Anti‐symmetrical curved composite laminate subject to delamination induced by thermal cycling

Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance o...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 40; no. 7; pp. 1072 - 1085
Main Authors Treml, A E, Gouvêa, R F, Sales, R C M, Donadon, M V, Shiino, M Y, Bressan, J D
Format Journal Article
LanguageEnglish
Published 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate (da/dN) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate (da/dN) as a function of the maximum SERR.
AbstractList Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate (da/dN) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate (da/dN) as a function of the maximum SERR.
Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate ( da/dN ) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate ( da/dN ) as a function of the maximum SERR.
Author Bressan, J D
Sales, R C M
Donadon, M V
Treml, A E
Shiino, M Y
Gouvêa, R F
Author_xml – sequence: 1
  givenname: A E
  surname: Treml
  fullname: Treml, A E
  organization: Universidade Estadual do Oeste do Paraná
– sequence: 2
  givenname: R F
  surname: Gouvêa
  fullname: Gouvêa, R F
  organization: Faculdade de Tecnologia de São José dos Campos—Prof. Jessen Vidal
– sequence: 3
  givenname: R C M
  surname: Sales
  fullname: Sales, R C M
  organization: Faculdade de Tecnologia de São José dos Campos—Prof. Jessen Vidal
– sequence: 4
  givenname: M V
  surname: Donadon
  fullname: Donadon, M V
  organization: Instituto Tecnológico de Aeronáutica
– sequence: 5
  givenname: M Y
  surname: Shiino
  fullname: Shiino, M Y
  email: marcosshiino@yahoo.com.br
  organization: Departamento de Engenharia Ambiental, Rodovia Presidente Dutra km 137.8
– sequence: 6
  givenname: J D
  surname: Bressan
  fullname: Bressan, J D
  organization: Instituto Tecnológico de Aeronáutica
BookMark eNp9kLtOAzEQRS0UJJJAwR9sS7GJd_1Yp4yihCBFoklBZ3ntMTjaR2Q7oO34BL6RL2HzqJBgmhmN7rmauSM0aNoGELrP8CTra2otTLKccXaFhhnlOM35jA3QUBSMpwUTLzdoFMIO44xTQoZIzpvovj-_QlfXEL3Tqkr0wb-DSXRb79vgIiSVql2j-iEcyh3omMQ2MXDZurZJXGMOukfKLolv4OujSacr17zeomurqgB3lz5G29Vyu1inm-fHp8V8k-rjgSk1hclNSQRgrmhBgZYzYgrL8pLOuOECWxBMmFJoho0hSlsGKhOguSJKkTF6ONtq34bgwcq9d7XyncywPAYj-2DkKZheO_2l1S6e_oheueo_4sNV0P1tLVer5Zn4ATfJerI
CitedBy_id crossref_primary_10_1111_ffe_12664
crossref_primary_10_1016_j_compositesa_2024_108659
crossref_primary_10_1002_pc_25121
crossref_primary_10_1111_ffe_13344
crossref_primary_10_1111_ffe_13784
Cites_doi 10.1590/S1516-14392012005000062
10.1016/j.compositesa.2014.06.018
10.1177/0731684413482994
10.1016/j.paerosci.2010.05.001
10.1177/0021998305053511
10.1016/j.compositesb.2012.07.028
10.1016/S1359-8368(99)00073-6
10.1016/j.compscitech.2004.09.007
10.1016/j.compstruct.2007.10.018
10.1016/j.actamat.2004.11.032
10.1016/j.compscitech.2005.07.038
10.1016/j.engfracmech.2013.10.003
10.1016/j.compstruct.2014.02.007
10.1177/002199837601000401
10.1016/j.polymertesting.2012.02.003
10.1177/0731684410384894
10.1016/j.compositesa.2012.10.006
10.1016/j.engfailanal.2013.03.022
10.1016/S0266-3538(97)00048-1
10.1016/j.compscitech.2010.11.010
10.1016/j.ijfatigue.2006.02.014
10.1016/j.compscitech.2005.04.023
10.1016/j.engfracmech.2015.07.018
10.1016/j.compstruct.2013.03.008
10.1016/j.compstruct.2015.01.016
10.1016/j.compositesa.2015.05.016
10.1016/j.compscitech.2011.11.033
10.1520/STP31816S
10.1016/j.jcis.2005.12.023
10.1016/j.compscitech.2009.01.034
10.1016/j.compositesa.2014.04.007
10.1016/j.paerosci.2005.02.004
10.1016/S1359-835X(00)00145-7
10.1016/j.matdes.2014.10.038
10.1016/S0045-7949(03)00207-4
10.1016/S0142-1123(01)00071-8
10.1016/j.ijfatigue.2015.11.019
ContentType Journal Article
Copyright 2017 Wiley Publishing Ltd.
Copyright_xml – notice: 2017 Wiley Publishing Ltd.
DBID AAYXX
CITATION
DOI 10.1111/ffe.12565
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 1085
ExternalDocumentID 10_1111_ffe_12565
FFE12565
Genre article
GrantInformation_xml – fundername: Alltec Materiais Compostos
– fundername: Embraer
– fundername: CNPQ
– fundername: Instituto Tecnológico de Aeronáutica—ITA
  funderid: 800057/2013‐9; n°800488/2014
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2695-4d7d2db38e06a474e4b93d7f52b496d680fe858db8c50dd3acf5ea18ec6a3aa3
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Thu Apr 24 23:10:49 EDT 2025
Tue Jul 01 04:04:40 EDT 2025
Wed Jan 22 16:43:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2695-4d7d2db38e06a474e4b93d7f52b496d680fe858db8c50dd3acf5ea18ec6a3aa3
PageCount 14
ParticipantIDs crossref_primary_10_1111_ffe_12565
crossref_citationtrail_10_1111_ffe_12565
wiley_primary_10_1111_ffe_12565_FFE12565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2017
References 2009; 69
2003; 81
2015; 124
2013; 46
2010
2013; 45
2015; 145
2015; 77
2013; 112–113
2005; 41
2005; 65
2013; 102
2012; 15
2014; 63
2012; 31
2006; 298
2014; 66
2014; 112
1976; 10
2012; 72
2010; 46
2013; 32
2013; 35
2006; 66
2011; 71
2006; 28
2002; 24
1997; 57
2015; 66
2000; 31
2005; 53
2016; 84
1983
2008; 85
2014
2005; 39
2010; 30
2001; 32
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 15
  start-page: 495
  year: 2012
  end-page: 499
  article-title: Assessment of cumulative damage by using ultrasonic C‐scan on carbon fiber/epoxy composites under thermal cycling
  publication-title: Mater. Res.
– volume: 71
  start-page: 230
  year: 2011
  end-page: 238
  article-title: Misinterpreting the results: how similitude can improve our understanding of fatigue delamination growth
  publication-title: Compos. Sci. Technol.
– volume: 41
  start-page: 143
  year: 2005
  end-page: 151
  article-title: Fibre reinforced composites in aircraft construction
  publication-title: Prog. Aerosp. Sci.
– volume: 124
  start-page: 214
  year: 2015
  end-page: 227
  article-title: Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review
  publication-title: Compos. Struct.
– volume: 85
  start-page: 175
  year: 2008
  end-page: 187
  article-title: Interlaminar fatigue crack growth of cross‐ply composites under thermal cycles
  publication-title: Compos. Struct.
– volume: 72
  start-page: 1102
  year: 2012
  end-page: 1107
  article-title: Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: development of a standardized test procedure
  publication-title: Compos. Sci. Technol.
– volume: 46
  start-page: 34
  year: 2013
  end-page: 44
  article-title: Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites
  publication-title: Compos. Part A
– volume: 66
  start-page: 166
  year: 2006
  end-page: 175
  article-title: Analysis of the effect of stitching on the fatigue strength of single‐lap composite joints
  publication-title: Compos. Sci. Technol.
– volume: 32
  start-page: 709
  year: 2001
  end-page: 720
  article-title: Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments
  publication-title: Compos. Part A
– volume: 66
  start-page: 93
  year: 2015
  end-page: 102
  article-title: Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates
  publication-title: Mater. Des.
– volume: 46
  start-page: 342
  year: 2010
  end-page: 352
  article-title: Structural health monitoring techniques for aircraft composite structures
  publication-title: Prog. Aerosp. Sci.
– volume: 69
  start-page: 2345
  year: 2009
  end-page: 2351
  article-title: Fractographic observations on delamination growth and the subsequent migration through the laminate
  publication-title: Compos. Sci. Technol.
– volume: 53
  start-page: 1389
  year: 2005
  end-page: 1396
  article-title: Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures
  publication-title: Acta Mater.
– volume: 35
  start-page: 370
  year: 2013
  end-page: 379
  article-title: Critical review on the assessment of fatigue and fracture in composite materials and structures
  publication-title: Eng. Fail. Anal.
– volume: 63
  start-page: 103
  year: 2014
  end-page: 109
  article-title: Bridging effect on mode I fatigue delamination behavior in composite laminates
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 39
  start-page: 2213
  year: 2005
  end-page: 2225
  article-title: Theoretical and experimental studies on residual stresses in laminated polymer composites
  publication-title: J. Compos. Mater.
– volume: 32
  start-page: 863
  year: 2013
  end-page: 874
  article-title: Evaluation of weather influence on mechanical and viscoelastic properties of polyetherimide/carbon fiber composites
  publication-title: J. Reinf. Plast. Compos.
– year: 2014
– volume: 65
  start-page: 403
  year: 2005
  end-page: 409
  article-title: Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments
  publication-title: Compos. Sci. Technol.
– volume: 31
  start-page: 520
  year: 2012
  end-page: 526
  article-title: Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams
  publication-title: Polym. Test.
– year: 2010
– volume: 112
  start-page: 188
  year: 2014
  end-page: 193
  article-title: Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon‐fibre/epoxy composites under fatigue loading
  publication-title: Compos. Struct.
– volume: 145
  start-page: 86
  year: 2015
  end-page: 97
  article-title: The relation between the strain energy release in fatigue and quasi‐static crack growth
  publication-title: Eng. Fract. Mech.
– volume: 102
  start-page: 294
  year: 2013
  end-page: 305
  article-title: Utilising fracture mechanics principles for predicting the mixed‐mode delamination onset and growth in tapered composite laminates
  publication-title: Compos. Struct.
– volume: 81
  start-page: 1865
  year: 2003
  end-page: 1873
  article-title: Mechanical and thermal fatigue delamination of curved layered composites
  publication-title: Comput. Struct.
– volume: 10
  start-page: 266
  year: 1976
  end-page: 278
  article-title: Residual stresses in polymer matrix composite laminates
  publication-title: J. Compos. Mater.
– volume: 66
  start-page: 665
  year: 2006
  end-page: 675
  article-title: Mode I delamination fatigue properties of interlayer‐toughened CF/epoxy laminates
  publication-title: Compos. Sci. Technol.
– volume: 57
  start-page: 1445
  year: 1997
  end-page: 1455
  article-title: The measurement and prediction of residual stresses in carbon‐fibre/polymer composites
  publication-title: Compos. Sci. Technol.
– volume: 30
  start-page: 110
  year: 2010
  end-page: 122
  article-title: Effects of hygrothermal environmental conditions on compressive strength of CFRP stitched laminates
  publication-title: J. Reinf. Plast. Compos.
– volume: 28
  start-page: 1202
  year: 2006
  end-page: 1216
  article-title: Damage mechanisms induced by cyclic ply‐stresses in carbon‐epoxy laminates: environmental effects
  publication-title: Int. J. Fatigue
– volume: 112–113
  start-page: 72
  year: 2013
  end-page: 96
  article-title: Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—a critical review
  publication-title: Eng. Fract. Mech.
– volume: 77
  start-page: 75
  year: 2015
  end-page: 86
  article-title: Temperature effects on mixed mode I/II delamination under quasi‐static and fatigue loading of a carbon/epoxy composite
  publication-title: Compos. Part A
– volume: 66
  start-page: 65
  year: 2014
  end-page: 72
  article-title: Discussion on the use of the strain energy release rate for fatigue delamination characterization
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 84
  start-page: 97
  year: 2016
  end-page: 103
  article-title: A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: evaluation of empirical relations
  publication-title: Int. J. Fatigue
– start-page: 55
  year: 1983
  end-page: 77
– volume: 298
  start-page: 111
  year: 2006
  end-page: 117
  article-title: Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites
  publication-title: J. Colloid Interface Sci.
– volume: 45
  start-page: 528
  year: 2013
  end-page: 537
  article-title: On the role of damage energy in the fatigue degradation characterization of a composite laminate
  publication-title: Compos. Part B Eng.
– volume: 31
  start-page: 223
  year: 2000
  end-page: 235
  article-title: Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments
  publication-title: Compos. Part B Eng.
– volume: 24
  start-page: 179
  year: 2002
  end-page: 184
  article-title: Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading
  publication-title: Int. J. Fatigue
– ident: e_1_2_8_10_1
  doi: 10.1590/S1516-14392012005000062
– ident: e_1_2_8_32_1
  doi: 10.1016/j.compositesa.2014.06.018
– ident: e_1_2_8_6_1
  doi: 10.1177/0731684413482994
– ident: e_1_2_8_3_1
  doi: 10.1016/j.paerosci.2010.05.001
– ident: e_1_2_8_23_1
  doi: 10.1177/0021998305053511
– ident: e_1_2_8_39_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compositesb.2012.07.028
– ident: e_1_2_8_9_1
  doi: 10.1016/S1359-8368(99)00073-6
– ident: e_1_2_8_11_1
  doi: 10.1016/j.compscitech.2004.09.007
– ident: e_1_2_8_24_1
  doi: 10.1016/j.compstruct.2007.10.018
– ident: e_1_2_8_29_1
  doi: 10.1016/j.actamat.2004.11.032
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compscitech.2005.07.038
– ident: e_1_2_8_18_1
  doi: 10.1016/j.engfracmech.2013.10.003
– ident: e_1_2_8_30_1
  doi: 10.1016/j.compstruct.2014.02.007
– ident: e_1_2_8_28_1
  doi: 10.1177/002199837601000401
– ident: e_1_2_8_4_1
  doi: 10.1016/j.polymertesting.2012.02.003
– ident: e_1_2_8_7_1
  doi: 10.1177/0731684410384894
– ident: e_1_2_8_27_1
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compositesa.2012.10.006
– ident: e_1_2_8_19_1
  doi: 10.1016/j.engfailanal.2013.03.022
– ident: e_1_2_8_25_1
  doi: 10.1016/S0266-3538(97)00048-1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.compscitech.2010.11.010
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ijfatigue.2006.02.014
– ident: e_1_2_8_34_1
  doi: 10.1016/j.compscitech.2005.04.023
– ident: e_1_2_8_37_1
  doi: 10.1016/j.engfracmech.2015.07.018
– ident: e_1_2_8_26_1
  doi: 10.1016/j.compstruct.2013.03.008
– ident: e_1_2_8_14_1
  doi: 10.1016/j.compstruct.2015.01.016
– ident: e_1_2_8_22_1
  doi: 10.1016/j.compositesa.2015.05.016
– ident: e_1_2_8_36_1
  doi: 10.1016/j.compscitech.2011.11.033
– ident: e_1_2_8_40_1
  doi: 10.1520/STP31816S
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jcis.2005.12.023
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compscitech.2009.01.034
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compositesa.2014.04.007
– ident: e_1_2_8_2_1
  doi: 10.1016/j.paerosci.2005.02.004
– ident: e_1_2_8_8_1
  doi: 10.1016/S1359-835X(00)00145-7
– ident: e_1_2_8_31_1
  doi: 10.1016/j.matdes.2014.10.038
– ident: e_1_2_8_16_1
  doi: 10.1016/S0045-7949(03)00207-4
– ident: e_1_2_8_21_1
  doi: 10.1016/S0142-1123(01)00071-8
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ijfatigue.2015.11.019
SSID ssj0016433
Score 2.1810017
Snippet Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 1072
SubjectTerms carbon/epoxy laminates
composite materials
fracture mechanics
thermal fatigue
Title Anti‐symmetrical curved composite laminate subject to delamination induced by thermal cycling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.12565
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLdZHWcRDLyl5bDYJnlo1iKAHqdCDEPYVEW0Umwr15E_wN_pLnNk2oYqCeAthNiyzs5lvhplvCDkEryB8I5hjcohNmAiYI4SnHK6SBPxF4roC85AXl_zsmp33w_4cOap6YSb8EHXCDW-G_V_jBRdyOHPJ89y0wTtzbDDHWi0ERFc1dRREAXaMPMBx7gAm7k9ZhbCKp175xRfNYlPrXNIVclNta1JTct8elbKtXr8xNv5z36tkeQo6aWdiJWtkzhTrZGmGinCDZJ2ivPt4ex-OBwMcsgVHR9Xo-cVoilXnWNplKFjPXQHglA5HEvM3tHykyDJp38IBUwjwwVQ0lWOKwHKAHxlj8-XtJumlp73jM2c6fMFRPk9Ch-lI-1oGsXG5YBEzTCaBjvLQlyzhmsdubuIw1jJWoat1IFQeGuHFRnERCBFskfnisTDbhPpaKK1cLSJPMghvpAq9CIBNqKIg94zbIK3qFDI1JSbH-RgPWRWggMoyq7IGOahFnyZsHD8Jtaz-f5fI0vTUPuz8XXSXLPro0W2l7h6ZL59HZh_wSCmbZKHTPemmTWuAn1Un4Gk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb_HtIh68pOSxu0nAi0hL1epBKvQiYV-Roo2iqVBP_gR_o7_E2e2DKgriLYTZsOzMZL4ZZr8BOMCoIEIjqGdyzE2oiKgnRKA8rtIU40Xq-8LWIS8uef2anrVYawKOhndh-vwQo4Kb9Qz3v7YObgvSY16e56aC4ZmzSZi2E71dQnU1Io_CPMANkkdAzj1Exa0Br5Dt4xkt_RKNxtGpCy-1BbgZbqzfVXJX6Zayol6_cTb-d-eLMD_AneS4byhLMGGKZZgbYyNcgey4KNsfb-_PvU7HztlC7RHVfXoxmtjGc9vdZQgaULtAfEqeu9KWcEj5QCzRpHuLOiaY46O1aCJ7xGLLjv1Iz96_vF2FZq3aPKl7g_kLngp5yjyqYx1qGSXG54LG1FCZRjrOWShpyjVP_NwkLNEyUczXOhIqZ0YEiVFcREJEazBVPBRmHUiohdLK1yIOJMUMRyoWxIhtmIqjPDD-BhwO1ZCpATe5HZFxnw1zFDyyzB3ZBuyPRB_7hBw_CR06BfwukdVqVfew-XfRPZipNy8aWeP08nwLZkMb4F3j7jZMlU9ds4PwpJS7zgo_AT_G4xI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cQPTgLu424sFLhizdnQRPogZ3RBTmIITeIoNOFM0I48lP8Bv9Eqt7FkZREG8hVIemqyr1qqh-BbCFUUGERlDPFJibUBFRT4hAeVylKcaL1PeFrUOenfPDa3pcZ_Uh2OndhenwQ_QLbtYz3P_aOvijLgacvChMDaMzZ8MwSrmfWJPev-xzR2Ea4ObIIx7nHoLiepdWyLbx9Jd-CUaD4NRFl2wKbnr76jSV3NValayp12-Ujf_c-DRMdlEn2e2YyQwMmXIWJga4COcg3y2rxsfb-3O72bRTtlB3RLWeXowmtu3c9nYZgubTKBGdkueWtAUcUj0QSzPp3qKGCWb4aCuayDaxyLJpP9K2ty9v5-EqO7jaO_S60xc8FfKUeVTHOtQySozPBY2poTKNdFywUNKUa574hUlYomWimK91JFTBjAgSo7iIhIgWYKR8KM0ikFALpZWvRRxIivmNVCyIEdkwFUdFYPwl2O5pIVddZnI7IOM-72UoeGS5O7Il2OyLPnboOH4S2nbn_7tEnmUH7mH576IbMHaxn-WnR-cnKzAe2ujuunZXYaR6apk1xCaVXHc2-AnTdeHK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti%E2%80%90symmetrical+curved+composite+laminate+subject+to+delamination+induced+by+thermal+cycling&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Treml%2C+A+E&rft.au=Gouv%C3%AAa%2C+R+F&rft.au=Sales%2C+R+C+M&rft.au=Donadon%2C+M+V&rft.date=2017-07-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=40&rft.issue=7&rft.spage=1072&rft.epage=1085&rft_id=info:doi/10.1111%2Fffe.12565&rft.externalDBID=10.1111%252Fffe.12565&rft.externalDocID=FFE12565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon