year: 2020
  ident: ref_1
  article-title: Degradation of optical materials in solid-state lighting systems
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2019.1565716
– ident: ref_15
  doi: 10.1007/978-3-319-23395-6
– volume: 42
  start-page: 2411
  year: 2015
  ident: ref_40
  article-title: Predicting long-term lumen maintenance life of LED light sources using a particle filter-based prognostic approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.021
– volume: 226
  start-page: 108710
  year: 2022
  ident: ref_28
  article-title: Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108710
– ident: ref_65
– volume: 16
  start-page: 80
  year: 2016
  ident: ref_10
  article-title: Power Cycling Reliability of Power Module: A Survey
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2016.2516044
– volume: 137
  start-page: 021002:1
  year: 2015
  ident: ref_39
  article-title: Assessment of lumen degradation and remaining life of light-emitting diodes using physics-based indicators and particle filter
  publication-title: AMSE J. Electron. Packag.
– volume: 12
  start-page: 27:1
  year: 2022
  ident: ref_11
  article-title: A Survey of Uncertainty Quantification in Machine Learning for Space Weather Prediction
  publication-title: Geosciences
  doi: 10.3390/geosciences12010027
– ident: ref_56
  doi: 10.1093/oso/9780198522195.001.0001
– ident: ref_30
  doi: 10.1109/RAM.2017.7889736
– ident: ref_43
  doi: 10.1109/THERMINIC49743.2020.9420536
– volume: Volume 1
  start-page: 989
  year: 2014
  ident: ref_57
  article-title: Introduction to probabilistic graphical models
  publication-title: Academic Press Library in Signal Processing: Signal Processing Theory and Machine Learning
  doi: 10.1016/B978-0-12-396502-8.00018-8
– volume: 172
  start-page: 25
  year: 2018
  ident: ref_29
  article-title: Bayesian hierarchical model-based prognostics for lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.020
– ident: ref_47
  doi: 10.3390/sym14061219
– ident: ref_2
  doi: 10.1007/978-1-4614-3067-4
– volume: 31
  start-page: 105
  year: 2009
  ident: ref_14
  article-title: Aleatory or epistemic? Does it matter?
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.020
– volume: 30
  start-page: 205
  year: 1968
  ident: ref_48
  article-title: A generalization of Bayesian inference
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1968.tb00722.x
– volume: 3
  start-page: 78
  year: 2012
  ident: ref_35
  article-title: Prognostics and Health Monitoring of High Power LED
  publication-title: Micromachines
  doi: 10.3390/mi3010078
– volume: 7
  start-page: 473
  year: 1992
  ident: ref_68
  article-title: Practical Markov Chain Monte Carlo
  publication-title: Stat. Sci.
– ident: ref_41
  doi: 10.1109/EuroSimE.2015.7103167
– volume: 7
  start-page: 110
  year: 1997
  ident: ref_64
  article-title: Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms
  publication-title: Ann. Appl. Probab.
– ident: ref_66
– volume: 92
  start-page: 103678
  year: 2020
  ident: ref_17
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103678
– ident: ref_7
  doi: 10.1117/12.2240464
– volume: 2019
  start-page: 8740426
  year: 2019
  ident: ref_63
  article-title: Hierarchical Models and Tuning of Random Walk Metropolis Algorithms
  publication-title: J. Probab. Stat.
– ident: ref_20
– ident: ref_13
  doi: 10.1201/9781420011456
– volume: 32
  start-page: 301
  year: 2004
  ident: ref_60
  article-title: Bayesian Posterior Predictive Checks for Complex Models
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124103257303
– volume: 21
  start-page: 1087
  year: 1953
  ident: ref_62
  article-title: Equations of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– ident: ref_25
  doi: 10.1007/978-3-319-11259-6
– ident: ref_45
  doi: 10.1007/978-3-319-12385-1
– ident: ref_49
  doi: 10.1515/9780691214696
– ident: ref_67
– volume: 46
  start-page: 1
  year: 2014
  ident: ref_38
  article-title: Application of Bayesian Methods in Reliability Data Analyses
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2014.11917951
– volume: 12
  start-page: 470
  year: 2012
  ident: ref_34
  article-title: Lifetime estimation of high-power white LED using degradation-data-driven method
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2012.2190415
– ident: ref_46
  doi: 10.1007/978-1-4471-4588-2
– ident: ref_53
  doi: 10.1137/1.9780898717921
– volume: 14
  start-page: 200254:1
  year: 2020
  ident: ref_33
  article-title: Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light-Emitting Diodes
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202000254
– volume: 185
  start-page: 115627:1
  year: 2021
  ident: ref_42
  article-title: Bayesian based lifetime prediction for high-power white LEDs
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115627
– ident: ref_21
– volume: 213
  start-page: 1
  year: 2011
  ident: ref_32
  article-title: Remaining useful life estimation - A review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– volume: 55
  start-page: 149
  year: 2013
  ident: ref_54
  article-title: Estimating parameters in physical models through Bayesian inversion: A complete example
  publication-title: SIAM Rev.
  doi: 10.1137/100788604
– volume: 27
  start-page: 612
  year: 2018
  ident: ref_44
  article-title: BAMLSS: Bayesian Additive Models for Location, Scale, and Shape (and Beyond)
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2017.1407325
– volume: 147
  start-page: 84
  year: 2016
  ident: ref_8
  article-title: An accelerated test method of luminous flux depreciation for LED luminaires and lamps
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.11.009
– volume: 57
  start-page: 97
  year: 1970
  ident: ref_61
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– ident: ref_6
– ident: ref_19
  doi: 10.1007/978-1-4757-4286-2
– ident: ref_50
– ident: ref_18
  doi: 10.36001/ijphm.2015.v6i4.2289
– volume: 43
  start-page: 68
  year: 2016
  ident: ref_24
  article-title: A unified framework for multilevel uncertainty quantification in Bayesian inverse problems
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2015.09.007
– volume: 4
  start-page: 5
  year: 2003
  ident: ref_12
  article-title: Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support
  publication-title: Integr. Assess.
  doi: 10.1076/iaij.4.1.5.16466
– volume: 82
  start-page: 84
  year: 2018
  ident: ref_52
  article-title: Parameter driven monitoring for a flip-chip LED module under power cycling condition
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.01.005
– volume: 2020
  start-page: 6068203:1
  year: 2020
  ident: ref_16
  article-title: Basic Framework and Main Methods of Uncertainty Quantification
  publication-title: Math. Probl. Eng.
– ident: ref_36
  doi: 10.1109/ICEPT52650.2021.9568181
– volume: 142
  start-page: 169
  year: 2015
  ident: ref_27
  article-title: Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.05.009
– ident: ref_22
– volume: 36
  start-page: 4633
  year: 2021
  ident: ref_37
  article-title: An Overview of Artificial Intelligence Applications for Power Electronics
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3024914
– ident: ref_4
  doi: 10.1007/978-1-4614-3067-4
SSID ssj0000913810
Score 2.24719
Snippet Remaining useful life (RUL) prediction is central to prognostics and reliability assessment of light-emitting diode (LED) systems. Their unknown long-term...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 10063
SubjectTerms Bayesian hierarchical modelling
LED system
power cycling
remaining useful life
thermal resistance
uncertainty quantification
Title Bayesian Hierarchical Modelling for Uncertainty Quantification in Operational Thermal Resistance of LED Systems
URI https://doaj.org/article/b7fa496d1a044a929aa665df023eadee
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6iFz2I9YHPkoOCIotNNpvuHq1WivjGgrclj1kolLbo9uC_dya7lvUgXryG2RAmk_lmNpNvGDtGjLXedG2kvIZIpQlExDIVKQ0itYlEd0iJ4v2DHgzV7Vvy1mj1RTVhFT1wpbgL2y2MyrQXpqOUQTA3RuvEF4g1VOsL5H0R8xrJVPDBmSDqqqrSPca8nu6DBZ5OQZj8A4MaVP0BU2422HodDPLLahEttgSTTbbWoAjcZK368H3w05oh-myLTXvmE-j1Ix-M6AFx6Gcy5tTXLFBsc4xE-RC_Ctf95Sd_npuqKCjsAx9N-OMM3uv_gBxNBd3zmL_gnBQsOuDTgt_1r3nNZ77Nhjf916tBVHdOiJzUWYm-FXwKGeZmposhoBFGuULGLpPWa2NxWDohwLu4AwVKSAtaeW9E5oyV3sc7bHkyncAu41YlGUBSQOJAycJZo2Mf21TZzPtO4fbY-bcuc1fTilN3i3GO6QVpPm9qfo-dLKRnFZ3GL3I92paFDJFghwE0jbw2jfwv09j_j0kO2KqkFw-hfu-QLZfvczjCOKS0bbbS6z88vbSD6X0Bg-Dgog
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Hierarchical+Modelling+for+Uncertainty+Quantification+in+Operational+Thermal+Resistance+of+LED+Systems&rft.jtitle=Applied+sciences&rft.au=Dvorzak%2C+Michaela&rft.au=Magnien%2C+Julien&rft.au=Kleb%2C+Ulrike&rft.au=Kraker%2C+Elke&rft.date=2022-10-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=19&rft.spage=10063&rft_id=info:doi/10.3390%2Fapp121910063&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app121910063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon