Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions

The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an oscillatory exponential with a phase term that is linear in the wave-number and ( ii ) has an amplitude profile expressed in terms of inverse power...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 34; no. 6; pp. 1187 - 1208
Main Authors RADJEN, A. M. R., TEW, R. H., GRADONI, G.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.12.2023
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792522000249

Cover

Loading…
Abstract The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an oscillatory exponential with a phase term that is linear in the wave-number and ( ii ) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.
AbstractList The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an oscillatory exponential with a phase term that is linear in the wave-number and ( ii ) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.
The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.
Author RADJEN, A. M. R.
GRADONI, G.
TEW, R. H.
Author_xml – sequence: 1
  givenname: A. M. R.
  surname: RADJEN
  fullname: RADJEN, A. M. R.
– sequence: 2
  givenname: R. H.
  surname: TEW
  fullname: TEW, R. H.
– sequence: 3
  givenname: G.
  surname: GRADONI
  fullname: GRADONI, G.
BookMark eNplUMtOwzAQtFCRKIUP4GaJc8CP2Im5oYoCoogDcI5ce01dJXaxU4ny9SSUG6ddzezMaOcUTUIMgNAFJVeU0Or6lSghK8UEY4QQVqojNKWlVEVZMjFB05EuRv4Enea8IYRyUqkp-l4kD7bVwUIqnqBtIeGk9xi-tjpkH0PGPmBowfQpdvojQO9zd4OfY4hmPUK9N4PC-mGJAbsBwjqtfJ902uO8S04b-DXp1wkAW9_BwfgMHTvdZjj_mzP0vrh7mz8Uy5f7x_ntsjBM1n3hDCgBWlSuUkqB1LZmTnDLeWU0cc7KldCGVxZ4vSKk1qwUnGsJtTSVcJLP0OXBd5vi5w5y32ziLoUhsuFUSloTOghmiB6uTIo5J3DNNvlu-KGhpBkrbv5VzH8Apk1zhg
Cites_doi 10.1016/S0165-2125(00)00051-2
10.1007/978-1-4899-0436-2
10.1002/cpa.3160120108
10.1364/JOSA.52.000116
10.1002/cpa.3160070407
10.1002/cpa.3160080306
10.1093/oso/9780198527701.001.0001
10.1090/S0002-9904-1978-14505-4
10.1093/imamat/hxz029
10.1017/S095679251800044X
10.1017/S0956792598003441
10.2528/PIER95080900
10.1002/cpa.3160090205
10.1017/S0956792517000353
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792522000249
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4425
EndPage 1208
ExternalDocumentID 10_1017_S0956792522000249
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKNA
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAYXX
ABBXD
ABBZL
ABEFU
ABGDZ
ABHFL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ABZUI
ACAJB
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACOZI
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AGQPQ
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMVHM
ANOYL
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c268t-fce95ea57f7999e6ad82f53d337ca0ffd6b5ac37de38b008a24533a6e86c75f63
IEDL.DBID BENPR
ISSN 0956-7925
IngestDate Fri Jul 25 19:40:20 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-fce95ea57f7999e6ad82f53d337ca0ffd6b5ac37de38b008a24533a6e86c75f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/57D42B26956A4EBC5D6A2240817AC7BB/S0956792522000249a.pdf/div-class-title-friedlander-keller-ray-expansions-in-electromagnetism-monochromatic-radiation-from-arbitrary-surfaces-in-three-dimensions-div.pdf
PQID 3166180153
PQPubID 37129
PageCount 22
ParticipantIDs proquest_journals_3166180153
crossref_primary_10_1017_S0956792522000249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Ockendon (S0956792522000249_ref14) 2003
Luneburg (S0956792522000249_ref12) 1944
S0956792522000249_ref1
S0956792522000249_ref4
S0956792522000249_ref3
Molinet (S0956792522000249_ref13) 2008
S0956792522000249_ref17
S0956792522000249_ref9
S0956792522000249_ref15
S0956792522000249_ref5
S0956792522000249_ref19
S0956792522000249_ref8
S0956792522000249_ref18
S0956792522000249_ref7
Rothwell (S0956792522000249_ref16) 2009
S0956792522000249_ref11
S0956792522000249_ref10
Zauderer (S0956792522000249_ref20) 1989
Bremmer (S0956792522000249_ref2) 1949
James (S0956792522000249_ref6) 1986
References_xml – volume-title: Terrestrial Radio Waves
  year: 1949
  ident: S0956792522000249_ref2
– volume-title: Partial Differential Equations of Applied Mathematics
  year: 1989
  ident: S0956792522000249_ref20
– ident: S0956792522000249_ref19
  doi: 10.1016/S0165-2125(00)00051-2
– ident: S0956792522000249_ref9
  doi: 10.1007/978-1-4899-0436-2
– volume-title: Asymptotic and Hybrid Methods in Electromagnetics
  year: 2008
  ident: S0956792522000249_ref13
– ident: S0956792522000249_ref11
  doi: 10.1002/cpa.3160120108
– ident: S0956792522000249_ref7
  doi: 10.1364/JOSA.52.000116
– ident: S0956792522000249_ref4
  doi: 10.1002/cpa.3160070407
– ident: S0956792522000249_ref5
  doi: 10.1002/cpa.3160080306
– volume-title: Applied Partial Differential Equations
  year: 2003
  ident: S0956792522000249_ref14
  doi: 10.1093/oso/9780198527701.001.0001
– volume-title: Geometrical Theory of Diffraction for Electromagnetic Waves
  year: 1986
  ident: S0956792522000249_ref6
– ident: S0956792522000249_ref8
  doi: 10.1090/S0002-9904-1978-14505-4
– ident: S0956792522000249_ref15
  doi: 10.1093/imamat/hxz029
– ident: S0956792522000249_ref18
  doi: 10.1017/S095679251800044X
– ident: S0956792522000249_ref3
  doi: 10.1017/S0956792598003441
– volume-title: Electromagnetics
  year: 2009
  ident: S0956792522000249_ref16
– ident: S0956792522000249_ref1
  doi: 10.2528/PIER95080900
– volume-title: The Mathematical Theory of Optics (Lectures)
  year: 1944
  ident: S0956792522000249_ref12
– ident: S0956792522000249_ref10
  doi: 10.1002/cpa.3160090205
– ident: S0956792522000249_ref17
  doi: 10.1017/S0956792517000353
SSID ssj0013079
Score 2.3232477
Snippet The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an...
The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1187
SubjectTerms Amplitudes
Electric fields
Electromagnetism
Helmholtz equations
Magnetic fields
Maxwell's equations
Monochromatic radiation
Wave fronts
Wave propagation
Title Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions
URI https://www.proquest.com/docview/3166180153
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-yMGTEFyT5lEvouIqiiKi4K1kJ4kuaFfbCuqvd9J2XUXwOqVTmOk8Mpn5hpBtm0ICHCyzSqcsAWtZ6hSwPqRcBg2BQywNXF6ps7vk_F7etwW3sm2rHPnE2lG7IcQa-a7Yw0iC7lSKg5dXFrdGxdvVdoXGJJlGF2zw8DV9dHJ1fTO-R-iO0fY0fn10r1mDRiMx0nicVuERTPNnZPrtmOto05snc22aSA8bvS6QCZ8vktnLb4zVcol89vCU657q6RR2EevvBS3sB_XvaOCxBlbSQU7bNTfP9iH31aB83qdoxUN4jCTkg2-4Rjk0DppQW_QH9SA-Ld-KENu1IpMKFe6pi4sAasbL5K53cnt8xtpNCgy4MhUL4FPprdRBY0LolXWGBymcEBpsNwSn-tKC0M4Lg3ZoLE8wDbTKGwVaBiVWyFQ-zP0qocoZ6SUY5YNIFJq_iQD5XWm4TkFz0yE7IylmLw1gRtZ0kunsj8g7ZGMk56y1nTIba3rt_8frZCYuf2-aSzbIVFW8-U1MEar-Fpk0vdOt9m_4AqvFvWQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHNSDAR8RROyDXkw6rt3TjzExxoDL4rKcIOE29vYDN5FZmBmi-KP8jVbN7LgaE25cazKVTM3XVdX1BHjpcp954R132uQ8887xPGjPpz4XKhmfhKfQwORIj06yz6fqdAV-9b0wVFbZ68RWUYe5pxj5G_kWLQmqUyU_XFxy2hpF2dV-hUYHi3G8_o5Xtvr9wR7-31dCDD8d7474YqsA90LbhicfcxWdMsmgcxS1C1YkJYOUxrtBSkFPlfPShCgtYtI6kaFL5HS02huVtES-d2AtkzKnE2WH-8usxWA528_gt_ZZ1HZENRKJJqg3RtDozr_t4L9moLVtw3V4sHBK2ccORRuwEsuHcH_yZ6Jr_Qh-DvFOHb61vTB8TNH-ilXumsUfqE4o4lazWckWS3XO3VkZm1l9_o6hzpj7r0RCPvhG6KDAqK2FuWo6a9v-WX1VJSoOIyYNwiuyQGsHWsaP4eRWJPwEVst5GZ8C08GqqLzVMclMo7KxNI5_oKwwuTfCbsLrXorFRTeeo-jq1kzxn8g3YbuXc7E4qXWxxNXWzY9fwN3R8eSwODw4Gj-De7R2vitr2YbVprqKz9E5aaY7LSIYfLltCP4GDBL5KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friedlander-Keller+ray+expansions+in+electromagnetism%3A+Monochromatic+radiation+from+arbitrary+surfaces+in+three+dimensions&rft.jtitle=European+journal+of+applied+mathematics&rft.au=RADJEN%2C+A+M+R&rft.au=Tew%2C+R+H&rft.au=Gradoni%2C+G&rft.date=2023-12-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=34&rft.issue=6&rft.spage=1187&rft.epage=1208&rft_id=info:doi/10.1017%2FS0956792522000249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon