Anti‐symmetrical curved composite laminate subject to delamination induced by thermal cycling
Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance o...
Saved in:
Published in | Fatigue & fracture of engineering materials & structures Vol. 40; no. 7; pp. 1072 - 1085 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate (da/dN) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate (da/dN) as a function of the maximum SERR. |
---|---|
AbstractList | Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate (da/dN) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate (da/dN) as a function of the maximum SERR. Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions and in combination with curved structures, they can generate severe thermal stresses that induce delaminations. Considering the importance of studying delamination in these conditions, this research imposed an anti‐symmetrical laminate to cyclic temperature variations of 130 °C and −70 °C with the objective of inducing varied curvatures and, consequently, crack growth. Different from standardized test procedures, this test setup elastically deformed coupons without external forces and forward experimentally and numerically evaluated the strain energy release rate (SERR) during crack propagation. This procedure enabled the assessment of delamination rate ( da/dN ) as a function of maximum SERR. The experimental results were compared with numerical results obtained by ABAQUS Finite Element code. Despite large scatter in experimental results, a reasonable correlation between experimental and numerical results was obtained in terms of crack growth rate ( da/dN ) as a function of the maximum SERR. |
Author | Bressan, J D Sales, R C M Donadon, M V Treml, A E Shiino, M Y Gouvêa, R F |
Author_xml | – sequence: 1 givenname: A E surname: Treml fullname: Treml, A E organization: Universidade Estadual do Oeste do Paraná – sequence: 2 givenname: R F surname: Gouvêa fullname: Gouvêa, R F organization: Faculdade de Tecnologia de São José dos Campos—Prof. Jessen Vidal – sequence: 3 givenname: R C M surname: Sales fullname: Sales, R C M organization: Faculdade de Tecnologia de São José dos Campos—Prof. Jessen Vidal – sequence: 4 givenname: M V surname: Donadon fullname: Donadon, M V organization: Instituto Tecnológico de Aeronáutica – sequence: 5 givenname: M Y surname: Shiino fullname: Shiino, M Y email: marcosshiino@yahoo.com.br organization: Departamento de Engenharia Ambiental, Rodovia Presidente Dutra km 137.8 – sequence: 6 givenname: J D surname: Bressan fullname: Bressan, J D organization: Instituto Tecnológico de Aeronáutica |
BookMark | eNp9kLtOAzEQRS0UJJJAwR9sS7GJd_1Yp4yihCBFoklBZ3ntMTjaR2Q7oO34BL6RL2HzqJBgmhmN7rmauSM0aNoGELrP8CTra2otTLKccXaFhhnlOM35jA3QUBSMpwUTLzdoFMIO44xTQoZIzpvovj-_QlfXEL3Tqkr0wb-DSXRb79vgIiSVql2j-iEcyh3omMQ2MXDZurZJXGMOukfKLolv4OujSacr17zeomurqgB3lz5G29Vyu1inm-fHp8V8k-rjgSk1hclNSQRgrmhBgZYzYgrL8pLOuOECWxBMmFJoho0hSlsGKhOguSJKkTF6ONtq34bgwcq9d7XyncywPAYj-2DkKZheO_2l1S6e_oheueo_4sNV0P1tLVer5Zn4ATfJerI |
CitedBy_id | crossref_primary_10_1111_ffe_12664 crossref_primary_10_1016_j_compositesa_2024_108659 crossref_primary_10_1002_pc_25121 crossref_primary_10_1111_ffe_13344 crossref_primary_10_1111_ffe_13784 |
Cites_doi | 10.1590/S1516-14392012005000062 10.1016/j.compositesa.2014.06.018 10.1177/0731684413482994 10.1016/j.paerosci.2010.05.001 10.1177/0021998305053511 10.1016/j.compositesb.2012.07.028 10.1016/S1359-8368(99)00073-6 10.1016/j.compscitech.2004.09.007 10.1016/j.compstruct.2007.10.018 10.1016/j.actamat.2004.11.032 10.1016/j.compscitech.2005.07.038 10.1016/j.engfracmech.2013.10.003 10.1016/j.compstruct.2014.02.007 10.1177/002199837601000401 10.1016/j.polymertesting.2012.02.003 10.1177/0731684410384894 10.1016/j.compositesa.2012.10.006 10.1016/j.engfailanal.2013.03.022 10.1016/S0266-3538(97)00048-1 10.1016/j.compscitech.2010.11.010 10.1016/j.ijfatigue.2006.02.014 10.1016/j.compscitech.2005.04.023 10.1016/j.engfracmech.2015.07.018 10.1016/j.compstruct.2013.03.008 10.1016/j.compstruct.2015.01.016 10.1016/j.compositesa.2015.05.016 10.1016/j.compscitech.2011.11.033 10.1520/STP31816S 10.1016/j.jcis.2005.12.023 10.1016/j.compscitech.2009.01.034 10.1016/j.compositesa.2014.04.007 10.1016/j.paerosci.2005.02.004 10.1016/S1359-835X(00)00145-7 10.1016/j.matdes.2014.10.038 10.1016/S0045-7949(03)00207-4 10.1016/S0142-1123(01)00071-8 10.1016/j.ijfatigue.2015.11.019 |
ContentType | Journal Article |
Copyright | 2017 Wiley Publishing Ltd. |
Copyright_xml | – notice: 2017 Wiley Publishing Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1111/ffe.12565 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1460-2695 |
EndPage | 1085 |
ExternalDocumentID | 10_1111_ffe_12565 FFE12565 |
Genre | article |
GrantInformation_xml | – fundername: Alltec Materiais Compostos – fundername: Embraer – fundername: CNPQ – fundername: Instituto Tecnológico de Aeronáutica—ITA funderid: 800057/2013‐9; n°800488/2014 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDEX ABEFU ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2695-4d7d2db38e06a474e4b93d7f52b496d680fe858db8c50dd3acf5ea18ec6a3aa3 |
IEDL.DBID | DR2 |
ISSN | 8756-758X |
IngestDate | Thu Apr 24 23:10:49 EDT 2025 Tue Jul 01 04:04:40 EDT 2025 Wed Jan 22 16:43:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2695-4d7d2db38e06a474e4b93d7f52b496d680fe858db8c50dd3acf5ea18ec6a3aa3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1111_ffe_12565 crossref_citationtrail_10_1111_ffe_12565 wiley_primary_10_1111_ffe_12565_FFE12565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2017 2017-07-00 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
PublicationDecade | 2010 |
PublicationTitle | Fatigue & fracture of engineering materials & structures |
PublicationYear | 2017 |
References | 2009; 69 2003; 81 2015; 124 2013; 46 2010 2013; 45 2015; 145 2015; 77 2013; 112–113 2005; 41 2005; 65 2013; 102 2012; 15 2014; 63 2012; 31 2006; 298 2014; 66 2014; 112 1976; 10 2012; 72 2010; 46 2013; 32 2013; 35 2006; 66 2011; 71 2006; 28 2002; 24 1997; 57 2015; 66 2000; 31 2005; 53 2016; 84 1983 2008; 85 2014 2005; 39 2010; 30 2001; 32 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 15 start-page: 495 year: 2012 end-page: 499 article-title: Assessment of cumulative damage by using ultrasonic C‐scan on carbon fiber/epoxy composites under thermal cycling publication-title: Mater. Res. – volume: 71 start-page: 230 year: 2011 end-page: 238 article-title: Misinterpreting the results: how similitude can improve our understanding of fatigue delamination growth publication-title: Compos. Sci. Technol. – volume: 41 start-page: 143 year: 2005 end-page: 151 article-title: Fibre reinforced composites in aircraft construction publication-title: Prog. Aerosp. Sci. – volume: 124 start-page: 214 year: 2015 end-page: 227 article-title: Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review publication-title: Compos. Struct. – volume: 85 start-page: 175 year: 2008 end-page: 187 article-title: Interlaminar fatigue crack growth of cross‐ply composites under thermal cycles publication-title: Compos. Struct. – volume: 72 start-page: 1102 year: 2012 end-page: 1107 article-title: Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: development of a standardized test procedure publication-title: Compos. Sci. Technol. – volume: 46 start-page: 34 year: 2013 end-page: 44 article-title: Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites publication-title: Compos. Part A – volume: 66 start-page: 166 year: 2006 end-page: 175 article-title: Analysis of the effect of stitching on the fatigue strength of single‐lap composite joints publication-title: Compos. Sci. Technol. – volume: 32 start-page: 709 year: 2001 end-page: 720 article-title: Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments publication-title: Compos. Part A – volume: 66 start-page: 93 year: 2015 end-page: 102 article-title: Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates publication-title: Mater. Des. – volume: 46 start-page: 342 year: 2010 end-page: 352 article-title: Structural health monitoring techniques for aircraft composite structures publication-title: Prog. Aerosp. Sci. – volume: 69 start-page: 2345 year: 2009 end-page: 2351 article-title: Fractographic observations on delamination growth and the subsequent migration through the laminate publication-title: Compos. Sci. Technol. – volume: 53 start-page: 1389 year: 2005 end-page: 1396 article-title: Characterization of Mode I fatigue crack growth in GFRP woven laminates at low temperatures publication-title: Acta Mater. – volume: 35 start-page: 370 year: 2013 end-page: 379 article-title: Critical review on the assessment of fatigue and fracture in composite materials and structures publication-title: Eng. Fail. Anal. – volume: 63 start-page: 103 year: 2014 end-page: 109 article-title: Bridging effect on mode I fatigue delamination behavior in composite laminates publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 39 start-page: 2213 year: 2005 end-page: 2225 article-title: Theoretical and experimental studies on residual stresses in laminated polymer composites publication-title: J. Compos. Mater. – volume: 32 start-page: 863 year: 2013 end-page: 874 article-title: Evaluation of weather influence on mechanical and viscoelastic properties of polyetherimide/carbon fiber composites publication-title: J. Reinf. Plast. Compos. – year: 2014 – volume: 65 start-page: 403 year: 2005 end-page: 409 article-title: Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments publication-title: Compos. Sci. Technol. – volume: 31 start-page: 520 year: 2012 end-page: 526 article-title: Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams publication-title: Polym. Test. – year: 2010 – volume: 112 start-page: 188 year: 2014 end-page: 193 article-title: Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon‐fibre/epoxy composites under fatigue loading publication-title: Compos. Struct. – volume: 145 start-page: 86 year: 2015 end-page: 97 article-title: The relation between the strain energy release in fatigue and quasi‐static crack growth publication-title: Eng. Fract. Mech. – volume: 102 start-page: 294 year: 2013 end-page: 305 article-title: Utilising fracture mechanics principles for predicting the mixed‐mode delamination onset and growth in tapered composite laminates publication-title: Compos. Struct. – volume: 81 start-page: 1865 year: 2003 end-page: 1873 article-title: Mechanical and thermal fatigue delamination of curved layered composites publication-title: Comput. Struct. – volume: 10 start-page: 266 year: 1976 end-page: 278 article-title: Residual stresses in polymer matrix composite laminates publication-title: J. Compos. Mater. – volume: 66 start-page: 665 year: 2006 end-page: 675 article-title: Mode I delamination fatigue properties of interlayer‐toughened CF/epoxy laminates publication-title: Compos. Sci. Technol. – volume: 57 start-page: 1445 year: 1997 end-page: 1455 article-title: The measurement and prediction of residual stresses in carbon‐fibre/polymer composites publication-title: Compos. Sci. Technol. – volume: 30 start-page: 110 year: 2010 end-page: 122 article-title: Effects of hygrothermal environmental conditions on compressive strength of CFRP stitched laminates publication-title: J. Reinf. Plast. Compos. – volume: 28 start-page: 1202 year: 2006 end-page: 1216 article-title: Damage mechanisms induced by cyclic ply‐stresses in carbon‐epoxy laminates: environmental effects publication-title: Int. J. Fatigue – volume: 112–113 start-page: 72 year: 2013 end-page: 96 article-title: Methods for the prediction of fatigue delamination growth in composites and adhesive bonds—a critical review publication-title: Eng. Fract. Mech. – volume: 77 start-page: 75 year: 2015 end-page: 86 article-title: Temperature effects on mixed mode I/II delamination under quasi‐static and fatigue loading of a carbon/epoxy composite publication-title: Compos. Part A – volume: 66 start-page: 65 year: 2014 end-page: 72 article-title: Discussion on the use of the strain energy release rate for fatigue delamination characterization publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 84 start-page: 97 year: 2016 end-page: 103 article-title: A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: evaluation of empirical relations publication-title: Int. J. Fatigue – start-page: 55 year: 1983 end-page: 77 – volume: 298 start-page: 111 year: 2006 end-page: 117 article-title: Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites publication-title: J. Colloid Interface Sci. – volume: 45 start-page: 528 year: 2013 end-page: 537 article-title: On the role of damage energy in the fatigue degradation characterization of a composite laminate publication-title: Compos. Part B Eng. – volume: 31 start-page: 223 year: 2000 end-page: 235 article-title: Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments publication-title: Compos. Part B Eng. – volume: 24 start-page: 179 year: 2002 end-page: 184 article-title: Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading publication-title: Int. J. Fatigue – ident: e_1_2_8_10_1 doi: 10.1590/S1516-14392012005000062 – ident: e_1_2_8_32_1 doi: 10.1016/j.compositesa.2014.06.018 – ident: e_1_2_8_6_1 doi: 10.1177/0731684413482994 – ident: e_1_2_8_3_1 doi: 10.1016/j.paerosci.2010.05.001 – ident: e_1_2_8_23_1 doi: 10.1177/0021998305053511 – ident: e_1_2_8_39_1 – ident: e_1_2_8_20_1 doi: 10.1016/j.compositesb.2012.07.028 – ident: e_1_2_8_9_1 doi: 10.1016/S1359-8368(99)00073-6 – ident: e_1_2_8_11_1 doi: 10.1016/j.compscitech.2004.09.007 – ident: e_1_2_8_24_1 doi: 10.1016/j.compstruct.2007.10.018 – ident: e_1_2_8_29_1 doi: 10.1016/j.actamat.2004.11.032 – ident: e_1_2_8_35_1 doi: 10.1016/j.compscitech.2005.07.038 – ident: e_1_2_8_18_1 doi: 10.1016/j.engfracmech.2013.10.003 – ident: e_1_2_8_30_1 doi: 10.1016/j.compstruct.2014.02.007 – ident: e_1_2_8_28_1 doi: 10.1177/002199837601000401 – ident: e_1_2_8_4_1 doi: 10.1016/j.polymertesting.2012.02.003 – ident: e_1_2_8_7_1 doi: 10.1177/0731684410384894 – ident: e_1_2_8_27_1 – ident: e_1_2_8_17_1 doi: 10.1016/j.compositesa.2012.10.006 – ident: e_1_2_8_19_1 doi: 10.1016/j.engfailanal.2013.03.022 – ident: e_1_2_8_25_1 doi: 10.1016/S0266-3538(97)00048-1 – ident: e_1_2_8_33_1 doi: 10.1016/j.compscitech.2010.11.010 – ident: e_1_2_8_15_1 doi: 10.1016/j.ijfatigue.2006.02.014 – ident: e_1_2_8_34_1 doi: 10.1016/j.compscitech.2005.04.023 – ident: e_1_2_8_37_1 doi: 10.1016/j.engfracmech.2015.07.018 – ident: e_1_2_8_26_1 doi: 10.1016/j.compstruct.2013.03.008 – ident: e_1_2_8_14_1 doi: 10.1016/j.compstruct.2015.01.016 – ident: e_1_2_8_22_1 doi: 10.1016/j.compositesa.2015.05.016 – ident: e_1_2_8_36_1 doi: 10.1016/j.compscitech.2011.11.033 – ident: e_1_2_8_40_1 doi: 10.1520/STP31816S – ident: e_1_2_8_5_1 doi: 10.1016/j.jcis.2005.12.023 – ident: e_1_2_8_38_1 doi: 10.1016/j.compscitech.2009.01.034 – ident: e_1_2_8_13_1 doi: 10.1016/j.compositesa.2014.04.007 – ident: e_1_2_8_2_1 doi: 10.1016/j.paerosci.2005.02.004 – ident: e_1_2_8_8_1 doi: 10.1016/S1359-835X(00)00145-7 – ident: e_1_2_8_31_1 doi: 10.1016/j.matdes.2014.10.038 – ident: e_1_2_8_16_1 doi: 10.1016/S0045-7949(03)00207-4 – ident: e_1_2_8_21_1 doi: 10.1016/S0142-1123(01)00071-8 – ident: e_1_2_8_12_1 doi: 10.1016/j.ijfatigue.2015.11.019 |
SSID | ssj0016433 |
Score | 2.1810017 |
Snippet | Composite structures usually undergo to temperature variations in aircraft during landing/taking off and when cruising at high altitude. Under these conditions... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1072 |
SubjectTerms | carbon/epoxy laminates composite materials fracture mechanics thermal fatigue |
Title | Anti‐symmetrical curved composite laminate subject to delamination induced by thermal cycling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.12565 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLdZHWcRDLyl5bDYJnlo1iKAHqdCDEPYVEW0Umwr15E_wN_pLnNk2oYqCeAthNiyzs5lvhplvCDkEryB8I5hjcohNmAiYI4SnHK6SBPxF4roC85AXl_zsmp33w_4cOap6YSb8EHXCDW-G_V_jBRdyOHPJ89y0wTtzbDDHWi0ERFc1dRREAXaMPMBx7gAm7k9ZhbCKp175xRfNYlPrXNIVclNta1JTct8elbKtXr8xNv5z36tkeQo6aWdiJWtkzhTrZGmGinCDZJ2ivPt4ex-OBwMcsgVHR9Xo-cVoilXnWNplKFjPXQHglA5HEvM3tHykyDJp38IBUwjwwVQ0lWOKwHKAHxlj8-XtJumlp73jM2c6fMFRPk9Ch-lI-1oGsXG5YBEzTCaBjvLQlyzhmsdubuIw1jJWoat1IFQeGuHFRnERCBFskfnisTDbhPpaKK1cLSJPMghvpAq9CIBNqKIg94zbIK3qFDI1JSbH-RgPWRWggMoyq7IGOahFnyZsHD8Jtaz-f5fI0vTUPuz8XXSXLPro0W2l7h6ZL59HZh_wSCmbZKHTPemmTWuAn1Un4Gk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb_HtIh68pOSxu0nAi0hL1epBKvQiYV-Roo2iqVBP_gR_o7_E2e2DKgriLYTZsOzMZL4ZZr8BOMCoIEIjqGdyzE2oiKgnRKA8rtIU40Xq-8LWIS8uef2anrVYawKOhndh-vwQo4Kb9Qz3v7YObgvSY16e56aC4ZmzSZi2E71dQnU1Io_CPMANkkdAzj1Exa0Br5Dt4xkt_RKNxtGpCy-1BbgZbqzfVXJX6Zayol6_cTb-d-eLMD_AneS4byhLMGGKZZgbYyNcgey4KNsfb-_PvU7HztlC7RHVfXoxmtjGc9vdZQgaULtAfEqeu9KWcEj5QCzRpHuLOiaY46O1aCJ7xGLLjv1Iz96_vF2FZq3aPKl7g_kLngp5yjyqYx1qGSXG54LG1FCZRjrOWShpyjVP_NwkLNEyUczXOhIqZ0YEiVFcREJEazBVPBRmHUiohdLK1yIOJMUMRyoWxIhtmIqjPDD-BhwO1ZCpATe5HZFxnw1zFDyyzB3ZBuyPRB_7hBw_CR06BfwukdVqVfew-XfRPZipNy8aWeP08nwLZkMb4F3j7jZMlU9ds4PwpJS7zgo_AT_G4xI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cQPTgLu424sFLhizdnQRPogZ3RBTmIITeIoNOFM0I48lP8Bv9Eqt7FkZREG8hVIemqyr1qqh-BbCFUUGERlDPFJibUBFRT4hAeVylKcaL1PeFrUOenfPDa3pcZ_Uh2OndhenwQ_QLbtYz3P_aOvijLgacvChMDaMzZ8MwSrmfWJPev-xzR2Ea4ObIIx7nHoLiepdWyLbx9Jd-CUaD4NRFl2wKbnr76jSV3NValayp12-Ujf_c-DRMdlEn2e2YyQwMmXIWJga4COcg3y2rxsfb-3O72bRTtlB3RLWeXowmtu3c9nYZgubTKBGdkueWtAUcUj0QSzPp3qKGCWb4aCuayDaxyLJpP9K2ty9v5-EqO7jaO_S60xc8FfKUeVTHOtQySozPBY2poTKNdFywUNKUa574hUlYomWimK91JFTBjAgSo7iIhIgWYKR8KM0ikFALpZWvRRxIivmNVCyIEdkwFUdFYPwl2O5pIVddZnI7IOM-72UoeGS5O7Il2OyLPnboOH4S2nbn_7tEnmUH7mH576IbMHaxn-WnR-cnKzAe2ujuunZXYaR6apk1xCaVXHc2-AnTdeHK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti%E2%80%90symmetrical+curved+composite+laminate+subject+to+delamination+induced+by+thermal+cycling&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Treml%2C+A+E&rft.au=Gouv%C3%AAa%2C+R+F&rft.au=Sales%2C+R+C+M&rft.au=Donadon%2C+M+V&rft.date=2017-07-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=40&rft.issue=7&rft.spage=1072&rft.epage=1085&rft_id=info:doi/10.1111%2Fffe.12565&rft.externalDBID=10.1111%252Fffe.12565&rft.externalDocID=FFE12565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |