Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions
The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have ( i ) an oscillatory exponential with a phase term that is linear in the wave-number and ( ii ) has an amplitude profile expressed in terms of inverse power...
Saved in:
Published in | European journal of applied mathematics Vol. 34; no. 6; pp. 1187 - 1208 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792522000249 |
Cover
Loading…
Abstract | The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (
i
) an oscillatory exponential with a phase term that is linear in the wave-number and (
ii
) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory. |
---|---|
AbstractList | The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (
i
) an oscillatory exponential with a phase term that is linear in the wave-number and (
ii
) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory. The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory. |
Author | RADJEN, A. M. R. GRADONI, G. TEW, R. H. |
Author_xml | – sequence: 1 givenname: A. M. R. surname: RADJEN fullname: RADJEN, A. M. R. – sequence: 2 givenname: R. H. surname: TEW fullname: TEW, R. H. – sequence: 3 givenname: G. surname: GRADONI fullname: GRADONI, G. |
BookMark | eNplUMtOwzAQtFCRKIUP4GaJc8CP2Im5oYoCoogDcI5ce01dJXaxU4ny9SSUG6ddzezMaOcUTUIMgNAFJVeU0Or6lSghK8UEY4QQVqojNKWlVEVZMjFB05EuRv4Enea8IYRyUqkp-l4kD7bVwUIqnqBtIeGk9xi-tjpkH0PGPmBowfQpdvojQO9zd4OfY4hmPUK9N4PC-mGJAbsBwjqtfJ902uO8S04b-DXp1wkAW9_BwfgMHTvdZjj_mzP0vrh7mz8Uy5f7x_ntsjBM1n3hDCgBWlSuUkqB1LZmTnDLeWU0cc7KldCGVxZ4vSKk1qwUnGsJtTSVcJLP0OXBd5vi5w5y32ziLoUhsuFUSloTOghmiB6uTIo5J3DNNvlu-KGhpBkrbv5VzH8Apk1zhg |
Cites_doi | 10.1016/S0165-2125(00)00051-2 10.1007/978-1-4899-0436-2 10.1002/cpa.3160120108 10.1364/JOSA.52.000116 10.1002/cpa.3160070407 10.1002/cpa.3160080306 10.1093/oso/9780198527701.001.0001 10.1090/S0002-9904-1978-14505-4 10.1093/imamat/hxz029 10.1017/S095679251800044X 10.1017/S0956792598003441 10.2528/PIER95080900 10.1002/cpa.3160090205 10.1017/S0956792517000353 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792522000249 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4425 |
EndPage | 1208 |
ExternalDocumentID | 10_1017_S0956792522000249 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB AAYXX ABBXD ABBZL ABEFU ABGDZ ABHFL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ABZUI ACAJB ACBMC ACDLN ACEJA ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACOZI ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AGQPQ AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AMVHM ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ GROUPED_DOAJ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c268t-fce95ea57f7999e6ad82f53d337ca0ffd6b5ac37de38b008a24533a6e86c75f63 |
IEDL.DBID | BENPR |
ISSN | 0956-7925 |
IngestDate | Fri Jul 25 19:40:20 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-fce95ea57f7999e6ad82f53d337ca0ffd6b5ac37de38b008a24533a6e86c75f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/57D42B26956A4EBC5D6A2240817AC7BB/S0956792522000249a.pdf/div-class-title-friedlander-keller-ray-expansions-in-electromagnetism-monochromatic-radiation-from-arbitrary-surfaces-in-three-dimensions-div.pdf |
PQID | 3166180153 |
PQPubID | 37129 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3166180153 crossref_primary_10_1017_S0956792522000249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Ockendon (S0956792522000249_ref14) 2003 Luneburg (S0956792522000249_ref12) 1944 S0956792522000249_ref1 S0956792522000249_ref4 S0956792522000249_ref3 Molinet (S0956792522000249_ref13) 2008 S0956792522000249_ref17 S0956792522000249_ref9 S0956792522000249_ref15 S0956792522000249_ref5 S0956792522000249_ref19 S0956792522000249_ref8 S0956792522000249_ref18 S0956792522000249_ref7 Rothwell (S0956792522000249_ref16) 2009 S0956792522000249_ref11 S0956792522000249_ref10 Zauderer (S0956792522000249_ref20) 1989 Bremmer (S0956792522000249_ref2) 1949 James (S0956792522000249_ref6) 1986 |
References_xml | – volume-title: Terrestrial Radio Waves year: 1949 ident: S0956792522000249_ref2 – volume-title: Partial Differential Equations of Applied Mathematics year: 1989 ident: S0956792522000249_ref20 – ident: S0956792522000249_ref19 doi: 10.1016/S0165-2125(00)00051-2 – ident: S0956792522000249_ref9 doi: 10.1007/978-1-4899-0436-2 – volume-title: Asymptotic and Hybrid Methods in Electromagnetics year: 2008 ident: S0956792522000249_ref13 – ident: S0956792522000249_ref11 doi: 10.1002/cpa.3160120108 – ident: S0956792522000249_ref7 doi: 10.1364/JOSA.52.000116 – ident: S0956792522000249_ref4 doi: 10.1002/cpa.3160070407 – ident: S0956792522000249_ref5 doi: 10.1002/cpa.3160080306 – volume-title: Applied Partial Differential Equations year: 2003 ident: S0956792522000249_ref14 doi: 10.1093/oso/9780198527701.001.0001 – volume-title: Geometrical Theory of Diffraction for Electromagnetic Waves year: 1986 ident: S0956792522000249_ref6 – ident: S0956792522000249_ref8 doi: 10.1090/S0002-9904-1978-14505-4 – ident: S0956792522000249_ref15 doi: 10.1093/imamat/hxz029 – ident: S0956792522000249_ref18 doi: 10.1017/S095679251800044X – ident: S0956792522000249_ref3 doi: 10.1017/S0956792598003441 – volume-title: Electromagnetics year: 2009 ident: S0956792522000249_ref16 – ident: S0956792522000249_ref1 doi: 10.2528/PIER95080900 – volume-title: The Mathematical Theory of Optics (Lectures) year: 1944 ident: S0956792522000249_ref12 – ident: S0956792522000249_ref10 doi: 10.1002/cpa.3160090205 – ident: S0956792522000249_ref17 doi: 10.1017/S0956792517000353 |
SSID | ssj0013079 |
Score | 2.3232477 |
Snippet | The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (
i
) an... The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1187 |
SubjectTerms | Amplitudes Electric fields Electromagnetism Helmholtz equations Magnetic fields Maxwell's equations Monochromatic radiation Wave fronts Wave propagation |
Title | Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions |
URI | https://www.proquest.com/docview/3166180153 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-yMGTEFyT5lEvouIqiiKi4K1kJ4kuaFfbCuqvd9J2XUXwOqVTmOk8Mpn5hpBtm0ICHCyzSqcsAWtZ6hSwPqRcBg2BQywNXF6ps7vk_F7etwW3sm2rHPnE2lG7IcQa-a7Yw0iC7lSKg5dXFrdGxdvVdoXGJJlGF2zw8DV9dHJ1fTO-R-iO0fY0fn10r1mDRiMx0nicVuERTPNnZPrtmOto05snc22aSA8bvS6QCZ8vktnLb4zVcol89vCU657q6RR2EevvBS3sB_XvaOCxBlbSQU7bNTfP9iH31aB83qdoxUN4jCTkg2-4Rjk0DppQW_QH9SA-Ld-KENu1IpMKFe6pi4sAasbL5K53cnt8xtpNCgy4MhUL4FPprdRBY0LolXWGBymcEBpsNwSn-tKC0M4Lg3ZoLE8wDbTKGwVaBiVWyFQ-zP0qocoZ6SUY5YNIFJq_iQD5XWm4TkFz0yE7IylmLw1gRtZ0kunsj8g7ZGMk56y1nTIba3rt_8frZCYuf2-aSzbIVFW8-U1MEar-Fpk0vdOt9m_4AqvFvWQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHNSDAR8RROyDXkw6rt3TjzExxoDL4rKcIOE29vYDN5FZmBmi-KP8jVbN7LgaE25cazKVTM3XVdX1BHjpcp954R132uQ8887xPGjPpz4XKhmfhKfQwORIj06yz6fqdAV-9b0wVFbZ68RWUYe5pxj5G_kWLQmqUyU_XFxy2hpF2dV-hUYHi3G8_o5Xtvr9wR7-31dCDD8d7474YqsA90LbhicfcxWdMsmgcxS1C1YkJYOUxrtBSkFPlfPShCgtYtI6kaFL5HS02huVtES-d2AtkzKnE2WH-8usxWA528_gt_ZZ1HZENRKJJqg3RtDozr_t4L9moLVtw3V4sHBK2ccORRuwEsuHcH_yZ6Jr_Qh-DvFOHb61vTB8TNH-ilXumsUfqE4o4lazWckWS3XO3VkZm1l9_o6hzpj7r0RCPvhG6KDAqK2FuWo6a9v-WX1VJSoOIyYNwiuyQGsHWsaP4eRWJPwEVst5GZ8C08GqqLzVMclMo7KxNI5_oKwwuTfCbsLrXorFRTeeo-jq1kzxn8g3YbuXc7E4qXWxxNXWzY9fwN3R8eSwODw4Gj-De7R2vitr2YbVprqKz9E5aaY7LSIYfLltCP4GDBL5KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friedlander-Keller+ray+expansions+in+electromagnetism%3A+Monochromatic+radiation+from+arbitrary+surfaces+in+three+dimensions&rft.jtitle=European+journal+of+applied+mathematics&rft.au=RADJEN%2C+A+M+R&rft.au=Tew%2C+R+H&rft.au=Gradoni%2C+G&rft.date=2023-12-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=34&rft.issue=6&rft.spage=1187&rft.epage=1208&rft_id=info:doi/10.1017%2FS0956792522000249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |