Prediction of the strength characteristics of basalt fibre reinforced concrete using explainable machine learning models
Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand th...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 8; pp. 1 - 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
05.08.2025
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R
2
= 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R
2
= 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R
2
= 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry. |
---|---|
AbstractList | Abstract Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R2 = 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R2 = 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R2 = 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry. Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R 2 = 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R 2 = 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R 2 = 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry. |
ArticleNumber | 890 |
Author | Ekanayake, I. U. Alawatugoda, Janaka Krishantha, B. R. G. A. Wickramasuriya, B. Y. Alahakoon, Yasitha |
Author_xml | – sequence: 1 givenname: B. Y. surname: Wickramasuriya fullname: Wickramasuriya, B. Y. organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya – sequence: 2 givenname: Yasitha surname: Alahakoon fullname: Alahakoon, Yasitha email: yasithaalahakoon98@gmail.com organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya – sequence: 3 givenname: B. R. G. A. surname: Krishantha fullname: Krishantha, B. R. G. A. organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya – sequence: 4 givenname: Janaka surname: Alawatugoda fullname: Alawatugoda, Janaka organization: Research and Innovations Centers Division, Rabdan Academy, Department of Computing, SLIIT Kandy University – sequence: 5 givenname: I. U. surname: Ekanayake fullname: Ekanayake, I. U. organization: Ceylon Institute for Artificial Intelligence and Research (CIAIR) Limited, Royal Melbourne Institute of Technology |
BookMark | eNp9kc1qHDEQhEVwILazL5CTXmDi1t9odAwmTgyG-OCcRY-mtatlVlqkMdhvn1mvCTnl1E1XV0HxXbGLXDIx9kXAVwFgb5qW2sgOpOnAGjl09gO7VAC6c7IXF__sn9imtT0AKAXWGnfJXh4rTSksqWReIl92xNtSKW-XHQ87rBgWqqktKbSTPmLDeeExjZV4pZRjqYEmHkoOlRbizy3lLaeX44wp4zgTP2DYpUx8Jqz5JB7KRHP7zD5GnBtt3uc1-333_en2Z_fw68f97beHLsje2U6MIOTorBB6QjMM1rrojLZKDH20EDEOVmEP6FBZ6FUPbpJCOIuyj2RIXbP7c-5UcO-PNR2wvvqCyb8dSt16rGu9mbxyENSkhNaD0HEwo3FCBzciog5K92uWPGeFWlqrFP_mCfAnFP6Mwq8o_BsKb1eTOpva-py3VP2-PNe8dv6f6w-M245g |
Cites_doi | 10.1016/B978-0-08-101272-7.00020-1 10.15282/construction.v4i1.10209 10.1016/j.csda.2015.10.005 10.1007/s00500-023-08331-5 10.1007/s42107-023-00870-4 10.1016/j.asoc.2009.12.023 10.1016/j.cscm.2022.e01059 10.1016/j.istruc.2021.01.071 10.1016/j.compstruct.2021.113972 10.1016/j.rineng.2024.103036 10.1016/S0008-8846(98)00165-3 10.1007/s12559-023-10179-8 10.1016/j.treng.2023.100190 10.1016/j.mtcomm.2023.106545 10.1016/j.conbuildmat.2017.11.159 10.1002/suco.201500216 10.3390/buildings14030757 10.1016/j.enbuild.2010.04.006 10.1007/978-3-540-45058-0_5 10.1007/s42452-025-06880-y 10.1016/j.rineng.2021.100245 10.1016/j.conbuildmat.2021.124152 10.3390/infrastructures8020021 10.1016/j.conbuildmat.2015.07.138 10.1007/s40745-021-00344-x 10.12989/CAC.2019.24.1.007 10.3390/jimaging10090215 10.1016/j.matpr.2023.03.652 10.1016/j.conbuildmat.2020.121117 10.1155/2019/7520549 10.3390/ma14154222 10.1016/j.rineng.2024.102503 10.1016/j.matpr.2020.11.890 10.1016/j.jclepro.2020.120578 10.1016/j.egyai.2022.100169 10.1023/A:1010933404324 10.1016/j.jweia.2022.105027 10.1016/j.jclepro.2023.136968 10.1016/j.jobe.2023.108160 10.1016/j.rineng.2024.103637 10.1016/j.cemconres.2021.106449 10.1016/j.conbuildmat.2021.122275 10.48550/ARXIV.1705.07874 10.1007/s10462-022-10373-4 10.1016/j.jobe.2015.09.003 10.1002/suco.201900086 10.1016/j.compositesb.2005.02.002 10.1007/978-3-662-48565-1 10.1016/j.conbuildmat.2019.117000 10.1016/j.mtcomm.2024.110294 10.1016/j.ceramint.2015.06.037 10.1016/j.isprsjprs.2016.01.011 10.5585/13.2024.26510 10.1007/s11356-022-21987-0 10.1016/j.mtcomm.2021.102278 10.1016/j.rineng.2023.101388 10.1007/978-3-030-96630-0_1 10.1016/j.rineng.2021.100228 10.3390/ma14020409 10.1080/00405000.2015.1071940 10.1016/j.heliyon.2024.e36841 10.1016/j.cemconres.2018.04.007 10.1016/j.compstruc.2007.05.014 10.1016/j.cemconcomp.2022.104414 10.1016/j.conbuildmat.2022.128076 10.1088/1757-899X/640/1/012055 10.3390/ma13061362 10.1016/j.mtcomm.2021.103117 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 |
Copyright_xml | – notice: The Author(s) 2025 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s42452-025-07528-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_390c3d3144814f85b5914c9baaa4c346 10_1007_s42452_025_07528_7 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS C6C GROUPED_DOAJ M~E SOJ AAYXX CITATION BGNMA M4Y NU0 |
ID | FETCH-LOGICAL-c2697-1b012b97114da588779f95473186f70faf873a60a9a37063609d21197a26fe5e3 |
IEDL.DBID | C6C |
ISSN | 3004-9261 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Thu Aug 14 00:09:13 EDT 2025 Wed Aug 06 16:37:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Mechanical properties Explainable artificial intelligence Random forest Basalt fibre reinforcement concrete Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2697-1b012b97114da588779f95473186f70faf873a60a9a37063609d21197a26fe5e3 |
OpenAccessLink | https://doi.org/10.1007/s42452-025-07528-7 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_390c3d3144814f85b5914c9baaa4c346 crossref_primary_10_1007_s42452_025_07528_7 springer_journals_10_1007_s42452_025_07528_7 |
PublicationCentury | 2000 |
PublicationDate | 20250805 |
PublicationDateYYYYMMDD | 2025-08-05 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250805 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer |
References | A Ahmad (7528_CR31) 2021; 14 DPP Meddage (7528_CR38) 2022; 226 R Machlev (7528_CR43) 2022; 9 S Janitza (7528_CR63) 2016; 96 P Meyyappan (7528_CR20) 2021; 43 C High (7528_CR18) 2015; 96 S Ghanbari (7528_CR28) 2023; 30 S Jalasutram (7528_CR14) 2017; 18 PG Asteris (7528_CR24) 2021; 145 SB Singh (7528_CR68) 2015; 4 X Wang (7528_CR12) 2019; 2019 BA Salami (7528_CR32) 2021; 301 F Almohammed (7528_CR36) 2024; 25 J Ukwaththa (7528_CR39) 2024; 41 OM De Andrade (7528_CR44) 2024; 13 B Basaran (7528_CR29) 2021; 268 MA DeRousseau (7528_CR58) 2018; 109 7528_CR7 M-C Kang (7528_CR11) 2021; 266 GA Lyngdoh (7528_CR47) 2022; 128 H Jamshaid (7528_CR6) 2016; 107 W Bin Inqiad (7528_CR52) 2024 B Shafei (7528_CR5) 2021; 14 VJ John (7528_CR8) 2021; 22 7528_CR3 Y Alahakoon (7528_CR40) 2025 PR Prem (7528_CR57) 2019; 24 7528_CR66 J Sim (7528_CR9) 2005; 36 7528_CR64 SI Malami (7528_CR33) 2021; 10 P Thisovithan (7528_CR53) 2023; 19 S-A Sadegh-Zadeh (7528_CR69) 2023; 8 DM Cotsovos (7528_CR2) 2008; 86 X Gu (7528_CR1) 2016 MM Badalyan (7528_CR67) 2024; 14 I-C Yeh (7528_CR4) 1998; 28 IU Ekanayake (7528_CR42) 2023; 36 H Li (7528_CR34) 2022; 30 AMA Mohammed (7528_CR50) 2025; 25 H Naseri (7528_CR26) 2020; 258 S Madushani (7528_CR41) 2023; 13 M Belgiu (7528_CR62) 2016; 114 D-C Feng (7528_CR27) 2020; 230 PC Chiadighikaobi (7528_CR19) 2019 7528_CR16 MY Anshori (7528_CR60) 2023; 23 E Golafshani (7528_CR51) 2023; 407 RA Swarna (7528_CR49) 2024; 10 K Güçlüer (7528_CR22) 2021; 27 Z Yu (7528_CR55) 2010; 42 A Kurani (7528_CR59) 2023; 10 A Nazari (7528_CR56) 2015; 41 M Shahrokhishahraki (7528_CR30) 2024; 82 L Yang (7528_CR17) 2021; 31 7528_CR45 L Breiman (7528_CR61) 2001; 45 V Hassija (7528_CR37) 2024; 16 RSS Ranasinghe (7528_CR65) 2024; 23 IU Ekanayake (7528_CR10) 2022; 16 H Zhou (7528_CR15) 2020; 13 C-Y Fan (7528_CR54) 2011; 11 F Almohammed (7528_CR35) 2024; 28 D Chakraborty (7528_CR46) 2021; 11 FR Karim (7528_CR23) 2024; 4 EM Golafshani (7528_CR25) 2023; 56 B Revathi (7528_CR48) 2024; 24 H Li (7528_CR21) 2022; 344 A Sadrmomtazi (7528_CR70) 2018; 162 F Chen (7528_CR13) 2021; 278 |
References_xml | – ident: 7528_CR7 doi: 10.1016/B978-0-08-101272-7.00020-1 – volume: 4 start-page: 52 issue: 1 year: 2024 ident: 7528_CR23 publication-title: Construction doi: 10.15282/construction.v4i1.10209 – volume: 96 start-page: 57 year: 2016 ident: 7528_CR63 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2015.10.005 – volume: 28 start-page: 1391 issue: 2 year: 2024 ident: 7528_CR35 publication-title: Soft Comput doi: 10.1007/s00500-023-08331-5 – volume: 25 start-page: 1671 issue: 2 year: 2024 ident: 7528_CR36 publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00870-4 – volume: 11 start-page: 632 issue: 1 year: 2011 ident: 7528_CR54 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.12.023 – volume: 16 year: 2022 ident: 7528_CR10 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2022.e01059 – volume: 31 start-page: 330 year: 2021 ident: 7528_CR17 publication-title: Structures doi: 10.1016/j.istruc.2021.01.071 – volume: 268 year: 2021 ident: 7528_CR29 publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.113972 – volume: 24 year: 2024 ident: 7528_CR48 publication-title: Results Eng doi: 10.1016/j.rineng.2024.103036 – volume: 28 start-page: 1797 issue: 12 year: 1998 ident: 7528_CR4 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(98)00165-3 – volume: 16 start-page: 45 issue: 1 year: 2024 ident: 7528_CR37 publication-title: Cogn Comput doi: 10.1007/s12559-023-10179-8 – volume: 13 year: 2023 ident: 7528_CR41 publication-title: Transp Eng doi: 10.1016/j.treng.2023.100190 – volume: 36 year: 2023 ident: 7528_CR42 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.106545 – volume: 162 start-page: 321 year: 2018 ident: 7528_CR70 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.11.159 – volume: 18 start-page: 292 issue: 2 year: 2017 ident: 7528_CR14 publication-title: Struct Concr doi: 10.1002/suco.201500216 – volume: 14 issue: 3 year: 2024 ident: 7528_CR67 publication-title: Buildings doi: 10.3390/buildings14030757 – volume: 42 start-page: 1637 issue: 10 year: 2010 ident: 7528_CR55 publication-title: Energy Build doi: 10.1016/j.enbuild.2010.04.006 – ident: 7528_CR66 doi: 10.1007/978-3-540-45058-0_5 – year: 2025 ident: 7528_CR40 publication-title: Discov Appl Sci doi: 10.1007/s42452-025-06880-y – volume: 11 year: 2021 ident: 7528_CR46 publication-title: Results Eng doi: 10.1016/j.rineng.2021.100245 – volume: 301 year: 2021 ident: 7528_CR32 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124152 – volume: 8 issue: 2 year: 2023 ident: 7528_CR69 publication-title: Infrastructures doi: 10.3390/infrastructures8020021 – volume: 96 start-page: 37 year: 2015 ident: 7528_CR18 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.07.138 – volume: 10 start-page: 183 issue: 1 year: 2023 ident: 7528_CR59 publication-title: Ann Data Sci doi: 10.1007/s40745-021-00344-x – volume: 24 start-page: 7 issue: 1 year: 2019 ident: 7528_CR57 publication-title: Comput Concr doi: 10.12989/CAC.2019.24.1.007 – volume: 10 issue: 9 year: 2024 ident: 7528_CR49 publication-title: J Imaging doi: 10.3390/jimaging10090215 – ident: 7528_CR3 doi: 10.1016/j.matpr.2023.03.652 – volume: 266 year: 2021 ident: 7528_CR11 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – volume: 2019 start-page: 1 year: 2019 ident: 7528_CR12 publication-title: Adv Mater Sci Eng doi: 10.1155/2019/7520549 – volume: 14 issue: 15 year: 2021 ident: 7528_CR31 publication-title: Materials doi: 10.3390/ma14154222 – volume: 23 year: 2024 ident: 7528_CR65 publication-title: Results Eng doi: 10.1016/j.rineng.2024.102503 – volume: 43 start-page: 2105 year: 2021 ident: 7528_CR20 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.11.890 – volume: 258 year: 2020 ident: 7528_CR26 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120578 – volume: 9 year: 2022 ident: 7528_CR43 publication-title: Energy and AI doi: 10.1016/j.egyai.2022.100169 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 7528_CR61 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 226 year: 2022 ident: 7528_CR38 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2022.105027 – volume: 407 year: 2023 ident: 7528_CR51 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.136968 – volume: 82 year: 2024 ident: 7528_CR30 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.108160 – volume: 25 year: 2025 ident: 7528_CR50 publication-title: Results Eng doi: 10.1016/j.rineng.2024.103637 – volume: 145 year: 2021 ident: 7528_CR24 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106449 – volume: 278 year: 2021 ident: 7528_CR13 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.122275 – ident: 7528_CR64 doi: 10.48550/ARXIV.1705.07874 – volume: 56 start-page: 8 issue: 8 year: 2023 ident: 7528_CR25 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10373-4 – volume: 4 start-page: 94 year: 2015 ident: 7528_CR68 publication-title: J Build Eng doi: 10.1016/j.jobe.2015.09.003 – volume: 22 start-page: 491 issue: 1 year: 2021 ident: 7528_CR8 publication-title: Struct Concr doi: 10.1002/suco.201900086 – volume: 36 start-page: 6 issue: 6 year: 2005 ident: 7528_CR9 publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2005.02.002 – volume-title: Basic principles of concrete structures year: 2016 ident: 7528_CR1 doi: 10.1007/978-3-662-48565-1 – volume: 230 year: 2020 ident: 7528_CR27 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – volume: 41 year: 2024 ident: 7528_CR39 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2024.110294 – volume: 41 start-page: 12164 issue: 9 year: 2015 ident: 7528_CR56 publication-title: Ceram Int doi: 10.1016/j.ceramint.2015.06.037 – volume: 114 start-page: 24 year: 2016 ident: 7528_CR62 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 13 start-page: 3 issue: 1 year: 2024 ident: 7528_CR44 publication-title: Rev Thesis Juris doi: 10.5585/13.2024.26510 – volume: 30 start-page: 1 issue: 1 year: 2023 ident: 7528_CR28 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-21987-0 – volume: 27 year: 2021 ident: 7528_CR22 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102278 – ident: 7528_CR16 – volume: 19 year: 2023 ident: 7528_CR53 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101388 – ident: 7528_CR45 doi: 10.1007/978-3-030-96630-0_1 – volume: 10 year: 2021 ident: 7528_CR33 publication-title: Results Eng doi: 10.1016/j.rineng.2021.100228 – volume: 14 issue: 2 year: 2021 ident: 7528_CR5 publication-title: Materials doi: 10.3390/ma14020409 – volume: 107 start-page: 923 issue: 7 year: 2016 ident: 7528_CR6 publication-title: J Text Inst doi: 10.1080/00405000.2015.1071940 – year: 2024 ident: 7528_CR52 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e36841 – volume: 109 start-page: 42 year: 2018 ident: 7528_CR58 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2018.04.007 – volume: 23 start-page: 129 issue: 2 year: 2023 ident: 7528_CR60 publication-title: Nonlinear Dyn Syst Theory – volume: 86 start-page: 145 issue: 1–2 year: 2008 ident: 7528_CR2 publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.05.014 – volume: 128 year: 2022 ident: 7528_CR47 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2022.104414 – volume: 344 year: 2022 ident: 7528_CR21 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.128076 – year: 2019 ident: 7528_CR19 publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/640/1/012055 – volume: 13 issue: 6 year: 2020 ident: 7528_CR15 publication-title: Materials doi: 10.3390/ma13061362 – volume: 30 year: 2022 ident: 7528_CR34 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.103117 |
SSID | ssj0003307759 |
Score | 2.2999237 |
Snippet | Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre... Abstract Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of... |
SourceID | doaj crossref springer |
SourceType | Open Website Index Database Publisher |
StartPage | 1 |
SubjectTerms | Applied and Technical Physics Basalt fibre reinforcement concrete Chemistry/Food Science Earth Sciences Engineering Environment Explainable artificial intelligence Machine learning Materials Science Mechanical properties Random forest |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iyYsoKtYvcvCmwc3HJpujiqUIigcLvYVsNqmHui3tCv35TrLb0iLoxevuQpY3ycw8MvMGoWvNrI7VTyQKewBBsQH8oKgI51JQWlIXUlXly6scDMXzKB9tjPqKNWGtPHAL3B1wcscrDnl_QUUo8jLXVDhdWmuF4yKJbUPM2yBT0QcDS1cq112XTOqVi1d8jMTprRAlWUHUViRKgv0_bkNTkOkfoP0uO8T37V8doh1fH6Hl2zzepkQE8TRgyNhw7PCox80Hdtt6y_E9xCU7aXAAHuzx3CdlVOcrDMQXMsTG41jqPsZ-OZt0nVP4M1VUetyNkBjjNB9ncYyG_af3xwHpBiYQx6RWhJYQbkqtgONUNgf3oXTQcbgwLWRQWbChUNzKzGrLVRaVwnQVFd6UZTL43PMTtFtPa3-KcBZUWVjOlbdMeCchj-BUeho089ZXroduVuCZWauLYdYKyAlqA1CbBLVRPfQQ8V1_GTWt0wOwtOksbf6ydA_drqxjuoO2-GXNs_9Y8xztsbRlCpLlF2i3mX_5S8hCmvIqbbhv1ZPWyA priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction of the strength characteristics of basalt fibre reinforced concrete using explainable machine learning models |
URI | https://link.springer.com/article/10.1007/s42452-025-07528-7 https://doaj.org/article/390c3d3144814f85b5914c9baaa4c346 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqI8Kg9sEBHHjh2PULWqkIoYqNQtchy7DCWt2iB14rdzdt2KAkJiyZA4ivT5cffl7r5D6FomSrrsp8gJewBBURbOQVZGlHJGSEG09VmV_SfeG7DHYToMMjmuFuZb_P5u7iJzSeSaroJxS7JIbKOdlFDh2jS0eXv9PwV4uRCpDHUxv7-6YXu8RP-P-Kc3K90DtB_8QXy_nMBDtGWqI7T3RSXwGC2eZy6a4hDEE4vBY8OuwqMa1a9Yb-otu-dgl9S4xhZ4sMEz45VRtSkxEF_wEGuDXar7CJvFdBwqp_Cbz6g0OLSQGGHfH2d-ggbdzku7F4WGCZFOuBQRKcDcFFIAxylVCseHkFa65sIk41bEVtlMUMVjJRUA6JTCZOkU3oRKuDWpoaeoUU0qc4ZwbEWRKUqFUQkzmoMfQQk3xMrEKFPqJrpZQZlPl7oY-VoB2QOfA_C5Bz4XTfTg0F6PdJrW_gZMdR62SE5lrGlJgeFlhNksLVJJmJaFUoppyngT3a7mKg8bbf7HN8__N_wC7SZ-qWRRnF6iRj17N1fgb9RFyy-0lmfrcO1_dD4B-3rOgg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6qMpLLNDiA5wgUmwnfhx62Baq7fYhJFqpN-M49nJod6vdINr_0x_K2PWuqKiQOPSaWEk078nMfAPwXjOrY_dTEYE9MEGxAe1g1Raci4rShrqQuiqPjsXwtBqd1WcrcLOYhUnd7ouSZLLUy2G3WKNjRVy_im6OqULmVsoDf_0LE7X59v5n5OoHxva-nOwOi7xLoHBMaFnQBi1xoyWG_62tUbOkDjru3aVKBFkGG5TkVpRWWy7LCKKl2wh-Ji0Twdee43Mfwaqqhap7sDoYjL6Nlv9yOI9AcjrP5Nz_sXf8XloP8FftNbm0vQ1Yz7EoGdwKz1NY8ZNnsPYHQuFzuPo6i5WcyD0yDQSjRRKnSybj7gdxd7Ge4330ifa8IwFzcE9mPqGyOt8STLoxOu08iW32Y-KvLs_z1Ba5SN2cnuT1FWOSdvPMX8DpgxD4JfQm04l_BaQMslGWc-ktq7wTGMNwKjwNmnnrW9eHjwtSmstbTA6zRF9OhDdIeJMIb2QfdiK1lycjnna6MJ2NTVZPw3XpeMsxu1S0Cqpuak0rpxtrbeV4JfrwacErk5V8_o93vv6_4-_g8fDk6NAc7h8fvIEnLImNKsr6LfS62U-_iXFP12xlsSPw_aEl_TdDYQu4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqrggCgPseXlQ3uCqLGd2PGBA2xZ9UGrHqjUm3EcezmU7Go3FeVf8ROZ8WZXVEVIHHpNrCT6ZuyZycx8A7BjhDNU_ZQRsQcGKC7iOVg0mZSq4LzmPqaqypNTdXBeHF2UF2vwa9kLk6rdlynJRU8DsTS13d60iXurxjfK14mMRrGiyRNVpvuyyuPw8wcGbfP3h_so4V0hRp--DA-yfq5A5oUyOuM1nsq10RgKNK7EXaZNNDSDl1cq6jy6WGnpVO6MkzonQi3TEBGadkLFUAaJz70HGxgZcQr3hmq4-qsjJVHKmb475--fesMCpkEBt7KwybiNHsHD3itlHxZqtAVroX0MD_7gKnwC12czyumQHNkkMvQbGfWZtOPuG_M3WZ_pPlpHd9mxiNF4YLOQ-Fl9aBjijH5qFxgV3I9ZuJ5e9v1b7Huq6wysH2QxZmlKz_wpnN8JvM9gvZ204TmwPOq6clLq4EQRvEJvRnIVeDQiuND4AbxdQmmnC3YOu-JhTsBbBN4m4K0ewEdCe7WSmLXThclsbPuNaqXJvWwkxpkVL2JV1qXhhTe1c67wslADeLeUle23-_wf79z-v-VvYPNsf2Q_H54ev4D7ImlNleXlS1jvZlfhFTpAXf066RyDr3et5L8Be0UOkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+strength+characteristics+of+basalt+fibre+reinforced+concrete+using+explainable+machine+learning+models&rft.jtitle=Discover+applied+sciences&rft.au=Wickramasuriya%2C+B.+Y.&rft.au=Alahakoon%2C+Yasitha&rft.au=Krishantha%2C+B.+R.+G.+A.&rft.au=Alawatugoda%2C+Janaka&rft.date=2025-08-05&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1007%2Fs42452-025-07528-7&rft.externalDocID=10_1007_s42452_025_07528_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |