Prediction of the strength characteristics of basalt fibre reinforced concrete using explainable machine learning models

Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand th...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 8; pp. 1 - 24
Main Authors Wickramasuriya, B. Y., Alahakoon, Yasitha, Krishantha, B. R. G. A., Alawatugoda, Janaka, Ekanayake, I. U.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 05.08.2025
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R 2  = 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R 2  = 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R 2  = 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry.
AbstractList Abstract Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R2 = 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R2 = 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R2 = 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry.
Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre reinforced concrete (BFRC) is more complex than for conventional concrete. Traditional methods rely on iterative experiments to understand the underlying behaviour. This study applies machine learning (ML) models, paired with explainable artificial intelligence (XAI), to predict the compressive, flexural, and tensile strengths of BFRC efficiently and transparently. Three datasets, each with 267 samples, were used for model development. Each sample included 10 features: cement, fly ash, silica ash, coarse aggregate, fine aggregate, water, superplasticiser, fibre diameter, fibre length, and fibre content. Three ML models, random forest (RF), support vector machine (SVM), and decision tree (DT), were evaluated. RF achieved the highest accuracy for compressive (R 2  = 0.926, MSE = 9.4, MAE = 2.3) and flexural strength (R 2  = 0.882, MSE = 0.5, MAE = 0.5), while DT performed best for tensile strength (R 2  = 0.935, MSE = 0.2, MAE = 0.3). Shapley additive explanation (SHAP)-based explainable artificial intelligence (XAI) methods revealed key predictors: fine aggregate for compressive strength, fibre diameter for tensile strength, and silica ash for flexural strength. Also, the authors developed a web-based online application to predict the strength (compressive, flexural and tensile) to improve the accessibility and usability of the findings. This approach offers a practical alternative to experimental testing and contributes to a better understanding of BFRC behaviour. It holds strong potential for adoption in the construction industry.
ArticleNumber 890
Author Ekanayake, I. U.
Alawatugoda, Janaka
Krishantha, B. R. G. A.
Wickramasuriya, B. Y.
Alahakoon, Yasitha
Author_xml – sequence: 1
  givenname: B. Y.
  surname: Wickramasuriya
  fullname: Wickramasuriya, B. Y.
  organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya
– sequence: 2
  givenname: Yasitha
  surname: Alahakoon
  fullname: Alahakoon, Yasitha
  email: yasithaalahakoon98@gmail.com
  organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya
– sequence: 3
  givenname: B. R. G. A.
  surname: Krishantha
  fullname: Krishantha, B. R. G. A.
  organization: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya
– sequence: 4
  givenname: Janaka
  surname: Alawatugoda
  fullname: Alawatugoda, Janaka
  organization: Research and Innovations Centers Division, Rabdan Academy, Department of Computing, SLIIT Kandy University
– sequence: 5
  givenname: I. U.
  surname: Ekanayake
  fullname: Ekanayake, I. U.
  organization: Ceylon Institute for Artificial Intelligence and Research (CIAIR) Limited, Royal Melbourne Institute of Technology
BookMark eNp9kc1qHDEQhEVwILazL5CTXmDi1t9odAwmTgyG-OCcRY-mtatlVlqkMdhvn1mvCTnl1E1XV0HxXbGLXDIx9kXAVwFgb5qW2sgOpOnAGjl09gO7VAC6c7IXF__sn9imtT0AKAXWGnfJXh4rTSksqWReIl92xNtSKW-XHQ87rBgWqqktKbSTPmLDeeExjZV4pZRjqYEmHkoOlRbizy3lLaeX44wp4zgTP2DYpUx8Jqz5JB7KRHP7zD5GnBtt3uc1-333_en2Z_fw68f97beHLsje2U6MIOTorBB6QjMM1rrojLZKDH20EDEOVmEP6FBZ6FUPbpJCOIuyj2RIXbP7c-5UcO-PNR2wvvqCyb8dSt16rGu9mbxyENSkhNaD0HEwo3FCBzciog5K92uWPGeFWlqrFP_mCfAnFP6Mwq8o_BsKb1eTOpva-py3VP2-PNe8dv6f6w-M245g
Cites_doi 10.1016/B978-0-08-101272-7.00020-1
10.15282/construction.v4i1.10209
10.1016/j.csda.2015.10.005
10.1007/s00500-023-08331-5
10.1007/s42107-023-00870-4
10.1016/j.asoc.2009.12.023
10.1016/j.cscm.2022.e01059
10.1016/j.istruc.2021.01.071
10.1016/j.compstruct.2021.113972
10.1016/j.rineng.2024.103036
10.1016/S0008-8846(98)00165-3
10.1007/s12559-023-10179-8
10.1016/j.treng.2023.100190
10.1016/j.mtcomm.2023.106545
10.1016/j.conbuildmat.2017.11.159
10.1002/suco.201500216
10.3390/buildings14030757
10.1016/j.enbuild.2010.04.006
10.1007/978-3-540-45058-0_5
10.1007/s42452-025-06880-y
10.1016/j.rineng.2021.100245
10.1016/j.conbuildmat.2021.124152
10.3390/infrastructures8020021
10.1016/j.conbuildmat.2015.07.138
10.1007/s40745-021-00344-x
10.12989/CAC.2019.24.1.007
10.3390/jimaging10090215
10.1016/j.matpr.2023.03.652
10.1016/j.conbuildmat.2020.121117
10.1155/2019/7520549
10.3390/ma14154222
10.1016/j.rineng.2024.102503
10.1016/j.matpr.2020.11.890
10.1016/j.jclepro.2020.120578
10.1016/j.egyai.2022.100169
10.1023/A:1010933404324
10.1016/j.jweia.2022.105027
10.1016/j.jclepro.2023.136968
10.1016/j.jobe.2023.108160
10.1016/j.rineng.2024.103637
10.1016/j.cemconres.2021.106449
10.1016/j.conbuildmat.2021.122275
10.48550/ARXIV.1705.07874
10.1007/s10462-022-10373-4
10.1016/j.jobe.2015.09.003
10.1002/suco.201900086
10.1016/j.compositesb.2005.02.002
10.1007/978-3-662-48565-1
10.1016/j.conbuildmat.2019.117000
10.1016/j.mtcomm.2024.110294
10.1016/j.ceramint.2015.06.037
10.1016/j.isprsjprs.2016.01.011
10.5585/13.2024.26510
10.1007/s11356-022-21987-0
10.1016/j.mtcomm.2021.102278
10.1016/j.rineng.2023.101388
10.1007/978-3-030-96630-0_1
10.1016/j.rineng.2021.100228
10.3390/ma14020409
10.1080/00405000.2015.1071940
10.1016/j.heliyon.2024.e36841
10.1016/j.cemconres.2018.04.007
10.1016/j.compstruc.2007.05.014
10.1016/j.cemconcomp.2022.104414
10.1016/j.conbuildmat.2022.128076
10.1088/1757-899X/640/1/012055
10.3390/ma13061362
10.1016/j.mtcomm.2021.103117
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s42452-025-07528-7
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
EndPage 24
ExternalDocumentID oai_doaj_org_article_390c3d3144814f85b5914c9baaa4c346
10_1007_s42452_025_07528_7
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
C6C
GROUPED_DOAJ
M~E
SOJ
AAYXX
CITATION
BGNMA
M4Y
NU0
ID FETCH-LOGICAL-c2697-1b012b97114da588779f95473186f70faf873a60a9a37063609d21197a26fe5e3
IEDL.DBID C6C
ISSN 3004-9261
IngestDate Wed Aug 27 01:29:37 EDT 2025
Thu Aug 14 00:09:13 EDT 2025
Wed Aug 06 16:37:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Mechanical properties
Explainable artificial intelligence
Random forest
Basalt fibre reinforcement concrete
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2697-1b012b97114da588779f95473186f70faf873a60a9a37063609d21197a26fe5e3
OpenAccessLink https://doi.org/10.1007/s42452-025-07528-7
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_390c3d3144814f85b5914c9baaa4c346
crossref_primary_10_1007_s42452_025_07528_7
springer_journals_10_1007_s42452_025_07528_7
PublicationCentury 2000
PublicationDate 20250805
PublicationDateYYYYMMDD 2025-08-05
PublicationDate_xml – month: 8
  year: 2025
  text: 20250805
  day: 5
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References A Ahmad (7528_CR31) 2021; 14
DPP Meddage (7528_CR38) 2022; 226
R Machlev (7528_CR43) 2022; 9
S Janitza (7528_CR63) 2016; 96
P Meyyappan (7528_CR20) 2021; 43
C High (7528_CR18) 2015; 96
S Ghanbari (7528_CR28) 2023; 30
S Jalasutram (7528_CR14) 2017; 18
PG Asteris (7528_CR24) 2021; 145
SB Singh (7528_CR68) 2015; 4
X Wang (7528_CR12) 2019; 2019
BA Salami (7528_CR32) 2021; 301
F Almohammed (7528_CR36) 2024; 25
J Ukwaththa (7528_CR39) 2024; 41
OM De Andrade (7528_CR44) 2024; 13
B Basaran (7528_CR29) 2021; 268
MA DeRousseau (7528_CR58) 2018; 109
7528_CR7
M-C Kang (7528_CR11) 2021; 266
GA Lyngdoh (7528_CR47) 2022; 128
H Jamshaid (7528_CR6) 2016; 107
W Bin Inqiad (7528_CR52) 2024
B Shafei (7528_CR5) 2021; 14
VJ John (7528_CR8) 2021; 22
7528_CR3
Y Alahakoon (7528_CR40) 2025
PR Prem (7528_CR57) 2019; 24
7528_CR66
J Sim (7528_CR9) 2005; 36
7528_CR64
SI Malami (7528_CR33) 2021; 10
P Thisovithan (7528_CR53) 2023; 19
S-A Sadegh-Zadeh (7528_CR69) 2023; 8
DM Cotsovos (7528_CR2) 2008; 86
X Gu (7528_CR1) 2016
MM Badalyan (7528_CR67) 2024; 14
I-C Yeh (7528_CR4) 1998; 28
IU Ekanayake (7528_CR42) 2023; 36
H Li (7528_CR34) 2022; 30
AMA Mohammed (7528_CR50) 2025; 25
H Naseri (7528_CR26) 2020; 258
S Madushani (7528_CR41) 2023; 13
M Belgiu (7528_CR62) 2016; 114
D-C Feng (7528_CR27) 2020; 230
PC Chiadighikaobi (7528_CR19) 2019
7528_CR16
MY Anshori (7528_CR60) 2023; 23
E Golafshani (7528_CR51) 2023; 407
RA Swarna (7528_CR49) 2024; 10
K Güçlüer (7528_CR22) 2021; 27
Z Yu (7528_CR55) 2010; 42
A Kurani (7528_CR59) 2023; 10
A Nazari (7528_CR56) 2015; 41
M Shahrokhishahraki (7528_CR30) 2024; 82
L Yang (7528_CR17) 2021; 31
7528_CR45
L Breiman (7528_CR61) 2001; 45
V Hassija (7528_CR37) 2024; 16
RSS Ranasinghe (7528_CR65) 2024; 23
IU Ekanayake (7528_CR10) 2022; 16
H Zhou (7528_CR15) 2020; 13
C-Y Fan (7528_CR54) 2011; 11
F Almohammed (7528_CR35) 2024; 28
D Chakraborty (7528_CR46) 2021; 11
FR Karim (7528_CR23) 2024; 4
EM Golafshani (7528_CR25) 2023; 56
B Revathi (7528_CR48) 2024; 24
H Li (7528_CR21) 2022; 344
A Sadrmomtazi (7528_CR70) 2018; 162
F Chen (7528_CR13) 2021; 278
References_xml – ident: 7528_CR7
  doi: 10.1016/B978-0-08-101272-7.00020-1
– volume: 4
  start-page: 52
  issue: 1
  year: 2024
  ident: 7528_CR23
  publication-title: Construction
  doi: 10.15282/construction.v4i1.10209
– volume: 96
  start-page: 57
  year: 2016
  ident: 7528_CR63
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2015.10.005
– volume: 28
  start-page: 1391
  issue: 2
  year: 2024
  ident: 7528_CR35
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08331-5
– volume: 25
  start-page: 1671
  issue: 2
  year: 2024
  ident: 7528_CR36
  publication-title: Asian J Civ Eng
  doi: 10.1007/s42107-023-00870-4
– volume: 11
  start-page: 632
  issue: 1
  year: 2011
  ident: 7528_CR54
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.12.023
– volume: 16
  year: 2022
  ident: 7528_CR10
  publication-title: Case Stud Constr Mater
  doi: 10.1016/j.cscm.2022.e01059
– volume: 31
  start-page: 330
  year: 2021
  ident: 7528_CR17
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.01.071
– volume: 268
  year: 2021
  ident: 7528_CR29
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.113972
– volume: 24
  year: 2024
  ident: 7528_CR48
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.103036
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  ident: 7528_CR4
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 16
  start-page: 45
  issue: 1
  year: 2024
  ident: 7528_CR37
  publication-title: Cogn Comput
  doi: 10.1007/s12559-023-10179-8
– volume: 13
  year: 2023
  ident: 7528_CR41
  publication-title: Transp Eng
  doi: 10.1016/j.treng.2023.100190
– volume: 36
  year: 2023
  ident: 7528_CR42
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2023.106545
– volume: 162
  start-page: 321
  year: 2018
  ident: 7528_CR70
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.11.159
– volume: 18
  start-page: 292
  issue: 2
  year: 2017
  ident: 7528_CR14
  publication-title: Struct Concr
  doi: 10.1002/suco.201500216
– volume: 14
  issue: 3
  year: 2024
  ident: 7528_CR67
  publication-title: Buildings
  doi: 10.3390/buildings14030757
– volume: 42
  start-page: 1637
  issue: 10
  year: 2010
  ident: 7528_CR55
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.04.006
– ident: 7528_CR66
  doi: 10.1007/978-3-540-45058-0_5
– year: 2025
  ident: 7528_CR40
  publication-title: Discov Appl Sci
  doi: 10.1007/s42452-025-06880-y
– volume: 11
  year: 2021
  ident: 7528_CR46
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2021.100245
– volume: 301
  year: 2021
  ident: 7528_CR32
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.124152
– volume: 8
  issue: 2
  year: 2023
  ident: 7528_CR69
  publication-title: Infrastructures
  doi: 10.3390/infrastructures8020021
– volume: 96
  start-page: 37
  year: 2015
  ident: 7528_CR18
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.07.138
– volume: 10
  start-page: 183
  issue: 1
  year: 2023
  ident: 7528_CR59
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-021-00344-x
– volume: 24
  start-page: 7
  issue: 1
  year: 2019
  ident: 7528_CR57
  publication-title: Comput Concr
  doi: 10.12989/CAC.2019.24.1.007
– volume: 10
  issue: 9
  year: 2024
  ident: 7528_CR49
  publication-title: J Imaging
  doi: 10.3390/jimaging10090215
– ident: 7528_CR3
  doi: 10.1016/j.matpr.2023.03.652
– volume: 266
  year: 2021
  ident: 7528_CR11
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.121117
– volume: 2019
  start-page: 1
  year: 2019
  ident: 7528_CR12
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2019/7520549
– volume: 14
  issue: 15
  year: 2021
  ident: 7528_CR31
  publication-title: Materials
  doi: 10.3390/ma14154222
– volume: 23
  year: 2024
  ident: 7528_CR65
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.102503
– volume: 43
  start-page: 2105
  year: 2021
  ident: 7528_CR20
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.11.890
– volume: 258
  year: 2020
  ident: 7528_CR26
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120578
– volume: 9
  year: 2022
  ident: 7528_CR43
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2022.100169
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 7528_CR61
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 226
  year: 2022
  ident: 7528_CR38
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2022.105027
– volume: 407
  year: 2023
  ident: 7528_CR51
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.136968
– volume: 82
  year: 2024
  ident: 7528_CR30
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2023.108160
– volume: 25
  year: 2025
  ident: 7528_CR50
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.103637
– volume: 145
  year: 2021
  ident: 7528_CR24
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2021.106449
– volume: 278
  year: 2021
  ident: 7528_CR13
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.122275
– ident: 7528_CR64
  doi: 10.48550/ARXIV.1705.07874
– volume: 56
  start-page: 8
  issue: 8
  year: 2023
  ident: 7528_CR25
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10373-4
– volume: 4
  start-page: 94
  year: 2015
  ident: 7528_CR68
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2015.09.003
– volume: 22
  start-page: 491
  issue: 1
  year: 2021
  ident: 7528_CR8
  publication-title: Struct Concr
  doi: 10.1002/suco.201900086
– volume: 36
  start-page: 6
  issue: 6
  year: 2005
  ident: 7528_CR9
  publication-title: Compos Part B Eng
  doi: 10.1016/j.compositesb.2005.02.002
– volume-title: Basic principles of concrete structures
  year: 2016
  ident: 7528_CR1
  doi: 10.1007/978-3-662-48565-1
– volume: 230
  year: 2020
  ident: 7528_CR27
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 41
  year: 2024
  ident: 7528_CR39
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2024.110294
– volume: 41
  start-page: 12164
  issue: 9
  year: 2015
  ident: 7528_CR56
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.06.037
– volume: 114
  start-page: 24
  year: 2016
  ident: 7528_CR62
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 13
  start-page: 3
  issue: 1
  year: 2024
  ident: 7528_CR44
  publication-title: Rev Thesis Juris
  doi: 10.5585/13.2024.26510
– volume: 30
  start-page: 1
  issue: 1
  year: 2023
  ident: 7528_CR28
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-21987-0
– volume: 27
  year: 2021
  ident: 7528_CR22
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.102278
– ident: 7528_CR16
– volume: 19
  year: 2023
  ident: 7528_CR53
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2023.101388
– ident: 7528_CR45
  doi: 10.1007/978-3-030-96630-0_1
– volume: 10
  year: 2021
  ident: 7528_CR33
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2021.100228
– volume: 14
  issue: 2
  year: 2021
  ident: 7528_CR5
  publication-title: Materials
  doi: 10.3390/ma14020409
– volume: 107
  start-page: 923
  issue: 7
  year: 2016
  ident: 7528_CR6
  publication-title: J Text Inst
  doi: 10.1080/00405000.2015.1071940
– year: 2024
  ident: 7528_CR52
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e36841
– volume: 109
  start-page: 42
  year: 2018
  ident: 7528_CR58
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2018.04.007
– volume: 23
  start-page: 129
  issue: 2
  year: 2023
  ident: 7528_CR60
  publication-title: Nonlinear Dyn Syst Theory
– volume: 86
  start-page: 145
  issue: 1–2
  year: 2008
  ident: 7528_CR2
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2007.05.014
– volume: 128
  year: 2022
  ident: 7528_CR47
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2022.104414
– volume: 344
  year: 2022
  ident: 7528_CR21
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.128076
– year: 2019
  ident: 7528_CR19
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/640/1/012055
– volume: 13
  issue: 6
  year: 2020
  ident: 7528_CR15
  publication-title: Materials
  doi: 10.3390/ma13061362
– volume: 30
  year: 2022
  ident: 7528_CR34
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.103117
SSID ssj0003307759
Score 2.2999237
Snippet Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of basalt fibre...
Abstract Adding basalt fibre to concrete has become a promising way to improve its strength under different loading conditions. Predicting the strength of...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Applied and Technical Physics
Basalt fibre reinforcement concrete
Chemistry/Food Science
Earth Sciences
Engineering
Environment
Explainable artificial intelligence
Machine learning
Materials Science
Mechanical properties
Random forest
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iyYsoKtYvcvCmwc3HJpujiqUIigcLvYVsNqmHui3tCv35TrLb0iLoxevuQpY3ycw8MvMGoWvNrI7VTyQKewBBsQH8oKgI51JQWlIXUlXly6scDMXzKB9tjPqKNWGtPHAL3B1wcscrDnl_QUUo8jLXVDhdWmuF4yKJbUPM2yBT0QcDS1cq112XTOqVi1d8jMTprRAlWUHUViRKgv0_bkNTkOkfoP0uO8T37V8doh1fH6Hl2zzepkQE8TRgyNhw7PCox80Hdtt6y_E9xCU7aXAAHuzx3CdlVOcrDMQXMsTG41jqPsZ-OZt0nVP4M1VUetyNkBjjNB9ncYyG_af3xwHpBiYQx6RWhJYQbkqtgONUNgf3oXTQcbgwLWRQWbChUNzKzGrLVRaVwnQVFd6UZTL43PMTtFtPa3-KcBZUWVjOlbdMeCchj-BUeho089ZXroduVuCZWauLYdYKyAlqA1CbBLVRPfQQ8V1_GTWt0wOwtOksbf6ydA_drqxjuoO2-GXNs_9Y8xztsbRlCpLlF2i3mX_5S8hCmvIqbbhv1ZPWyA
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of the strength characteristics of basalt fibre reinforced concrete using explainable machine learning models
URI https://link.springer.com/article/10.1007/s42452-025-07528-7
https://doaj.org/article/390c3d3144814f85b5914c9baaa4c346
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqI8Kg9sEBHHjh2PULWqkIoYqNQtchy7DCWt2iB14rdzdt2KAkJiyZA4ivT5cffl7r5D6FomSrrsp8gJewBBURbOQVZGlHJGSEG09VmV_SfeG7DHYToMMjmuFuZb_P5u7iJzSeSaroJxS7JIbKOdlFDh2jS0eXv9PwV4uRCpDHUxv7-6YXu8RP-P-Kc3K90DtB_8QXy_nMBDtGWqI7T3RSXwGC2eZy6a4hDEE4vBY8OuwqMa1a9Yb-otu-dgl9S4xhZ4sMEz45VRtSkxEF_wEGuDXar7CJvFdBwqp_Cbz6g0OLSQGGHfH2d-ggbdzku7F4WGCZFOuBQRKcDcFFIAxylVCseHkFa65sIk41bEVtlMUMVjJRUA6JTCZOkU3oRKuDWpoaeoUU0qc4ZwbEWRKUqFUQkzmoMfQQk3xMrEKFPqJrpZQZlPl7oY-VoB2QOfA_C5Bz4XTfTg0F6PdJrW_gZMdR62SE5lrGlJgeFlhNksLVJJmJaFUoppyngT3a7mKg8bbf7HN8__N_wC7SZ-qWRRnF6iRj17N1fgb9RFyy-0lmfrcO1_dD4B-3rOgg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6qMpLLNDiA5wgUmwnfhx62Baq7fYhJFqpN-M49nJod6vdINr_0x_K2PWuqKiQOPSaWEk078nMfAPwXjOrY_dTEYE9MEGxAe1g1Raci4rShrqQuiqPjsXwtBqd1WcrcLOYhUnd7ouSZLLUy2G3WKNjRVy_im6OqULmVsoDf_0LE7X59v5n5OoHxva-nOwOi7xLoHBMaFnQBi1xoyWG_62tUbOkDjru3aVKBFkGG5TkVpRWWy7LCKKl2wh-Ji0Twdee43Mfwaqqhap7sDoYjL6Nlv9yOI9AcjrP5Nz_sXf8XloP8FftNbm0vQ1Yz7EoGdwKz1NY8ZNnsPYHQuFzuPo6i5WcyD0yDQSjRRKnSybj7gdxd7Ge4330ifa8IwFzcE9mPqGyOt8STLoxOu08iW32Y-KvLs_z1Ba5SN2cnuT1FWOSdvPMX8DpgxD4JfQm04l_BaQMslGWc-ktq7wTGMNwKjwNmnnrW9eHjwtSmstbTA6zRF9OhDdIeJMIb2QfdiK1lycjnna6MJ2NTVZPw3XpeMsxu1S0Cqpuak0rpxtrbeV4JfrwacErk5V8_o93vv6_4-_g8fDk6NAc7h8fvIEnLImNKsr6LfS62U-_iXFP12xlsSPw_aEl_TdDYQu4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqrggCgPseXlQ3uCqLGd2PGBA2xZ9UGrHqjUm3EcezmU7Go3FeVf8ROZ8WZXVEVIHHpNrCT6ZuyZycx8A7BjhDNU_ZQRsQcGKC7iOVg0mZSq4LzmPqaqypNTdXBeHF2UF2vwa9kLk6rdlynJRU8DsTS13d60iXurxjfK14mMRrGiyRNVpvuyyuPw8wcGbfP3h_so4V0hRp--DA-yfq5A5oUyOuM1nsq10RgKNK7EXaZNNDSDl1cq6jy6WGnpVO6MkzonQi3TEBGadkLFUAaJz70HGxgZcQr3hmq4-qsjJVHKmb475--fesMCpkEBt7KwybiNHsHD3itlHxZqtAVroX0MD_7gKnwC12czyumQHNkkMvQbGfWZtOPuG_M3WZ_pPlpHd9mxiNF4YLOQ-Fl9aBjijH5qFxgV3I9ZuJ5e9v1b7Huq6wysH2QxZmlKz_wpnN8JvM9gvZ204TmwPOq6clLq4EQRvEJvRnIVeDQiuND4AbxdQmmnC3YOu-JhTsBbBN4m4K0ewEdCe7WSmLXThclsbPuNaqXJvWwkxpkVL2JV1qXhhTe1c67wslADeLeUle23-_wf79z-v-VvYPNsf2Q_H54ev4D7ImlNleXlS1jvZlfhFTpAXf066RyDr3et5L8Be0UOkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+strength+characteristics+of+basalt+fibre+reinforced+concrete+using+explainable+machine+learning+models&rft.jtitle=Discover+applied+sciences&rft.au=Wickramasuriya%2C+B.+Y.&rft.au=Alahakoon%2C+Yasitha&rft.au=Krishantha%2C+B.+R.+G.+A.&rft.au=Alawatugoda%2C+Janaka&rft.date=2025-08-05&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1007%2Fs42452-025-07528-7&rft.externalDocID=10_1007_s42452_025_07528_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon