Material Investigation for the Development of Non-rigid Phantoms for CT-MRI Image Registration
Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we...
Saved in:
Published in | Japanese Journal of Radiological Technology Vol. 78; no. 6; pp. 615 - 624 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
Japan
Japanese Society of Radiological Technology
01.01.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0369-4305 1881-4883 |
DOI | 10.6009/jjrt.2022-1241 |
Cover
Abstract | Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. Methods: We measured CT values, T1 values, T2 values, and the proton densities of 31 3D printer materials—purchased from three manufacturers—and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. Results: The CT number of the 3D printing materials ranged from −6.8 to 146.4 HU. On MRI, T1 values were not measurable in most cases, whereas T2 values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T1 value of 813.65 ms, and T2 value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. Conclusion: The CT number and T1 and T2 values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future. |
---|---|
AbstractList | Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. Methods: We measured CT values, T1 values, T2 values, and the proton densities of 31 3D printer materials—purchased from three manufacturers—and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. Results: The CT number of the 3D printing materials ranged from −6.8 to 146.4 HU. On MRI, T1 values were not measurable in most cases, whereas T2 values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T1 value of 813.65 ms, and T2 value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. Conclusion: The CT number and T1 and T2 values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future. In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been established for quality assurance for DIR. In order to develop a non-rigid phantom for accuracy control between CT and MRI images, we investigated the suitability of 3D printing materials and gel materials in this study. We measured CT values, T values, T values, and the proton densities of 31 3D printer materials-purchased from three manufacturers-and one gel material. The dice coefficient after DIR was calculated for the CT-MRI images using a prototype phantom made of a gel material compatible with CT-MRI. The CT number of the 3D printing materials ranged from -6.8 to 146.4 HU. On MRI, T values were not measurable in most cases, whereas T values were not measurable in all cases; proton density (PD) ranged from 2.51% to 4.9%. The gel material had a CT number of 111.16 HU, T value of 813.65 ms, and T value of 27.19 ms. The prototype phantom was flexible, and the usefulness of DIR with CT and MRI images was demonstrated using this phantom. The CT number and T and T values of the gel material are close to those of the human body and may therefore be developed as a DIR verification phantom between CT and MRI. These findings may contribute to the development of non-rigid phantoms for DIR in the future. |
ArticleNumber | 2022-1241 |
Author | Koyama, Tomio Yamashiro, Akihiro Sato, Kazuki |
Author_xml | – sequence: 1 fullname: Sato, Kazuki organization: Department of Radiology, Nagano Red Cross Hospital – sequence: 1 fullname: Koyama, Tomio organization: Department of Radiation Oncology, Nagano Red Cross Hospital – sequence: 1 fullname: Yamashiro, Akihiro organization: Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35569958$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEFvEzEQRi1UREPplSOyxHmD7fU69hGlBSK1gKpyxXK848TRrh1spxL_Hm9SckDiMpbG75vRvNfoIsQACL2lZC4IUR92u1TmjDDWUMbpCzSjUtKGS9leoBlphWp4S7pLdJ2zX5OaqC3CX6HLtuuEUp2coZ_3pkDyZsCr8AS5-I0pPgbsYsJlC_gGnmCI-xFCwdHhrzE0yW98j79vTShxzEdy-djcP6zwajQbwA-w8bmk45w36KUzQ4br5_cK_fh0-7j80tx9-7xafrxrLBOKNqxTrl9zo3gPphcL0a6tUKYnRFhQxsmOSwaOEmtcZ4kj1Cw4c653zkrC-_YKvT_N3af461Dv0Lt4SKGu1EzIliqyYLRS756pw3qEXu-TH036rf_qqMD8BNgUc07gzgglelKuJ-V6Uq4n5TXA_wlYX46XVwF--H_s5hTb5VKVnbeYVLwd4IQvpBZTOcfO33ZrkobQ_gEjjp4j |
CitedBy_id | crossref_primary_10_6009_jjrt_2024_2435 |
Cites_doi | 10.1002/mp.12256 10.1118/1.4939874 10.1002/mp.12406 10.1002/mp.14027 10.1088/1361-6560/ab1758 10.1016/j.ijrobp.2014.08.350 10.3857/roj.2017.00325 10.1148/radiol.2303021331 10.1148/radiol.2016152037 10.1016/j.brachy.2016.01.002 10.1002/jmri.20469 10.1002/mp.12229 10.1002/acm2.12514 10.1002/mrm.1910050602 10.1002/mp.14527 10.1002/jmri.20356 10.1016/0730-725X(94)92202-0 10.1186/1532-429X-15-53 10.1109/EMBC.2017.8036786 10.1002/mp.12168 10.1186/s13014-018-1192-x 10.1016/j.phro.2019.02.005 10.1002/acm2.12162 10.1007/s10334-016-0562-3 |
ContentType | Journal Article |
Copyright | 2022 Japanese Society of Radiological Technology Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 Japanese Society of Radiological Technology – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION NPM 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
DOI | 10.6009/jjrt.2022-1241 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Biotechnology Research Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1881-4883 |
EndPage | 624 |
ExternalDocumentID | 35569958 10_6009_jjrt_2022_1241 article_jjrt_78_6_78_2022_1241_article_char_en |
Genre | English Abstract Journal Article |
GroupedDBID | .LE 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS KQ8 OK1 RJT AAYXX CITATION NPM 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c2691-259fdb4a94dead6763bc69ad006ce9af85482ef10caf5c0f01a742ffdffc804d3 |
ISSN | 0369-4305 |
IngestDate | Mon Jun 30 11:56:33 EDT 2025 Thu Jan 02 22:54:50 EST 2025 Thu Apr 24 22:51:39 EDT 2025 Tue Jul 01 00:56:41 EDT 2025 Wed Sep 03 06:31:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | magnetic resonance imaging (MRI) phantom deformable image registration (DIR) computed tomography (CT) |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2691-259fdb4a94dead6763bc69ad006ce9af85482ef10caf5c0f01a742ffdffc804d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjrt/78/6/78_2022-1241/_article/-char/en |
PMID | 35569958 |
PQID | 2683190721 |
PQPubID | 2048391 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2683190721 pubmed_primary_35569958 crossref_primary_10_6009_jjrt_2022_1241 crossref_citationtrail_10_6009_jjrt_2022_1241 jstage_primary_article_jjrt_78_6_78_2022_1241_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Kyoto |
PublicationTitle | Japanese Journal of Radiological Technology |
PublicationTitleAlternate | Jpn. J. Radiol. Technol. |
PublicationYear | 2022 |
Publisher | Japanese Society of Radiological Technology Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Radiological Technology – name: Japan Science and Technology Agency |
References | 3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017; 44(7): e43–e76. 16) Andersen C, Jensen FT. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system. Magn Reson Imaging 1994; 12(5): 775–784. 9) Wu RY, Liu AY, Wisdom P, et al. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys 2019; 20(1): 145–153. 21) Sirtoli VG, Morcelles K, Bertemes-Filho P. Electrical properties of phantoms for mimicking breast tissue. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 157–160. 7) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy 2016; 15(3): 333–340. 12) White I, McQuaid D, McNair H, et al. Geometric and dosimetric evaluation of the differences between rigid and deformable registration to assess interfraction motion during pelvic radiotherapy. Phys Imaging Radiat Oncol 2019; 9: 97–102. 13) Pallotta S, Kugele M, Redapi L, et al. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47(12): 6310–6318. 4) Ger RB, Yang J, Ding Y, et al. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 2017; 44(10): 5153–5161. 22) Rakow-Penner R, Daniel B, Yu H, et al. Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging 2006; 23(1): 87–91. 5) Singhrao K, Fu J, Wu HH, et al. A novel anthropomorphic multimodality phantom for MRI-based radiotherapy quality assurance testing. Med Phys 2020; 47(4): 1443–1451. 24) Lu H, Nagae-Poetscher LM, Golay X, et al. Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 2005; 22(1): 13–22. 26) de Bazelaire CM, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230(3): 652–659. 2) Kito S. Outline of deformable image registration for clinical use. Jpn J Med Phys (Igaku Butsuri) 2019; 39(1): 7–11. (in Japanese) 20) Liao Y, Wang L, Xu X, et al. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys 2017; 44(6): 2369–2378. 19) Makris DN, Pappas EP, Zoros E, et al. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64(10): 105009. 27) Bojorquez JZ, Bricq S, Brunotte F, et al. A novel alternative to classify tissues from T1 and T2 relaxation times for prostate MRI. MAGMA 2016; 29(5): 777–788. 23) von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15(1): 53. 11) Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys 2017; 44(4): 1445–1455. 6) Yang X, Wu N, Cheng G, et al. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 2014; 90(5): 1225–1233. 17) Niebuhr NI, Johnen W, Güldaglar T, et al. Technical note: radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016; 43(2): 908–916. 25) Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016; 279(1): 278–286. 1) Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J 2017; 35(2): 101–111. 14) Rasband W. ImageJ. National Institutes of Health, Bethesda, 1997–2012. https://rsb.info.nih.gov/ij/ (Accessed 2021.08.01). 15) in den Kleef JJ, Cuppen JJ. RLSQ: T1, T2, and rho calculations, combining ratios and least squares. Magn Reson Med 1987; 5(6): 513–524. 8) 日本放射線腫瘍学会QA委員会.放射線治療における非剛体画像レジストレーション利用のためのガイドライン2018年版.https://www.jastro.or.jp/medicalpersonnel/guideline/dir_v3.pdf(Acceessed 2021.08.01 18) Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys 2017; 18(5): 285–292. 10) Qin A, Ionascu D, Liang J, et al. The evaluation of a hybrid biomechanical deformable registration method on a multistage physical phantom with reproducible deformation. Radiat Oncol 2018; 13(1): 240. 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017; 44(7): e43–e76. – reference: 14) Rasband W. ImageJ. National Institutes of Health, Bethesda, 1997–2012. https://rsb.info.nih.gov/ij/ (Accessed 2021.08.01). – reference: 13) Pallotta S, Kugele M, Redapi L, et al. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47(12): 6310–6318. – reference: 16) Andersen C, Jensen FT. Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system. Magn Reson Imaging 1994; 12(5): 775–784. – reference: 11) Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys 2017; 44(4): 1445–1455. – reference: 15) in den Kleef JJ, Cuppen JJ. RLSQ: T1, T2, and rho calculations, combining ratios and least squares. Magn Reson Med 1987; 5(6): 513–524. – reference: 9) Wu RY, Liu AY, Wisdom P, et al. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys 2019; 20(1): 145–153. – reference: 26) de Bazelaire CM, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230(3): 652–659. – reference: 24) Lu H, Nagae-Poetscher LM, Golay X, et al. Routine clinical brain MRI sequences for use at 3.0 tesla. J Magn Reson Imaging 2005; 22(1): 13–22. – reference: 23) von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15(1): 53. – reference: 20) Liao Y, Wang L, Xu X, et al. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys 2017; 44(6): 2369–2378. – reference: 21) Sirtoli VG, Morcelles K, Bertemes-Filho P. Electrical properties of phantoms for mimicking breast tissue. Annu Int Conf IEEE Eng Med Biol Soc 2017; 2017: 157–160. – reference: 6) Yang X, Wu N, Cheng G, et al. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 2014; 90(5): 1225–1233. – reference: 2) Kito S. Outline of deformable image registration for clinical use. Jpn J Med Phys (Igaku Butsuri) 2019; 39(1): 7–11. (in Japanese) – reference: 19) Makris DN, Pappas EP, Zoros E, et al. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64(10): 105009. – reference: 25) Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016; 279(1): 278–286. – reference: 27) Bojorquez JZ, Bricq S, Brunotte F, et al. A novel alternative to classify tissues from T1 and T2 relaxation times for prostate MRI. MAGMA 2016; 29(5): 777–788. – reference: 12) White I, McQuaid D, McNair H, et al. Geometric and dosimetric evaluation of the differences between rigid and deformable registration to assess interfraction motion during pelvic radiotherapy. Phys Imaging Radiat Oncol 2019; 9: 97–102. – reference: 17) Niebuhr NI, Johnen W, Güldaglar T, et al. Technical note: radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016; 43(2): 908–916. – reference: 8) 日本放射線腫瘍学会QA委員会.放射線治療における非剛体画像レジストレーション利用のためのガイドライン2018年版.https://www.jastro.or.jp/medicalpersonnel/guideline/dir_v3.pdf(Acceessed 2021.08.01). – reference: 10) Qin A, Ionascu D, Liang J, et al. The evaluation of a hybrid biomechanical deformable registration method on a multistage physical phantom with reproducible deformation. Radiat Oncol 2018; 13(1): 240. – reference: 5) Singhrao K, Fu J, Wu HH, et al. A novel anthropomorphic multimodality phantom for MRI-based radiotherapy quality assurance testing. Med Phys 2020; 47(4): 1443–1451. – reference: 22) Rakow-Penner R, Daniel B, Yu H, et al. Relaxation times of breast tissue at 1.5 T and 3 T measured using IDEAL. J Magn Reson Imaging 2006; 23(1): 87–91. – reference: 7) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy 2016; 15(3): 333–340. – reference: 4) Ger RB, Yang J, Ding Y, et al. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 2017; 44(10): 5153–5161. – reference: 18) Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys 2017; 18(5): 285–292. – reference: 1) Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J 2017; 35(2): 101–111. – ident: 2 – ident: 3 doi: 10.1002/mp.12256 – ident: 17 doi: 10.1118/1.4939874 – ident: 4 doi: 10.1002/mp.12406 – ident: 5 doi: 10.1002/mp.14027 – ident: 19 doi: 10.1088/1361-6560/ab1758 – ident: 6 doi: 10.1016/j.ijrobp.2014.08.350 – ident: 1 doi: 10.3857/roj.2017.00325 – ident: 26 doi: 10.1148/radiol.2303021331 – ident: 25 doi: 10.1148/radiol.2016152037 – ident: 7 doi: 10.1016/j.brachy.2016.01.002 – ident: 14 – ident: 22 doi: 10.1002/jmri.20469 – ident: 20 doi: 10.1002/mp.12229 – ident: 9 doi: 10.1002/acm2.12514 – ident: 15 doi: 10.1002/mrm.1910050602 – ident: 13 doi: 10.1002/mp.14527 – ident: 24 doi: 10.1002/jmri.20356 – ident: 16 doi: 10.1016/0730-725X(94)92202-0 – ident: 23 doi: 10.1186/1532-429X-15-53 – ident: 21 doi: 10.1109/EMBC.2017.8036786 – ident: 11 doi: 10.1002/mp.12168 – ident: 10 doi: 10.1186/s13014-018-1192-x – ident: 8 – ident: 12 doi: 10.1016/j.phro.2019.02.005 – ident: 18 doi: 10.1002/acm2.12162 – ident: 27 doi: 10.1007/s10334-016-0562-3 |
SSID | ssib000936904 ssib002223925 ssj0055458 ssib005879721 ssib031740840 ssib000959831 ssib000753122 ssib008799587 ssib002484555 ssib023160873 |
Score | 2.1956537 |
Snippet | Purpose: In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom... In radiotherapy, deformable image registration (DIR) has been frequently used in different imaging examinations in recent years. However, no phantom has been... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 615 |
SubjectTerms | 3-D printers Computed tomography computed tomography (CT) deformable image registration (DIR) Deformation Formability Image registration Magnetic resonance imaging magnetic resonance imaging (MRI) Medical imaging phantom Proton density (concentration) Prototypes Quality assurance Radiation therapy Registration Three dimensional printing |
Title | Material Investigation for the Development of Non-rigid Phantoms for CT-MRI Image Registration |
URI | https://www.jstage.jst.go.jp/article/jjrt/78/6/78_2022-1241/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/35569958 https://www.proquest.com/docview/2683190721 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Radiological Technology, 2022, Vol.78(6), pp.615-624 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLfKQIjLxHMUBvKBiUNkSBPHcQ4cUAXrmFqNqZPGhchJ7PVBm2ptD-s_wL_N5zgx7rRJg4sVObaT9vvle9jfA6F3lAWxEjIktOMLQkPqE1EkgnAuFWinPJSRjkbuD1jvjH47j85brd-O19J6lX3INzfGlfwPVaEP6KqjZP-BsnZR6IBroC-0QGFo70TjvlhVj3GzZTieg45DULUxUM6JLoNVeCcjXTrYpGLwukPSPz3yjmbae-dUXthMuq7eOhgvFrByrzzodg84XY5A-M29w_FkvVquvUMxnYqxtwFFfDS2ezaiqtDkHYvNemp7f4iZLt9UR9dMx_rSMv3yCu5WCCpnxj-s2ZAIAmdDognESojOJGZEjOGrnIOpyk3NmobxxtwBmMtFWSdyBDIzQdbXeT1oajpV6mRyqV1iA12ixaTQ2k6qfU3YWRdEMH70Cqmen-r5qZ5_D90P4rg67z_-7tplnEaRtasifdpoDsHNLzXZQPV6H7ffZ0vbeTABhf9C3m7LVDrN8DHarY0R_Nkg6wlqyflT9LBfu1s8Qz8bgOEtgGGADQaAYQdguFTYAgw3AKtGGoDhCmDYBdhzdPb1y7DbI3VBDpIHLOkQMJVVkVGR0AIYEAPRlOUsEQVw7lwmQnEwfwOpOn4uVJT7yu-ImAZKFUrl3KdF-ALtzMu5fImwX4QZy0AfVZLSLBFJEWd5mAku_VjyImsj0vxxaV5nq9dFU36lNxOujd7b8QuTp-XWkZ8MHey4-vs142KeMt3Y8fa2DoMErtNG-w350poXLNOAcZBlOtdgG-0ZktrlQaNnSRLxV3d-xdfo0d8Pax_trC7X8g3ovqvsbYVLaAcn_T_ikLAo |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+Investigation+for+the+Development+of+Non-rigid+Phantoms+for+CT-MRI+Image+Registration&rft.jtitle=Nippon+Ho%CC%84shasen+Gijutsu+Gakkai+zasshi&rft.au=Sato%2C+Kazuki&rft.au=Yamashiro%2C+Akihiro&rft.au=Koyama%2C+Tomio&rft.date=2022-01-01&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=78&rft.issue=6&rft.spage=615&rft.epage=624&rft_id=info:doi/10.6009%2Fjjrt.2022-1241&rft.externalDBID=n%2Fa&rft.externalDocID=10_6009_jjrt_2022_1241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon |