Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system
Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the tra...
Saved in:
Published in | Journal of applied physics Vol. 118; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.4927841 |
Cover
Loading…
Abstract | Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system. |
---|---|
AbstractList | Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system. |
Author | Lavoine, J. P. Hinschberger, Y. |
Author_xml | – sequence: 1 givenname: Y. surname: Hinschberger fullname: Hinschberger, Y. – sequence: 2 givenname: J. P. surname: Lavoine fullname: Lavoine, J. P. |
BackLink | https://hal.science/hal-05037723$$DView record in HAL https://www.osti.gov/biblio/22494687$$D View this record in Osti.gov |
BookMark | eNplkb1qHDEQgEVwIGfHhd9AkCrF2hrtr0pj4jhwEAh2LbTSyCej024knc26y3PknfJM0eWcuEgxzDDzzf8xOQpTQELOgJ0D6-oLOG8E74cG3pAVsEFUfduyI7JijEM1iF68I8cpPTAGMNRiRX58Q6-ymwIdMT8hBrpV9wGzez54VTD0WkVl1FLse4-JznEyO42Gjgvd-RyVVSnTNLtQWe_mfVxjSoV8cnnjAs0bLBIRK4-P6Omvn1VeZqRpSRm378lbq3zC0xd9Qu6uP91e3VTrr5-_XF2uK807AZXoNAPsDBhQCsHyFoXSGpg2vLWdra21Bpnt1GDGpmUGx9qANqNVWFsc6hPy4VB3StnJpF1GvdFTCKiz5LwRTTf0hfp4oDbKyzm6rYqLnJSTN5drufexltV9z-tHeK1YNv6-w5Tlw7SLoSwhOfAGGBvarlAXB0rHKaWIVpbWf45bTue8BCb3n5MgXz73OsO_jL-D_M_-BoDGnVA |
CitedBy_id | crossref_primary_10_1063_1_4938387 crossref_primary_10_1021_acs_jpclett_3c01917 |
Cites_doi | 10.1364/OL.30.003090 10.1103/PhysRevB.80.180407 10.1103/PhysRevLett.76.4250 10.1088/0953-8984/16/30/013 10.1103/PhysRevB.87.014404 10.1063/1.465362 10.1088/0256-307X/18/2/316 10.1103/RevModPhys.82.2731 10.1103/PhysRevLett.85.3025 10.1088/0953-8984/15/5/324 10.1103/PhysRevLett.95.267207 10.1103/PhysRevB.79.212412 10.1016/S1049-250X(08)60186-X 10.1103/PhysRevLett.105.027203 10.1038/nature09070 10.1007/BF01608499 10.1038/nmat2593 10.1103/PhysRevB.88.134413 10.1103/PhysRevB.58.R5920 10.1103/PhysRevA.66.045401 10.1103/PhysRevB.78.174422 10.1063/1.1447908 10.1103/PhysRevB.85.180407 10.1002/andp.201200199 10.1103/PhysRevLett.103.217401 10.1038/nphys1285 10.1103/PhysRevLett.85.844 10.1038/nphys1315 10.1038/nphys2067 10.1103/PhysRevLett.95.137402 10.1063/1.1150496 10.1051/jphysrad:01961002206032900 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 AIP Publishing LLC. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC OTOTI |
DOI | 10.1063/1.4927841 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 22494687 oai_HAL_hal_05037723v1 10_1063_1_4927841 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M 1XC 0ZJ AAEUA ABPTK AGIHO ESX OTOTI TAF UCJ UE8 |
ID | FETCH-LOGICAL-c2691-96c01e6d1d1aae1f25e9acc10cd25f6f3fffde0f6a8db450deb3d1cdbfae3fe83 |
ISSN | 0021-8979 |
IngestDate | Fri May 19 01:42:46 EDT 2023 Thu Jul 10 07:47:49 EDT 2025 Mon Jun 30 03:47:07 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jul 01 03:50:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2691-96c01e6d1d1aae1f25e9acc10cd25f6f3fffde0f6a8db450deb3d1cdbfae3fe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.4927841 |
PQID | 2124100856 |
PQPubID | 2050677 |
ParticipantIDs | osti_scitechconnect_22494687 hal_primary_oai_HAL_hal_05037723v1 proquest_journals_2124100856 crossref_citationtrail_10_1063_1_4927841 crossref_primary_10_1063_1_4927841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-07 20150807 |
PublicationDateYYYYMMDD | 2015-08-07 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Journal of applied physics |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023062519300694700_c33) 1961; 22 (2023062519300694700_c23) 1976; 48 (2023062519300694700_c30) 1992 (2023062519300694700_c17) 2013; 88 (2023062519300694700_c1) 1996; 76 (2023062519300694700_c6) 1998; 58 (2023062519300694700_c29) 1993; 99 (2023062519300694700_c10) 2009; 5 (2023062519300694700_c13) 2003; 15 (2023062519300694700_c15) 2011; 7 (2023062519300694700_c16) 2004; 16 (2023062519300694700_c7) 2000; 85 (2023062519300694700_c3) 2013; 525 (2023062519300694700_c27) 2010; 105 (2023062519300694700_c35) 2000; 42 (2023062519300694700_c11) 2012; 85 (2023062519300694700_c24) 2005; 95 2023062519300694700_c22 (2023062519300694700_c31) 1990 (2023062519300694700_c32) 2005; 30 (2023062519300694700_c34) 2002; 66 (2023062519300694700_c25) 2008; 78 (2023062519300694700_c21) 2002; 116 (2023062519300694700_c12) 2000; 85 (2023062519300694700_c14) 2009; 5 (2023062519300694700_c8) 2010; 465 (2023062519300694700_c9) 2009; 87 (2023062519300694700_c5) 2005; 95 (2023062519300694700_c18) 2013; 87 (2023062519300694700_c28) 2009; 79 (2023062519300694700_c36) 2001; 18 (2023062519300694700_c4) 2010; 9 (2023062519300694700_c20) 2000; 71 (2023062519300694700_c2) 2010; 82 (2023062519300694700_c19) 2009; 103 (2023062519300694700_c26) 2009; 80 |
References_xml | – volume: 30 start-page: 3090 year: 2005 ident: 2023062519300694700_c32 publication-title: Opt. Lett. doi: 10.1364/OL.30.003090 – volume: 80 start-page: 180407(R) year: 2009 ident: 2023062519300694700_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.180407 – volume: 76 start-page: 4250 year: 1996 ident: 2023062519300694700_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4250 – volume: 16 start-page: 5519 year: 2004 ident: 2023062519300694700_c16 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/16/30/013 – volume: 87 start-page: 014404 year: 2013 ident: 2023062519300694700_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.014404 – volume: 99 start-page: 1185 year: 1993 ident: 2023062519300694700_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.465362 – volume: 18 start-page: 202 year: 2001 ident: 2023062519300694700_c36 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/18/2/316 – volume: 82 start-page: 2731 year: 2010 ident: 2023062519300694700_c2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2731 – volume-title: Polarized Light in Optics and Spectroscopy year: 1990 ident: 2023062519300694700_c31 – volume: 85 start-page: 3025 year: 2000 ident: 2023062519300694700_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3025 – volume: 15 start-page: S723 year: 2003 ident: 2023062519300694700_c13 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/15/5/324 – volume: 95 start-page: 267207 year: 2005 ident: 2023062519300694700_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.267207 – volume: 79 start-page: 212412 year: 2009 ident: 2023062519300694700_c28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.212412 – volume: 42 start-page: 95 year: 2000 ident: 2023062519300694700_c35 publication-title: Adv. At., Mol., Opt. Phys. doi: 10.1016/S1049-250X(08)60186-X – volume: 105 start-page: 027203 year: 2010 ident: 2023062519300694700_c27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.027203 – volume: 465 start-page: 458 year: 2010 ident: 2023062519300694700_c8 publication-title: Nature doi: 10.1038/nature09070 – volume-title: Numerical Recipes in Fortran 77: The Art of Scientific Computing year: 1992 ident: 2023062519300694700_c30 – ident: 2023062519300694700_c22 – volume: 48 start-page: 119 year: 1976 ident: 2023062519300694700_c23 publication-title: Commun. Math. Phys. doi: 10.1007/BF01608499 – volume: 9 start-page: 259 year: 2010 ident: 2023062519300694700_c4 publication-title: Nat. Mater. doi: 10.1038/nmat2593 – volume: 87 start-page: 014404 year: 2009 ident: 2023062519300694700_c9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.014404 – volume: 88 start-page: 134413 year: 2013 ident: 2023062519300694700_c17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.134413 – volume: 58 start-page: R5920(R) year: 1998 ident: 2023062519300694700_c6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.R5920 – volume: 66 start-page: 045401 year: 2002 ident: 2023062519300694700_c34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.045401 – volume: 78 start-page: 174422 year: 2008 ident: 2023062519300694700_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.174422 – volume: 116 start-page: 3834 year: 2002 ident: 2023062519300694700_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.1447908 – volume: 85 start-page: 180407(R) year: 2012 ident: 2023062519300694700_c11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.180407 – volume: 525 start-page: 2 year: 2013 ident: 2023062519300694700_c3 publication-title: Ann. Phys. (Berlin) doi: 10.1002/andp.201200199 – volume: 103 start-page: 217401 year: 2009 ident: 2023062519300694700_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.217401 – volume: 5 start-page: 515 year: 2009 ident: 2023062519300694700_c10 publication-title: Nat. Phys. doi: 10.1038/nphys1285 – volume: 85 start-page: 844 year: 2000 ident: 2023062519300694700_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.844 – volume: 5 start-page: 499 year: 2009 ident: 2023062519300694700_c14 publication-title: Nat. Phys. doi: 10.1038/nphys1315 – volume: 7 start-page: 665 year: 2011 ident: 2023062519300694700_c15 publication-title: Nat. Phys. doi: 10.1038/nphys2067 – volume: 95 start-page: 137402 year: 2005 ident: 2023062519300694700_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.137402 – volume: 71 start-page: 1243 year: 2000 ident: 2023062519300694700_c20 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1150496 – volume: 22 start-page: 329 year: 1961 ident: 2023062519300694700_c33 publication-title: J. Phys. Radium doi: 10.1051/jphysrad:01961002206032900 |
SSID | ssj0011839 |
Score | 2.1690676 |
Snippet | Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there... |
SourceID | osti hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Decay rate DENSITY MATRIX Ellipticity EQUATIONS FARADAY EFFECT LASER RADIATION MAGNETIC MATERIALS MAGNETIZATION MAGNETO-OPTICAL EFFECTS Mathematical models Optical properties Optical rotation Physics Pulse duration PULSES RELAXATION ROTATION SPIN FLIP |
Title | Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system |
URI | https://www.proquest.com/docview/2124100856 https://hal.science/hal-05037723 https://www.osti.gov/biblio/22494687 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxNBFB1iiqAPolVp2iqDWBDCxv2c7D7GtiHWWAptoT4t89kG4iYkm4K--Q989z_5m7yzMztJaITqy7LsLLubOSczd-499w5Cb0lXRIKm1GPKp7BASX2PZZHwukwlOm5IY16pLU7J4DI-uUquGo2fK6qlRck6_PvGvJL_QRWuAa46S_YfkHUPhQtwDvjCERCG470wrpVsTm31lV4XsrSplVVcoE9nVKd60OJ6LOdajiUW3Fidi3E5o4rOy_Z8Oio8NR5N21OTNyBN0pvVQJaAt_TGWl7UPjg8Psg-eJXn1lSB_ot5S615a1wnznIfjApYT2tRmeHKl46TBNHbycj4V086q86IIKmkcN0lfeoo05rS4WzlRXUKQeClmdlFpiPNyOunmddNTBVaNzQvx-Y6-n1nyAcbS3sfOnFWxVCX81odyx_0zvOzo34-_Hj6ab3V1dce9Ib5DcCvi-PAciO6hfX0VghnYRNt9Y4-D89dZEpblEY2ZH5CXa2KRO_dN6zZOA9utMK2OYEOuTPfV0bMxVP0xMKDe4ZKz1BDFtvo8UpNym300Pbjc_Sjphe29MJr9MJAL2zphQ29cE0vzL5hRy_s6IUdvbChFwZ64RV64d-_KmphQ60X6LJ_fHE48OyOHR4PSRZ4GeF-IIkIRECpDFSYyIxyHvhchIkiKlJKCekrQlPB4sQXkkUi4IIpKiMl0-glahaTQu4grKcbqoKMMSZiQkSmGIHHh1SJULsrW-hd3cc5t-Xs9a4q47ySVZAoD3ILRwu9cbdOTQ2XjTdpBtTtm1nRQvsaxxysU11imWstGi9zMIOzmKRdaK7xze0wMc_BNox1Ba2E7N7nFXvo0fKPtY-a5WwhX4HdW7LXlop_AAN7tgk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relation+between+magnetization+and+Faraday+angles+produced+by+ultrafast+spin-flip+processes+within+the+three-level+%CE%9B-type+system&rft.jtitle=Journal+of+applied+physics&rft.au=Hinschberger%2C+Y.&rft.au=Lavoine%2C+J.&rft.date=2015-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=5&rft_id=info:doi/10.1063%2F1.4927841&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05037723v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |