Expedient Synthesis of Ketones via N‐Heterocyclic Carbene/Nickel‐Catalyzed Redox‐Economical Coupling of Alcohols and Alkynes
An N‐heterocyclic carbene/Ni‐catalyzed direct coupling of alcohols and internal alkynes for a convenient synthesis of α‐branched ketones is reported. This novel transfer hydrogenation protocol provides an atom‐, and redox‐economical approach to α‐branched ketones, products that are difficult to acce...
Saved in:
Published in | Chinese journal of chemistry Vol. 38; no. 10; pp. 1035 - 1039 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.10.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An N‐heterocyclic carbene/Ni‐catalyzed direct coupling of alcohols and internal alkynes for a convenient synthesis of α‐branched ketones is reported. This novel transfer hydrogenation protocol provides an atom‐, and redox‐economical approach to α‐branched ketones, products that are difficult to access through the hydroacylation of unactivated internal alkenes with aldehydes, in one chemical step.
Summary of main observation and conclusion
An N‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology provides a new approach to afford branched ketones, which are difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox‐neutral and redox‐economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α‐branched ketones in a single chemical step. |
---|---|
AbstractList | Summary of main observation and conclusionAn N‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology provides a new approach to afford branched ketones, which are difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox‐neutral and redox‐economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α‐branched ketones in a single chemical step. An N‐heterocyclic carbene/Ni‐catalyzed direct coupling of alcohols and internal alkynes for a convenient synthesis of α‐branched ketones is reported. This novel transfer hydrogenation protocol provides an atom‐, and redox‐economical approach to α‐branched ketones, products that are difficult to access through the hydroacylation of unactivated internal alkenes with aldehydes, in one chemical step. Summary of main observation and conclusion An N‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology provides a new approach to afford branched ketones, which are difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox‐neutral and redox‐economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α‐branched ketones in a single chemical step. An N ‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology provides a new approach to afford branched ketones, which are difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox‐neutral and redox‐economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α‐branched ketones in a single chemical step. |
Author | Li, Feng Li, Yu‐Qing Shi, Shi‐Liang |
Author_xml | – sequence: 1 givenname: Yu‐Qing surname: Li fullname: Li, Yu‐Qing organization: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Feng surname: Li fullname: Li, Feng organization: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 3 givenname: Shi‐Liang surname: Shi fullname: Shi, Shi‐Liang email: shiliangshi@sioc.ac.cn organization: State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences |
BookMark | eNqFkM9u1DAQxi1UpP6Ba8-WOGdrJ46dHKtooUDVShQkbpEzmVBvXXuxvaXhhHgCnrFPUq8WgYRU4cvYM9_vG_k7JHvOOyTkmLMFZ6w8gZWHRclKlg9vn5EDLrkoFJP1Xr7nXiGZ-LxPDmNcZb1SpTwgP5f3axwNukSvZpeuMZpI_UTfY8rukd4ZTS8efvw6w4TBwwzWAO10GNDhyYWBG7R52umk7fwdR_oBR3-fO0vwzt8a0JZ2frO2xn3Z2p5a8NfeRqrdmB83c97xgjyftI348nc9Ip9eLz92Z8X55Zu33el5AaVs24I3bYP1OOkWQTXVAMPEWy0ZcNUo1ohSDEMNWmEtBgmV3n5wqrioZFWroeXVEXm1810H_3WDMfUrvwkur-xLISrRqKqRWSV2Kgg-xoBTDybpZLxLQRvbc9Zv0-63afd_0s7Y4h9sHcytDvPTQLsDvhmL83_UfffusvvLPgK7fpjA |
CitedBy_id | crossref_primary_10_1002_adsc_202200147 crossref_primary_10_1021_acs_orglett_0c02340 crossref_primary_10_6023_cjoc202101019 crossref_primary_10_1002_ajoc_202100723 crossref_primary_10_1002_cctc_202400633 crossref_primary_10_6023_cjoc202207002 crossref_primary_10_1002_cjoc_202200132 crossref_primary_10_1016_j_xcrp_2023_101602 crossref_primary_10_1021_jacs_2c10785 crossref_primary_10_6023_cjoc202110042 crossref_primary_10_1021_acs_orglett_1c00488 crossref_primary_10_1039_D2CS00972B crossref_primary_10_1021_acs_chemrev_4c00094 crossref_primary_10_1039_D4QO00085D crossref_primary_10_1021_acs_organomet_1c00096 crossref_primary_10_1021_acscatal_3c02209 crossref_primary_10_1021_jacs_2c03614 crossref_primary_10_6023_cjoc202106021 crossref_primary_10_6023_cjoc202401012 crossref_primary_10_1039_D2CC02891C crossref_primary_10_3390_molecules27248977 |
Cites_doi | 10.1002/anie.201812687 10.1016/j.tetlet.2018.01.077 10.1002/anie.201912214 10.1021/cr990281x 10.1021/ja034366y 10.1126/science.1962206 10.1021/ol702543m 10.1002/anie.200806086 10.1021/jo00295a061 10.1039/c1dt11678a 10.1021/ja00821a085 10.1021/acs.orglett.8b02252 10.1039/c1cc10826c 10.1002/anie.201503208 10.1039/c2sc20350b 10.1021/om2010222 10.1002/cjoc.201900252 10.1002/anie.201907387 10.1021/jo00291a035 10.1021/ja905908z 10.1021/ja0542486 10.1021/ja109908x 10.1021/ol9022485 10.1002/cjoc.201900543 10.1021/ja2059999 10.1021/ol070153s 10.1021/acs.chemrev.8b00306 10.1021/jacs.9b00931 10.1002/anie.201102092 10.1002/adsc.201901582 10.1021/ja104505t 10.1039/C4SC02026J 10.1021/cr900096x 10.1039/b926866a 10.1002/anie.201309987 10.1021/ja107198e 10.1021/jacs.9b03280 10.1039/b717261c 10.1021/ar700155p 10.1021/jacs.9b08578 10.1002/anie.201410700 10.1002/chem.201202623 10.1002/anie.201205680 10.1021/ja049644n 10.1039/C9QO00616H 10.1021/cr0103165 10.1021/ja500666h 10.1038/s41467-019-10151-x 10.1021/ja0460716 10.1002/anie.201711229 10.1021/ja211649a 10.1002/anie.201104595 10.1039/C5CC05432J 10.1021/ja901915u 10.1021/ja00496a040 10.1002/anie.201206186 10.1002/cjoc.201900215 10.1021/jacs.6b05344 10.1039/C6QO00023A 10.1021/ja0693183 10.1021/acscatal.8b04198 10.1002/anie.200250378 |
ContentType | Journal Article |
Copyright | 2020 SIOC, CAS, Shanghai and Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 SIOC, CAS, Shanghai and Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cjoc.202000019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1614-7065 |
EndPage | 1039 |
ExternalDocumentID | 10_1002_cjoc_202000019 CJOC202000019 |
Genre | article |
GroupedDBID | -SB -S~ .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 5XA 5XC 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CAJEB CCEZO CDRFL CHBEP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P4D PALCI Q-- Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ U1G U5L W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION TGP AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2699-1898e5dfa9ec783bcbf19a60c178708424bb5ca7e54b6c3a2772f31436357b913 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Jul 25 11:17:58 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 03:35:24 EDT 2025 Wed Jan 22 16:32:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2699-1898e5dfa9ec783bcbf19a60c178708424bb5ca7e54b6c3a2772f31436357b913 |
Notes | † Dedicated to the 30th Anniversary of State Key Laboratory of Organometallic Chemistry. Y.‐Q. Li and F. Li contributed equally ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2443487386 |
PQPubID | 986331 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2443487386 crossref_citationtrail_10_1002_cjoc_202000019 crossref_primary_10_1002_cjoc_202000019 wiley_primary_10_1002_cjoc_202000019_CJOC202000019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationYear | 2020 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2017 2015 2011 2010 2007 2007 2004 2003; 139 54 133 132 129 9 126 125 1990; 55 2019 2019 2014 2012 2011 2009 2020; 9 141 136 48 50 11 38 2019; 6 2005 2004; 127 126 2015 1990; 51 55 2012 2011 2010; 18 133 46 2009 2082 1988 1974; 131 7 96 2018 2019 2019 2019 2016; 20 37 37 10 138 1979 2012 2009 2015 2007 2014 2010 2012; 101 134 131 54 9 53 132 3 2009 2008 1991; 48 41 254 2019; 119 2018 2019 2019 2019 2020; 57 141 141 58 362 2000; 100 2016 2015 2012 2010 1869; 3 6 3 110 2007 2012; 31 2012; 51 e_1_2_3_2_1 e_1_2_3_16_5 e_1_2_3_18_3 e_1_2_3_16_6 e_1_2_3_4_3 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_2_4 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_2_3 e_1_2_3_4_1 e_1_2_3_16_3 e_1_2_3_18_1 e_1_2_3_2_2 e_1_2_3_16_4 e_1_2_3_18_2 e_1_2_3_4_7 Murphy S. K. (e_1_2_3_4_8) 2012; 3 e_1_2_3_8_3 e_1_2_3_12_1 e_1_2_3_4_6 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_4_5 e_1_2_3_8_1 e_1_2_3_12_3 e_1_2_3_14_1 e_1_2_3_4_4 e_1_2_3_10_1 e_1_2_3_8_4 Marder T. B. (e_1_2_3_3_4) 1988; 7 e_1_2_3_9_8 e_1_2_3_9_7 (e_1_2_3_9_1) 2017; 139 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_3_3 e_1_2_3_5_1 e_1_2_3_15_3 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_15_4 e_1_2_3_17_2 e_1_2_3_3_1 e_1_2_3_15_5 e_1_2_3_19_1 e_1_2_3_7_4 e_1_2_3_9_2 e_1_2_3_7_3 e_1_2_3_13_1 e_1_2_3_7_2 e_1_2_3_3_5 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_9_6 e_1_2_3_7_7 e_1_2_3_9_5 e_1_2_3_7_6 e_1_2_3_9_4 e_1_2_3_7_5 e_1_2_3_9_3 e_1_2_3_11_1 Jun C. H. (e_1_2_3_2_5) 1869; 2007 |
References_xml | – volume: 55 start-page: 2554 year: 1990 end-page: 2558 publication-title: J. Org. Chem. – volume: 9 141 136 48 50 11 38 start-page: 1 6869 7797 1538 7022 4244 489 year: 2019 2019 2014 2012 2011 2009 2020 end-page: 6 6874 7800 1540 7026 4247 493 article-title: Nickel/ ‐Heterocyclic Carbene Complex‐Catalyzed Enantioselective Redox‐Neutral Coupling of Benzyl Alcohols and Alkynes to Allylic Alcohols Ketone Synthesis by a Nickel‐Catalyzed Dehydrogenative Cross‐Coupling of Primary Alcohols Nickel‐Catalyzed Redox‐ Economical Coupling of Alcohols and Alkynes to Form Allylic Alcohols Ni‐catalysed, domino synthesis of tertiary alcohols from secondary alcohols Controlled Alcohol–Carbonyl Interconversion by Nickel Catalysis Homogeneous, Anaerobic (N‐Heterocyclic Carbene)−Pd or −Ni Catalyzed Oxidation of Secondary Alcohols at Mild Temperatures Nickel‐Catalyzed Reductive Coupling of Aldehydes with Alkynes Mediated by Alcohol publication-title: ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Commun. Angew. Chem. Int. Ed. Org. Lett. Chin. J. Chem. – volume: 48 41 254 start-page: 2854 40 1471 year: 2009 2008 1991 end-page: 2867 49 1477 article-title: Redox economy in organic synthesis Function‐ Oriented Synthesis, Step Economy, and Drug Design The Atom Economy‐A Search for Synthetic Efficiency publication-title: Angew. Chem. Int. Ed. Acc. Chem. Res. Science – volume: 100 start-page: 2901 year: 2000 end-page: 2915 article-title: Recent Advances in the Transition‐Metal‐ Catalyzed Regioselective Approaches to Polysubstituted Benzene Derivatives publication-title: Chem. Rev. – volume: 51 start-page: 10275 year: 2012 end-page: 10279 article-title: Rhodium‐catalyzed cross‐ aldol reaction: in situ aldehyde‐enolate formation from allyloxyboranes and primary allylic alcohols publication-title: Angew. Chem. Int. Ed. – volume: 51 55 start-page: 13791 1286 year: 2015 1990 end-page: 6240 1291 article-title: Stereoselective hydroacylation of bicyclic alkenes with 2‐hydroxybenzaldehydes catalyzed by hydroxoiridium/diene complexes Ruthenium complex catalyzed intermolecular hydroacylation and transhydroformylation of olefins with aldehydes publication-title: Chem. Commun. J. Org. Chem. – volume: 131 7 96 start-page: 6932 1451 4721 year: 2009 2082 1988 1974 end-page: 6933 1453 4723 article-title: Rh‐Catalyzed Intramolecular Olefin Hydroacylation: Enantioselective Synthesis of Seven‐ and Eight‐Membered Heterocycles Transition‐metal‐catalyzed carbon‐carbon bond formation carbon‐hydrogen activation B. Hydroacylation. Synthesis of ketones from olefins using metal hydride reagents. publication-title: J. Am. Chem. Soc. Intermolecular hydroacylation: the addition of aldehydes to alkenes. Organometallics. Chem. Soc. – volume: 57 141 141 58 362 start-page: 1376 5628 14938 13433 1125 year: 2018 2019 2019 2019 2020 end-page: 1380 5634 14945 13437 1130 article-title: Copper‐Catalyzed Enantioselective Markovnikov Protoboration of α‐Olefins Enabled by a Buttressed ‐Heterocyclic Carbene Ligand Regio‐ and Enantioselective C–H Cyclization of Pyridines with Alkenes Enabled by a Nickel/N‐Heterocyclic Carbene Catalysis A Bulky Chiral N‐Heterocyclic Carbene Palladium Catalyst Enables Highly Enantioselective Suzuki–Miyaura Cross‐Coupling Reactions for the Synthesis of Biaryl Atropisomers Nickel/NHC‐ Catalyzed Enantioselective Cyclization of Pyridones and Pyrimidones with Tethered Alkenes publication-title: Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Adv. Synth. Catal. – volume: 3 6 3 110 2007 start-page: 639 174 2202 725 year: 2016 2015 2012 2010 1869 end-page: 644 180 2209 748 article-title: Recent advances in transition metal‐catalysed hydroacylation of alkenes and alkynes Mechanistic insights into hydroacylation with non‐chelating aldehydes Catalytic intermolecular hydroacylation of C–C π‐bonds in the absence of chelation assistance Transition Metal Catalyzed Alkene and Alkyne Hydroacylation Intermolecular Hydroacylation by Transition‐ Metal Complexes publication-title: Org. Chem. Front. Chem. Sci. Chem. Sci. Chem. Rev. Eur. J. Org. Chem. – volume: 127 126 start-page: 12810 11802 year: 2005 2004 end-page: 12811 11803 article-title: AlMe ‐Promoted Oxidative Cyclization of η ‐Alkene and η ‐Ketone on Nickel(0). Observation of Intermediate in Methyl Transfer Process Direct Observation of Oxidative Cyclization of η ‐Alkene and η ‐Aldehyde on Ni(0) Center. Significant Acceleration by Addition of Me SiOTf. publication-title: J. Am. Chem. Soc. Chem. Soc. – volume: 6 start-page: 2619 year: 2019 end-page: 2623 article-title: Ligandless nickel‐catalyzed transfer hydrogenation of alkenes and alkynes using water as the hydrogen donor publication-title: Org. Chem. Front. – volume: 119 start-page: 2524 year: 2019 end-page: 2549 article-title: 3d‐Metal Catalyzed ‐ and C‐Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer publication-title: Chem. Rev. – volume: 101 134 131 54 9 53 132 3 start-page: 489 4885 12552 8520 1215 2455 16330 355 year: 1979 2012 2009 2015 2007 2014 2010 2012 end-page: 489 4897 12553 8524 1218 2459 16333 358 article-title: Activation of aldehyde carbon‐hydrogen bonds to oxidative addition formation of 3‐methyl‐2‐aminopyridyl aldimines and related compounds: rhodium based catalytic hydroacylation Intermolecular Hydroacylation: High Activity Rhodium Catalysts Containing Small‐Bite‐Angle Diphosphine Ligands Rhodium‐Catalyzed Highly Enantioselective Direct Intermolecular Hydroacylation of 1,1‐Disubstituted Alkenes with Unfunctionalized Aldehydes Well‐Defined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes Substrate‐Directed Hydroacylation: Rhodium‐Catalyzed Coupling of Vinylphenols and Nonchelating Aldehydes Regio‐ and Enantioselective Intermolecular Hydroacylation: Substrate‐Directed Addition of Salicylaldehydes to Homoallylic Sulfides Dong, V publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Angew. Chem. Int. Ed. Org. Lett. Angew. Chem. Int. Ed. J. Am. Chem. Soc. M. β‐hydroxy ketones prepared by regioselective hydroacylation. Chem. Sci. – volume: 139 54 133 132 129 9 126 125 start-page: 9317 2520 14900 10955 2248 5597 3698 3442 year: 2017 2015 2011 2010 2007 2007 2004 2003 end-page: 9324 2524 14903 10957 2249 5599 3699 3443 article-title: Highly Enantioselective Nickel‐Catalyzed Intramolecular Reductive Cyclization of Alkynones Enantioselective Nickel‐Catalyzed Reductive Coupling of Alkynes and Imines Asymmetric Reductive Coupling of Dienes and Aldehydes Catalyzed by Nickel Complexes of Spiro Phosphoramidites: Highly Enantioselective Synthesis of Chiral Bishomoallylic Alcohols Nickel‐Catalyzed Enantio‐ and Diastereoselective Three‐ Component Coupling of 1,3‐Dienes, Aldehydes, and Silanes Using Chiral N‐Heterocyclic Carbenes as Ligands Ligand‐Dependent Scope and Divergent Mechanistic Behavior in Nickel‐Catalyzed Reductive Couplings of Aldehydes and Alkynes Catalytic Asymmetric Reductive Coupling of Alkynes and Aldehydes: Enantioselective Synthesis of Allylic Alcohols and α‐Hydroxy Ketones publication-title: NHC Ligands Tailored for Simultaneous Regio‐ and Enantiocontrol in Nickel‐Catalyzed Reductive Couplings. J. Am. Chem. Soc. Angew. Chem. Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Org. Lett. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 20 37 37 10 138 start-page: 5583 811 887 2327 8404 year: 2018 2019 2019 2019 2016 end-page: 5586 816 891 8407 article-title: Silver/NBS‐Catalyzed Synthesis of α‐Alkylated Aryl Ketones from Internal Alkynes and Benzyl Alcohols Ether Intermediates Ketone Synthesis by Direct, Orthogonal Chemoselective Hydroacylation of Alkenes with Amides: Use of Alkenes as Surrogates of Alkyl Carbanions Cross‐Coupling of Secondary Amides with Tertiary Amides: The Use of Tertiary Amides as Surrogates of Alkyl Carbanions for Ketone Synthesis A redox‐neutral synthesis of ketones by coupling of alkenes and amides A Radical Bidirectional Fragment Coupling Route to Unsymmetrical Ketones publication-title: Org. Lett. Chin. J. Chem. Chin. J. Chem. Nat. Commun. J. Am. Chem. Soc. – volume: 31 start-page: 680 year: 2012 end-page: 686 publication-title: Organometallics – volume: 18 133 46 start-page: 16765 4668 3354 year: 2012 2011 2010 end-page: 16773 4671 3356 article-title: Mechanistic Origin of Cross‐Coupling Selectivity in Ni‐Catalysed Tishchenko Reactions Nickel‐Catalyzed Selective Conversion of Two Different Aldehydes to Cross‐ Coupled Esters Nickel‐catalyzed Tishchenko reaction via hetero‐nickelacycles by oxidative cyclization of aldehydes with nickel(0) complex publication-title: Chem. Eur. J. J. Am. Chem. Soc. Chem. Commun. – ident: e_1_2_3_16_1 doi: 10.1002/anie.201812687 – ident: e_1_2_3_17_1 doi: 10.1016/j.tetlet.2018.01.077 – ident: e_1_2_3_6_1 doi: 10.1002/anie.201912214 – ident: e_1_2_3_11_1 doi: 10.1021/cr990281x – ident: e_1_2_3_9_8 doi: 10.1021/ja034366y – ident: e_1_2_3_18_3 doi: 10.1126/science.1962206 – ident: e_1_2_3_9_6 doi: 10.1021/ol702543m – ident: e_1_2_3_18_1 doi: 10.1002/anie.200806086 – ident: e_1_2_3_10_1 doi: 10.1021/jo00295a061 – ident: e_1_2_3_19_2 doi: 10.1039/c1dt11678a – ident: e_1_2_3_3_5 doi: 10.1021/ja00821a085 – ident: e_1_2_3_16_2 doi: 10.1021/acs.orglett.8b02252 – ident: e_1_2_3_7_4 doi: 10.1039/c1cc10826c – volume: 139 start-page: 9317 year: 2017 ident: e_1_2_3_9_1 publication-title: NHC Ligands Tailored for Simultaneous Regio‐ and Enantiocontrol in Nickel‐Catalyzed Reductive Couplings. J. Am. Chem. Soc. – ident: e_1_2_3_4_4 doi: 10.1002/anie.201503208 – ident: e_1_2_3_2_3 doi: 10.1039/c2sc20350b – ident: e_1_2_3_13_1 doi: 10.1021/om2010222 – ident: e_1_2_3_16_3 doi: 10.1002/cjoc.201900252 – ident: e_1_2_3_15_4 doi: 10.1002/anie.201907387 – ident: e_1_2_3_5_2 doi: 10.1021/jo00291a035 – ident: e_1_2_3_4_3 doi: 10.1021/ja905908z – ident: e_1_2_3_8_3 doi: 10.1021/ja0542486 – ident: e_1_2_3_12_2 doi: 10.1021/ja109908x – ident: e_1_2_3_7_6 doi: 10.1021/ol9022485 – ident: e_1_2_3_7_7 doi: 10.1002/cjoc.201900543 – ident: e_1_2_3_9_3 doi: 10.1021/ja2059999 – ident: e_1_2_3_4_5 doi: 10.1021/ol070153s – ident: e_1_2_3_17_2 doi: 10.1021/acs.chemrev.8b00306 – ident: e_1_2_3_15_2 doi: 10.1021/jacs.9b00931 – ident: e_1_2_3_7_5 doi: 10.1002/anie.201102092 – ident: e_1_2_3_15_5 doi: 10.1002/adsc.201901582 – ident: e_1_2_3_9_4 doi: 10.1021/ja104505t – ident: e_1_2_3_2_2 doi: 10.1039/C4SC02026J – ident: e_1_2_3_2_4 doi: 10.1021/cr900096x – volume: 3 start-page: 355 year: 2012 ident: e_1_2_3_4_8 article-title: Dong, V publication-title: M. β‐hydroxy ketones prepared by regioselective hydroacylation. Chem. Sci. – ident: e_1_2_3_12_3 doi: 10.1039/b926866a – ident: e_1_2_3_4_6 doi: 10.1002/anie.201309987 – ident: e_1_2_3_4_7 doi: 10.1021/ja107198e – ident: e_1_2_3_7_2 doi: 10.1021/jacs.9b03280 – ident: e_1_2_3_8_2 doi: 10.1039/b717261c – ident: e_1_2_3_18_2 doi: 10.1021/ar700155p – volume: 2007 year: 1869 ident: e_1_2_3_2_5 article-title: Intermolecular Hydroacylation by Transition‐ Metal Complexes publication-title: Eur. J. Org. Chem. – ident: e_1_2_3_15_3 doi: 10.1021/jacs.9b08578 – ident: e_1_2_3_9_2 doi: 10.1002/anie.201410700 – ident: e_1_2_3_12_1 doi: 10.1002/chem.201202623 – ident: e_1_2_3_19_3 doi: 10.1002/anie.201205680 – ident: e_1_2_3_9_7 doi: 10.1021/ja049644n – ident: e_1_2_3_14_1 doi: 10.1039/C9QO00616H – ident: e_1_2_3_19_1 doi: 10.1021/cr0103165 – ident: e_1_2_3_7_3 doi: 10.1021/ja500666h – ident: e_1_2_3_16_5 doi: 10.1038/s41467-019-10151-x – ident: e_1_2_3_8_4 doi: 10.1021/ja0460716 – ident: e_1_2_3_15_1 doi: 10.1002/anie.201711229 – ident: e_1_2_3_4_2 doi: 10.1021/ja211649a – ident: e_1_2_3_3_1 doi: 10.1002/anie.201104595 – ident: e_1_2_3_5_1 doi: 10.1039/C5CC05432J – ident: e_1_2_3_3_2 doi: 10.1021/ja901915u – ident: e_1_2_3_4_1 doi: 10.1021/ja00496a040 – ident: e_1_2_3_8_1 doi: 10.1002/anie.201206186 – ident: e_1_2_3_16_4 doi: 10.1002/cjoc.201900215 – ident: e_1_2_3_16_6 doi: 10.1021/jacs.6b05344 – ident: e_1_2_3_2_1 doi: 10.1039/C6QO00023A – volume: 7 start-page: 1451 year: 1988 ident: e_1_2_3_3_4 article-title: Transition‐metal‐catalyzed carbon‐carbon bond formation via carbon‐hydrogen activation publication-title: Intermolecular hydroacylation: the addition of aldehydes to alkenes. Organometallics. – ident: e_1_2_3_9_5 doi: 10.1021/ja0693183 – ident: e_1_2_3_7_1 doi: 10.1021/acscatal.8b04198 – ident: e_1_2_3_3_3 doi: 10.1002/anie.200250378 |
SSID | ssj0027726 |
Score | 2.3086624 |
Snippet | An N‐heterocyclic carbene/Ni‐catalyzed direct coupling of alcohols and internal alkynes for a convenient synthesis of α‐branched ketones is reported. This... An N ‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched ketones has been developed. This methodology... Summary of main observation and conclusionAn N‐heterocyclic carbene/nickel‐catalyzed direct coupling of alcohols and internal alkynes to form α‐branched... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1035 |
SubjectTerms | Additives Alcohol Alcohols Aldehydes Aliphatic alcohols Aliphatic compounds Alkenes Alkynes Basic converters Coupling Hydrogen transfer Ketone synthesis Ketones Nickel Nickel catalysis N‐Heterocyclic carbene ligand |
Title | Expedient Synthesis of Ketones via N‐Heterocyclic Carbene/Nickel‐Catalyzed Redox‐Economical Coupling of Alcohols and Alkynes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202000019 https://www.proquest.com/docview/2443487386 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iD_riXZzOkQfBp7pe0rR53KpjKCh4gb2VJE1lbqxiN3E-ib_A3-gvMae3OUEEfWvS3HOSfAnnfAehQ4_rU10SbsTUiQ2gODeEBypQQticiFhD5Ezb4oJ2b8lZz-19seLP-SGqBzdYGdl-DQuci7Q5Iw2V9wlQENrZ-zRY8IHCFqCiK3t24_Iyf2vAM2RQk_RK1kbTbs5nnz-VZlDzK2DNTpzOGuJlW3NFk8HxZCyO5cs3Gsf_dGYdrRZwFLdy-dlAC2q0iZaD0gvcFnoDLmTQChvj6-lIo8W0n-IkxucKWLxT_NTn-OLj9b0LajWJnMphX-KAPwq9hza1mA3UUP8N4JFo-qIifKWi5FnHlAbRuvIgmYBZ8B0U28o99qaYjyIdGEx1HdvotnN6E3SNwm-DIW3KmGH5zFduFHOmpOc7QorYYpya0oLdwSc2EcKV3FMuEVQ6HKYpdjRwA248wSxnBy2OdB92EfbjSFg6Tro0IkwQRiRzTFNRn4PFLqsho5y3UBak5uBbYxjmdMx2CCMbViNbQ0dV-oeczuPHlPVSDMJiWaehxkKOvuE5Pq0hO5vPX0oJg7PLoArt_SXTPlqB71yBsI4Wx48TdaCB0Fg00FKrfdLuNDKh_wRB5APb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xcGAvPBZWWyiLDytxCs3DceJjFYEKdLtSl0rcIttxULdVg0iLKCfEL-A38kvwJE27RUJIu0c7fsT22P48mvkG4EcgzK2uqLBS5qUWUpxbMkATKCldQWVqIHJhbdFhrR49v_Ira0L0hSn5IeYKN9wZxXmNGxwV0o0Fa6j6kyEHoVsoqPknWMOw3sWrqusu3lxBEXENmYYsZtOrirfRdhvL9ZfvpQXY_BuyFnfO6SbI6m9LU5PB8WQsj9XDGyLH_xrOFmzMEClpliK0DSt69AXWoyoQ3A48IR0yGoaNye_pyADGvJ-TLCUXGom8c3LXF6Tz8vjcQsuaTE3VsK9IJG6lOUYbRtIGemi-Rqgnmj7ohHR1kt2bnMon2nQeZRP0DL7GZptl0N6ciFFiEoOp6WMXeqcnl1HLmoVusJTLOLeckIfaT1LBtQpCTyqZOlwwWzl4QITUpVL6SgTap5IpT-A6pZ7BbkiPJ7njfYXVkRnDNyBhmkjH5CmfJZRLyqninm1rFgp02uU1sKqFi9WM1xzDawzjkpHZjXFm4_nM1uBoXv6mZPR4t2S9koN4trPz2MAhzzzyvJDVwC0W9INW4uj8VzRP7f1LpUNYb13-bMfts87FPnzG_NKesA6r49uJPjC4aCy_F5L_Cka3BoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7iIo29jDGY1sE2P0zaU2gujhM_VoGqA1QQA6lvke3YqGvVVKRFtE_TfgG_cb9kPknTwqRpEnu040tsH9ufj875DsDnSNhbXVHhGBYYBynOHRmhCZSUvqDSWIhcWlt0WeeanvTC3iMv_oofYqlww51Rnte4wceZaa5IQ9X3HCkI_VI_zddhkzI3Rrk-uvRXT66oDLiGREMOc2mvpm10_ebT-k-vpRXWfIxYyyunvQ2i_tnK0mRwOJ3IQzX_g8fxf0bzGl4t8ChpVQK0A2t69Aa2kjoM3C78RDJkNAubkG-zkYWLRb8guSGnGmm8C3LXF6T768dDB-1qcjVTw74iibiV9hBtWjkb6KH9mqCWaDbXGbnUWX5vc2qPaNt5kk_RL_gGm21VIXsLIkaZTQxmto89uG4fXyUdZxG4wVE-49zxYh7rMDOCaxXFgVTSeFwwV3l4PMTUp1KGSkQ6pJKpQOAymcAiNyTHk9wL3sLGyI7hHZDYZNKzeSpkGeWScqp44LqaxQJddnkDnHrdUrVgNcfgGsO04mP2U5zZdDmzDfiyLD-u-Dz-WvKgFoN0sa-L1IKhwD7xgpg1wC_X8x-tpMnJebJMvX9OpU_w4uKonZ597Z7uw0vMrowJD2BjcjvVHywomsiPpdz_BktEBTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expedient+Synthesis+of+Ketones+via+N%E2%80%90Heterocyclic+Carbene%2FNickel%E2%80%90Catalyzed+Redox%E2%80%90Economical+Coupling+of+Alcohols+and+Alkynes&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Yu%E2%80%90Qing+Li&rft.au=Li%2C+Feng&rft.au=Shi%E2%80%90Liang+Shi&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=38&rft.issue=10&rft.spage=1035&rft.epage=1039&rft_id=info:doi/10.1002%2Fcjoc.202000019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon |