Material Investigation for the Development of Non-rigid Phantoms for CT-MRI Image Registration

Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Radiological Technology Vol. 78; no. 6; pp. 615 - 624
Main Authors Sato, Kazuki, Koyama, Tomio, Yamashiro, Akihiro
Format Journal Article
LanguageJapanese
Published Japan Japanese Society of Radiological Technology 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0369-4305
1881-4883
DOI10.6009/jjrt.2022-1241

Cover

Abstract Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. Methods: We measured CT values, T1 values, T2 values, and the proton densities of 31 3D printer materials—purchased from three manufacturers—and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. Results: The CT number of the 3D printing materials ranged from −6.8 to 146.4 HU. On MRI, T1 values were not measurable in most cases, whereas T2 values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T1 value of 813.65 ms, and T2 value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. Conclusion: The CT number and T1 and T2 values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future.
AbstractList Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. Methods: We measured CT values, T1 values, T2 values, and the proton densities of 31 3D printer materials—purchased from three manufacturers—and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. Results: The CT number of the 3D printing materials ranged from −6.8 to 146.4 HU. On MRI, T1 values were not measurable in most cases, whereas T2 values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T1 value of 813.65 ms, and T2 value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. Conclusion: The CT number and T1 and T2 values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future.
In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. We measured CT values, T values, T values, and the proton densities of 31 3D printer materials-purchased from three manufacturers-and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. The CT number of the 3D printing materials ranged from -6.8 to 146.4 HU. On MRI, T values were not measurable in most cases, whereas T values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T value of 813.65 ms, and T value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. The CT number and T and T values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future.
ArticleNumber 2022-1241
Author Koyama, Tomio
Yamashiro, Akihiro
Sato, Kazuki
Author_xml – sequence: 1
  fullname: Sato, Kazuki
  organization: Department of Radiology, Nagano Red Cross Hospital
– sequence: 1
  fullname: Koyama, Tomio
  organization: Department of Radiation Oncology, Nagano Red Cross Hospital
– sequence: 1
  fullname: Yamashiro, Akihiro
  organization: Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35569958$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFvEzEQRi1UREPplSOyxHmD7fU69hGlBSK1gKpyxXK848TRrh1spxL_Hm9SckDiMpbG75vRvNfoIsQACL2lZC4IUR92u1TmjDDWUMbpCzSjUtKGS9leoBlphWp4S7pLdJ2zX5OaqC3CX6HLtuuEUp2coZ_3pkDyZsCr8AS5-I0pPgbsYsJlC_gGnmCI-xFCwdHhrzE0yW98j79vTShxzEdy-djcP6zwajQbwA-w8bmk45w36KUzQ4br5_cK_fh0-7j80tx9-7xafrxrLBOKNqxTrl9zo3gPphcL0a6tUKYnRFhQxsmOSwaOEmtcZ4kj1Cw4c653zkrC-_YKvT_N3af461Dv0Lt4SKGu1EzIliqyYLRS756pw3qEXu-TH036rf_qqMD8BNgUc07gzgglelKuJ-V6Uq4n5TXA_wlYX46XVwF--H_s5hTb5VKVnbeYVLwd4IQvpBZTOcfO33ZrkobQ_gEjjp4j
CitedBy_id crossref_primary_10_6009_jjrt_2024_2435
Cites_doi 10.1002/mp.12256
10.1118/1.4939874
10.1002/mp.12406
10.1002/mp.14027
10.1088/1361-6560/ab1758
10.1016/j.ijrobp.2014.08.350
10.3857/roj.2017.00325
10.1148/radiol.2303021331
10.1148/radiol.2016152037
10.1016/j.brachy.2016.01.002
10.1002/jmri.20469
10.1002/mp.12229
10.1002/acm2.12514
10.1002/mrm.1910050602
10.1002/mp.14527
10.1002/jmri.20356
10.1016/0730-725X(94)92202-0
10.1186/1532-429X-15-53
10.1109/EMBC.2017.8036786
10.1002/mp.12168
10.1186/s13014-018-1192-x
10.1016/j.phro.2019.02.005
10.1002/acm2.12162
10.1007/s10334-016-0562-3
ContentType Journal Article
Copyright 2022 Japanese Society of Radiological Technology
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Japanese Society of Radiological Technology
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
NPM
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
DOI 10.6009/jjrt.2022-1241
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
DatabaseTitleList Biotechnology Research Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1881-4883
EndPage 624
ExternalDocumentID 35569958
10_6009_jjrt_2022_1241
article_jjrt_78_6_78_2022_1241_article_char_en
Genre English Abstract
Journal Article
GroupedDBID .LE
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
KQ8
OK1
RJT
AAYXX
CITATION
NPM
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c2691-259fdb4a94dead6763bc69ad006ce9af85482ef10caf5c0f01a742ffdffc804d3
ISSN 0369-4305
IngestDate Mon Jun 30 11:56:33 EDT 2025
Thu Jan 02 22:54:50 EST 2025
Thu Apr 24 22:51:39 EDT 2025
Tue Jul 01 00:56:41 EDT 2025
Wed Sep 03 06:31:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords magnetic resonance imaging (MRI)
phantom
deformable image registration (DIR)
computed tomography (CT)
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2691-259fdb4a94dead6763bc69ad006ce9af85482ef10caf5c0f01a742ffdffc804d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjrt/78/6/78_2022-1241/_article/-char/en
PMID 35569958
PQID 2683190721
PQPubID 2048391
PageCount 10
ParticipantIDs proquest_journals_2683190721
pubmed_primary_35569958
crossref_primary_10_6009_jjrt_2022_1241
crossref_citationtrail_10_6009_jjrt_2022_1241
jstage_primary_article_jjrt_78_6_78_2022_1241_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Kyoto
PublicationTitle Japanese Journal of Radiological Technology
PublicationTitleAlternate Jpn. J. Radiol. Technol.
PublicationYear 2022
Publisher Japanese Society of Radiological Technology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Radiological Technology
– name: Japan Science and Technology Agency
References 3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017; 44(7): e43–e76.
16) Andersen C, Jensen FT. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system. Magn Reson Imaging 1994; 12(5): 775–784.
9) Wu RY, Liu AY, Wisdom P, et al. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys 2019; 20(1): 145–153.
21) Sirtoli VG, Morcelles K, Bertemes-Filho P. Electrical properties of phantoms for mimicking breast tissue. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 157–160.
7) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy 2016; 15(3): 333–340.
12) White I, McQuaid D, McNair H, et al. Geometric and dosimetric evaluation of the differences between rigid and deformable registration to assess interfraction motion during pelvic radiotherapy. Phys Imaging Radiat Oncol 2019; 9: 97–102.
13) Pallotta S, Kugele M, Redapi L, et al. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47(12): 6310–6318.
4) Ger RB, Yang J, Ding Y, et al. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 2017; 44(10): 5153–5161.
22) Rakow-Penner R, Daniel B, Yu H, et al. Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging 2006; 23(1): 87–91.
5) Singhrao K, Fu J, Wu HH, et al. A novel anthropomorphic multimodality phantom for MRI-based radiotherapy quality assurance testing. Med Phys 2020; 47(4): 1443–1451.
24) Lu H, Nagae-Poetscher LM, Golay X, et al. Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 2005; 22(1): 13–22.
26) de Bazelaire CM, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230(3): 652–659.
2) Kito S. Outline of deformable image registration for clinical use. Jpn J Med Phys (Igaku Butsuri) 2019; 39(1): 7–11. (in Japanese)
20) Liao Y, Wang L, Xu X, et al. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys 2017; 44(6): 2369–2378.
19) Makris DN, Pappas EP, Zoros E, et al. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64(10): 105009.
27) Bojorquez JZ, Bricq S, Brunotte F, et al. A novel alternative to classify tissues from T1 and T2 relaxation times for prostate MRI. MAGMA 2016; 29(5): 777–788.
23) von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15(1): 53.
11) Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys 2017; 44(4): 1445–1455.
6) Yang X, Wu N, Cheng G, et al. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 2014; 90(5): 1225–1233.
17) Niebuhr NI, Johnen W, Güldaglar T, et al. Technical note: radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016; 43(2): 908–916.
25) Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016; 279(1): 278–286.
1) Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J 2017; 35(2): 101–111.
14) Rasband W. ImageJ. National Institutes of Health, Bethesda, 1997–2012. https://rsb.info.nih.gov/ij/ (Accessed 2021.08.01).
15) in den Kleef JJ, Cuppen JJ. RLSQ: T1, T2, and rho calculations, combining ratios and least squares. Magn Reson Med 1987; 5(6): 513–524.
8) 日本放射線腫瘍学会QA委員会.放射線治療における非剛体画像レジストレーション利用のためのガイドライン2018年版.https://www.jastro.or.jp/medicalpersonnel/guideline/dir_v3.pdf(Acceessed 2021.08.01
18) Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys 2017; 18(5): 285–292.
10) Qin A, Ionascu D, Liang J, et al. The evaluation of a hybrid biomechanical deformable registration method on a multistage physical phantom with reproducible deformation. Radiat Oncol 2018; 13(1): 240.
22
23
24
25
26
27
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017; 44(7): e43–e76.
– reference: 14) Rasband W. ImageJ. National Institutes of Health, Bethesda, 1997–2012. https://rsb.info.nih.gov/ij/ (Accessed 2021.08.01).
– reference: 13) Pallotta S, Kugele M, Redapi L, et al. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47(12): 6310–6318.
– reference: 16) Andersen C, Jensen FT. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system. Magn Reson Imaging 1994; 12(5): 775–784.
– reference: 11) Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys 2017; 44(4): 1445–1455.
– reference: 15) in den Kleef JJ, Cuppen JJ. RLSQ: T1, T2, and rho calculations, combining ratios and least squares. Magn Reson Med 1987; 5(6): 513–524.
– reference: 9) Wu RY, Liu AY, Wisdom P, et al. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys 2019; 20(1): 145–153.
– reference: 26) de Bazelaire CM, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230(3): 652–659.
– reference: 24) Lu H, Nagae-Poetscher LM, Golay X, et al. Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 2005; 22(1): 13–22.
– reference: 23) von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15(1): 53.
– reference: 20) Liao Y, Wang L, Xu X, et al. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys 2017; 44(6): 2369–2378.
– reference: 21) Sirtoli VG, Morcelles K, Bertemes-Filho P. Electrical properties of phantoms for mimicking breast tissue. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 157–160.
– reference: 6) Yang X, Wu N, Cheng G, et al. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 2014; 90(5): 1225–1233.
– reference: 2) Kito S. Outline of deformable image registration for clinical use. Jpn J Med Phys (Igaku Butsuri) 2019; 39(1): 7–11. (in Japanese)
– reference: 19) Makris DN, Pappas EP, Zoros E, et al. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64(10): 105009.
– reference: 25) Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016; 279(1): 278–286.
– reference: 27) Bojorquez JZ, Bricq S, Brunotte F, et al. A novel alternative to classify tissues from T1 and T2 relaxation times for prostate MRI. MAGMA 2016; 29(5): 777–788.
– reference: 12) White I, McQuaid D, McNair H, et al. Geometric and dosimetric evaluation of the differences between rigid and deformable registration to assess interfraction motion during pelvic radiotherapy. Phys Imaging Radiat Oncol 2019; 9: 97–102.
– reference: 17) Niebuhr NI, Johnen W, Güldaglar T, et al. Technical note: radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016; 43(2): 908–916.
– reference: 8) 日本放射線腫瘍学会QA委員会.放射線治療における非剛体画像レジストレーション利用のためのガイドライン2018年版.https://www.jastro.or.jp/medicalpersonnel/guideline/dir_v3.pdf(Acceessed 2021.08.01).
– reference: 10) Qin A, Ionascu D, Liang J, et al. The evaluation of a hybrid biomechanical deformable registration method on a multistage physical phantom with reproducible deformation. Radiat Oncol 2018; 13(1): 240.
– reference: 5) Singhrao K, Fu J, Wu HH, et al. A novel anthropomorphic multimodality phantom for MRI-based radiotherapy quality assurance testing. Med Phys 2020; 47(4): 1443–1451.
– reference: 22) Rakow-Penner R, Daniel B, Yu H, et al. Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging 2006; 23(1): 87–91.
– reference: 7) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy 2016; 15(3): 333–340.
– reference: 4) Ger RB, Yang J, Ding Y, et al. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 2017; 44(10): 5153–5161.
– reference: 18) Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys 2017; 18(5): 285–292.
– reference: 1) Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J 2017; 35(2): 101–111.
– ident: 2
– ident: 3
  doi: 10.1002/mp.12256
– ident: 17
  doi: 10.1118/1.4939874
– ident: 4
  doi: 10.1002/mp.12406
– ident: 5
  doi: 10.1002/mp.14027
– ident: 19
  doi: 10.1088/1361-6560/ab1758
– ident: 6
  doi: 10.1016/j.ijrobp.2014.08.350
– ident: 1
  doi: 10.3857/roj.2017.00325
– ident: 26
  doi: 10.1148/radiol.2303021331
– ident: 25
  doi: 10.1148/radiol.2016152037
– ident: 7
  doi: 10.1016/j.brachy.2016.01.002
– ident: 14
– ident: 22
  doi: 10.1002/jmri.20469
– ident: 20
  doi: 10.1002/mp.12229
– ident: 9
  doi: 10.1002/acm2.12514
– ident: 15
  doi: 10.1002/mrm.1910050602
– ident: 13
  doi: 10.1002/mp.14527
– ident: 24
  doi: 10.1002/jmri.20356
– ident: 16
  doi: 10.1016/0730-725X(94)92202-0
– ident: 23
  doi: 10.1186/1532-429X-15-53
– ident: 21
  doi: 10.1109/EMBC.2017.8036786
– ident: 11
  doi: 10.1002/mp.12168
– ident: 10
  doi: 10.1186/s13014-018-1192-x
– ident: 8
– ident: 12
  doi: 10.1016/j.phro.2019.02.005
– ident: 18
  doi: 10.1002/acm2.12162
– ident: 27
  doi: 10.1007/s10334-016-0562-3
SSID ssib000936904
ssib002223925
ssj0055458
ssib005879721
ssib031740840
ssib000959831
ssib000753122
ssib008799587
ssib002484555
ssib023160873
Score 2.1956537
Snippet Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom...
In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 615
SubjectTerms 3-D printers
Computed tomography
computed tomography (CT)
deformable image registration (DIR)
Deformation
Formability
Image registration
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical imaging
phantom
Proton density (concentration)
Prototypes
Quality assurance
Radiation therapy
Registration
Three dimensional printing
Title Material Investigation for the Development of Non-rigid Phantoms for CT-MRI Image Registration
URI https://www.jstage.jst.go.jp/article/jjrt/78/6/78_2022-1241/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/35569958
https://www.proquest.com/docview/2683190721
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Radiological Technology, 2022, Vol.78(6), pp.615-624
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLfKQIjLxHMUBvKBiUNkSBPHcQ4cUAXrmFqNqZPGhchJ7PVBm2ptD-s_wL_N5zgx7rRJg4sVObaT9vvle9jfA6F3lAWxEjIktOMLQkPqE1EkgnAuFWinPJSRjkbuD1jvjH47j85brd-O19J6lX3INzfGlfwPVaEP6KqjZP-BsnZR6IBroC-0QGFo70TjvlhVj3GzZTieg45DULUxUM6JLoNVeCcjXTrYpGLwukPSPz3yjmbae-dUXthMuq7eOhgvFrByrzzodg84XY5A-M29w_FkvVquvUMxnYqxtwFFfDS2ezaiqtDkHYvNemp7f4iZLt9UR9dMx_rSMv3yCu5WCCpnxj-s2ZAIAmdDognESojOJGZEjOGrnIOpyk3NmobxxtwBmMtFWSdyBDIzQdbXeT1oajpV6mRyqV1iA12ixaTQ2k6qfU3YWRdEMH70Cqmen-r5qZ5_D90P4rg67z_-7tplnEaRtasifdpoDsHNLzXZQPV6H7ffZ0vbeTABhf9C3m7LVDrN8DHarY0R_Nkg6wlqyflT9LBfu1s8Qz8bgOEtgGGADQaAYQdguFTYAgw3AKtGGoDhCmDYBdhzdPb1y7DbI3VBDpIHLOkQMJVVkVGR0AIYEAPRlOUsEQVw7lwmQnEwfwOpOn4uVJT7yu-ImAZKFUrl3KdF-ALtzMu5fImwX4QZy0AfVZLSLBFJEWd5mAku_VjyImsj0vxxaV5nq9dFU36lNxOujd7b8QuTp-XWkZ8MHey4-vs142KeMt3Y8fa2DoMErtNG-w350poXLNOAcZBlOtdgG-0ZktrlQaNnSRLxV3d-xdfo0d8Pax_trC7X8g3ovqvsbYVLaAcn_T_ikLAo
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+Investigation+for+the+Development+of+Non-rigid+Phantoms+for+CT-MRI+Image+Registration&rft.jtitle=Nippon+Ho%CC%84shasen+Gijutsu+Gakkai+zasshi&rft.au=Sato%2C+Kazuki&rft.au=Yamashiro%2C+Akihiro&rft.au=Koyama%2C+Tomio&rft.date=2022-01-01&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=78&rft.issue=6&rft.spage=615&rft.epage=624&rft_id=info:doi/10.6009%2Fjjrt.2022-1241&rft.externalDBID=n%2Fa&rft.externalDocID=10_6009_jjrt_2022_1241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon