Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system

Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the tra...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 118; no. 5
Main Authors Hinschberger, Y., Lavoine, J. P.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.08.2015
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.4927841

Cover

Loading…
Abstract Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system.
AbstractList Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system.
Author Lavoine, J. P.
Hinschberger, Y.
Author_xml – sequence: 1
  givenname: Y.
  surname: Hinschberger
  fullname: Hinschberger, Y.
– sequence: 2
  givenname: J. P.
  surname: Lavoine
  fullname: Lavoine, J. P.
BackLink https://hal.science/hal-05037723$$DView record in HAL
https://www.osti.gov/biblio/22494687$$D View this record in Osti.gov
BookMark eNplkb1qHDEQgEVwIGfHhd9AkCrF2hrtr0pj4jhwEAh2LbTSyCej024knc26y3PknfJM0eWcuEgxzDDzzf8xOQpTQELOgJ0D6-oLOG8E74cG3pAVsEFUfduyI7JijEM1iF68I8cpPTAGMNRiRX58Q6-ymwIdMT8hBrpV9wGzez54VTD0WkVl1FLse4-JznEyO42Gjgvd-RyVVSnTNLtQWe_mfVxjSoV8cnnjAs0bLBIRK4-P6Omvn1VeZqRpSRm378lbq3zC0xd9Qu6uP91e3VTrr5-_XF2uK807AZXoNAPsDBhQCsHyFoXSGpg2vLWdra21Bpnt1GDGpmUGx9qANqNVWFsc6hPy4VB3StnJpF1GvdFTCKiz5LwRTTf0hfp4oDbKyzm6rYqLnJSTN5drufexltV9z-tHeK1YNv6-w5Tlw7SLoSwhOfAGGBvarlAXB0rHKaWIVpbWf45bTue8BCb3n5MgXz73OsO_jL-D_M_-BoDGnVA
CitedBy_id crossref_primary_10_1063_1_4938387
crossref_primary_10_1021_acs_jpclett_3c01917
Cites_doi 10.1364/OL.30.003090
10.1103/PhysRevB.80.180407
10.1103/PhysRevLett.76.4250
10.1088/0953-8984/16/30/013
10.1103/PhysRevB.87.014404
10.1063/1.465362
10.1088/0256-307X/18/2/316
10.1103/RevModPhys.82.2731
10.1103/PhysRevLett.85.3025
10.1088/0953-8984/15/5/324
10.1103/PhysRevLett.95.267207
10.1103/PhysRevB.79.212412
10.1016/S1049-250X(08)60186-X
10.1103/PhysRevLett.105.027203
10.1038/nature09070
10.1007/BF01608499
10.1038/nmat2593
10.1103/PhysRevB.88.134413
10.1103/PhysRevB.58.R5920
10.1103/PhysRevA.66.045401
10.1103/PhysRevB.78.174422
10.1063/1.1447908
10.1103/PhysRevB.85.180407
10.1002/andp.201200199
10.1103/PhysRevLett.103.217401
10.1038/nphys1285
10.1103/PhysRevLett.85.844
10.1038/nphys1315
10.1038/nphys2067
10.1103/PhysRevLett.95.137402
10.1063/1.1150496
10.1051/jphysrad:01961002206032900
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 AIP Publishing LLC.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
OTOTI
DOI 10.1063/1.4927841
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 22494687
oai_HAL_hal_05037723v1
10_1063_1_4927841
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
1XC
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
TAF
UCJ
UE8
ID FETCH-LOGICAL-c2691-96c01e6d1d1aae1f25e9acc10cd25f6f3fffde0f6a8db450deb3d1cdbfae3fe83
ISSN 0021-8979
IngestDate Fri May 19 01:42:46 EDT 2023
Thu Jul 10 07:47:49 EDT 2025
Mon Jun 30 03:47:07 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Tue Jul 01 03:50:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2691-96c01e6d1d1aae1f25e9acc10cd25f6f3fffde0f6a8db450deb3d1cdbfae3fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.4927841
PQID 2124100856
PQPubID 2050677
ParticipantIDs osti_scitechconnect_22494687
hal_primary_oai_HAL_hal_05037723v1
proquest_journals_2124100856
crossref_citationtrail_10_1063_1_4927841
crossref_primary_10_1063_1_4927841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-07
20150807
PublicationDateYYYYMMDD 2015-08-07
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-07
  day: 07
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062519300694700_c33) 1961; 22
(2023062519300694700_c23) 1976; 48
(2023062519300694700_c30) 1992
(2023062519300694700_c17) 2013; 88
(2023062519300694700_c1) 1996; 76
(2023062519300694700_c6) 1998; 58
(2023062519300694700_c29) 1993; 99
(2023062519300694700_c10) 2009; 5
(2023062519300694700_c13) 2003; 15
(2023062519300694700_c15) 2011; 7
(2023062519300694700_c16) 2004; 16
(2023062519300694700_c7) 2000; 85
(2023062519300694700_c3) 2013; 525
(2023062519300694700_c27) 2010; 105
(2023062519300694700_c35) 2000; 42
(2023062519300694700_c11) 2012; 85
(2023062519300694700_c24) 2005; 95
2023062519300694700_c22
(2023062519300694700_c31) 1990
(2023062519300694700_c32) 2005; 30
(2023062519300694700_c34) 2002; 66
(2023062519300694700_c25) 2008; 78
(2023062519300694700_c21) 2002; 116
(2023062519300694700_c12) 2000; 85
(2023062519300694700_c14) 2009; 5
(2023062519300694700_c8) 2010; 465
(2023062519300694700_c9) 2009; 87
(2023062519300694700_c5) 2005; 95
(2023062519300694700_c18) 2013; 87
(2023062519300694700_c28) 2009; 79
(2023062519300694700_c36) 2001; 18
(2023062519300694700_c4) 2010; 9
(2023062519300694700_c20) 2000; 71
(2023062519300694700_c2) 2010; 82
(2023062519300694700_c19) 2009; 103
(2023062519300694700_c26) 2009; 80
References_xml – volume: 30
  start-page: 3090
  year: 2005
  ident: 2023062519300694700_c32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.003090
– volume: 80
  start-page: 180407(R)
  year: 2009
  ident: 2023062519300694700_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.180407
– volume: 76
  start-page: 4250
  year: 1996
  ident: 2023062519300694700_c1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4250
– volume: 16
  start-page: 5519
  year: 2004
  ident: 2023062519300694700_c16
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/30/013
– volume: 87
  start-page: 014404
  year: 2013
  ident: 2023062519300694700_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.014404
– volume: 99
  start-page: 1185
  year: 1993
  ident: 2023062519300694700_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465362
– volume: 18
  start-page: 202
  year: 2001
  ident: 2023062519300694700_c36
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/18/2/316
– volume: 82
  start-page: 2731
  year: 2010
  ident: 2023062519300694700_c2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2731
– volume-title: Polarized Light in Optics and Spectroscopy
  year: 1990
  ident: 2023062519300694700_c31
– volume: 85
  start-page: 3025
  year: 2000
  ident: 2023062519300694700_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3025
– volume: 15
  start-page: S723
  year: 2003
  ident: 2023062519300694700_c13
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/5/324
– volume: 95
  start-page: 267207
  year: 2005
  ident: 2023062519300694700_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.267207
– volume: 79
  start-page: 212412
  year: 2009
  ident: 2023062519300694700_c28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.212412
– volume: 42
  start-page: 95
  year: 2000
  ident: 2023062519300694700_c35
  publication-title: Adv. At., Mol., Opt. Phys.
  doi: 10.1016/S1049-250X(08)60186-X
– volume: 105
  start-page: 027203
  year: 2010
  ident: 2023062519300694700_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.027203
– volume: 465
  start-page: 458
  year: 2010
  ident: 2023062519300694700_c8
  publication-title: Nature
  doi: 10.1038/nature09070
– volume-title: Numerical Recipes in Fortran 77: The Art of Scientific Computing
  year: 1992
  ident: 2023062519300694700_c30
– ident: 2023062519300694700_c22
– volume: 48
  start-page: 119
  year: 1976
  ident: 2023062519300694700_c23
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01608499
– volume: 9
  start-page: 259
  year: 2010
  ident: 2023062519300694700_c4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2593
– volume: 87
  start-page: 014404
  year: 2009
  ident: 2023062519300694700_c9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.014404
– volume: 88
  start-page: 134413
  year: 2013
  ident: 2023062519300694700_c17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.134413
– volume: 58
  start-page: R5920(R)
  year: 1998
  ident: 2023062519300694700_c6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.R5920
– volume: 66
  start-page: 045401
  year: 2002
  ident: 2023062519300694700_c34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.045401
– volume: 78
  start-page: 174422
  year: 2008
  ident: 2023062519300694700_c25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.174422
– volume: 116
  start-page: 3834
  year: 2002
  ident: 2023062519300694700_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1447908
– volume: 85
  start-page: 180407(R)
  year: 2012
  ident: 2023062519300694700_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.180407
– volume: 525
  start-page: 2
  year: 2013
  ident: 2023062519300694700_c3
  publication-title: Ann. Phys. (Berlin)
  doi: 10.1002/andp.201200199
– volume: 103
  start-page: 217401
  year: 2009
  ident: 2023062519300694700_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.217401
– volume: 5
  start-page: 515
  year: 2009
  ident: 2023062519300694700_c10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1285
– volume: 85
  start-page: 844
  year: 2000
  ident: 2023062519300694700_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.844
– volume: 5
  start-page: 499
  year: 2009
  ident: 2023062519300694700_c14
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1315
– volume: 7
  start-page: 665
  year: 2011
  ident: 2023062519300694700_c15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2067
– volume: 95
  start-page: 137402
  year: 2005
  ident: 2023062519300694700_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.137402
– volume: 71
  start-page: 1243
  year: 2000
  ident: 2023062519300694700_c20
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1150496
– volume: 22
  start-page: 329
  year: 1961
  ident: 2023062519300694700_c33
  publication-title: J. Phys. Radium
  doi: 10.1051/jphysrad:01961002206032900
SSID ssj0011839
Score 2.1690676
Snippet Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there...
SourceID osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Decay rate
DENSITY MATRIX
Ellipticity
EQUATIONS
FARADAY EFFECT
LASER RADIATION
MAGNETIC MATERIALS
MAGNETIZATION
MAGNETO-OPTICAL EFFECTS
Mathematical models
Optical properties
Optical rotation
Physics
Pulse duration
PULSES
RELAXATION
ROTATION
SPIN FLIP
Title Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system
URI https://www.proquest.com/docview/2124100856
https://hal.science/hal-05037723
https://www.osti.gov/biblio/22494687
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxNBFB1iiqAPolVp2iqDWBDCxv2c7D7GtiHWWAptoT4t89kG4iYkm4K--Q989z_5m7yzMztJaITqy7LsLLubOSczd-499w5Cb0lXRIKm1GPKp7BASX2PZZHwukwlOm5IY16pLU7J4DI-uUquGo2fK6qlRck6_PvGvJL_QRWuAa46S_YfkHUPhQtwDvjCERCG470wrpVsTm31lV4XsrSplVVcoE9nVKd60OJ6LOdajiUW3Fidi3E5o4rOy_Z8Oio8NR5N21OTNyBN0pvVQJaAt_TGWl7UPjg8Psg-eJXn1lSB_ot5S615a1wnznIfjApYT2tRmeHKl46TBNHbycj4V086q86IIKmkcN0lfeoo05rS4WzlRXUKQeClmdlFpiPNyOunmddNTBVaNzQvx-Y6-n1nyAcbS3sfOnFWxVCX81odyx_0zvOzo34-_Hj6ab3V1dce9Ib5DcCvi-PAciO6hfX0VghnYRNt9Y4-D89dZEpblEY2ZH5CXa2KRO_dN6zZOA9utMK2OYEOuTPfV0bMxVP0xMKDe4ZKz1BDFtvo8UpNym300Pbjc_Sjphe29MJr9MJAL2zphQ29cE0vzL5hRy_s6IUdvbChFwZ64RV64d-_KmphQ60X6LJ_fHE48OyOHR4PSRZ4GeF-IIkIRECpDFSYyIxyHvhchIkiKlJKCekrQlPB4sQXkkUi4IIpKiMl0-glahaTQu4grKcbqoKMMSZiQkSmGIHHh1SJULsrW-hd3cc5t-Xs9a4q47ySVZAoD3ILRwu9cbdOTQ2XjTdpBtTtm1nRQvsaxxysU11imWstGi9zMIOzmKRdaK7xze0wMc_BNox1Ba2E7N7nFXvo0fKPtY-a5WwhX4HdW7LXlop_AAN7tgk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relation+between+magnetization+and+Faraday+angles+produced+by+ultrafast+spin-flip+processes+within+the+three-level+%CE%9B-type+system&rft.jtitle=Journal+of+applied+physics&rft.au=Hinschberger%2C+Y.&rft.au=Lavoine%2C+J.&rft.date=2015-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=5&rft_id=info:doi/10.1063%2F1.4927841&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05037723v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon