Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error
In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process,...
Saved in:
Published in | Mathematical methods of statistics Vol. 32; no. 4; pp. 223 - 240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1066-5307 1934-8045 |
DOI | 10.3103/S1066530723040026 |
Cover
Loading…
Abstract | In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure. |
---|---|
AbstractList | In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure. |
Author | Ghahroodi, Zahra Rezaei Ahangari, Maryam Golalizadeh, Mousa |
Author_xml | – sequence: 1 givenname: Maryam surname: Ahangari fullname: Ahangari, Maryam organization: Department of Statistics, Tarbiat Modares University – sequence: 2 givenname: Mousa surname: Golalizadeh fullname: Golalizadeh, Mousa email: golalizadeh@modares.ac.ir organization: Department of Statistics, Tarbiat Modares University – sequence: 3 givenname: Zahra Rezaei surname: Ghahroodi fullname: Ghahroodi, Zahra Rezaei organization: School of Mathematics, Statistics and Computer Science, University of Tehran |
BookMark | eNp1kE1LAzEQhoMo-PkDvAU8r042mzR7lPoJrYItXpfs7kRTtpuaZCv6K_zJplTwIJ5m4H2eYXgPyW7veiTklME5Z8AvZgykFBxGOYcCIJc75ICVvMgUFGI37SnONvk-OQxhAQAKGByQr2fd2VZH63p6paPOJq7REVs6da01ttkmxnkaX5FOhy7aDtfY0ctedx_BBuoMndqwkV6ct59JfXBLm1L6hGHl-oD03cZXOnZr7W3CAp0N9QKbSKOjU9Rh8LjEPtJr750_JntGdwFPfuYRmd9cz8d32eTx9n58OcmaXKqYmZGqFUjBihxakLzkwmBdGjPSRuUaRNOokZSSC11y1bKiFKrBopC1RqhbfkTOtmdX3r0NGGK1cINPX4cqL0HwQuYCEsW2VONdCB5NtfJ2qf1HxaDa9F796T05-dYJie1f0P9e_l_6BtcIiEc |
Cites_doi | 10.1093/biomet/86.4.843 10.1097/EDE.0b013e3182117c85 10.1080/01621459.1994.10476474 10.1201/9781420074086 10.1080/03610926.2014.887115 10.1007/s001800300132 10.1093/oxfordjournals.aje.a009251 10.1007/978-1-4684-0192-9 10.1016/j.csda.2012.07.018 10.1002/sim.7509 10.1201/9780203489437 10.1111/rssc.12081 10.1016/j.annepidem.2010.03.012 10.1111/j.0006-341X.2002.00675.x 10.1201/9781420010138 10.1080/03610918.2011.611312 10.1002/sim.8532 10.1093/comjnl/7.4.308 10.1002/sim.8073 10.1080/03610929908832292 10.1080/01621459.1998.10474106 10.1111/1541-0420.00077 10.1111/biom.12730 10.1201/9781420066586 10.1177/1471082X0700700303 10.1080/02664763.2019.1582613 10.1002/0471249688 10.1007/978-1-4939-6640-0 |
ContentType | Journal Article |
Copyright | Allerton Press, Inc. 2023 Allerton Press, Inc. 2023. |
Copyright_xml | – notice: Allerton Press, Inc. 2023 – notice: Allerton Press, Inc. 2023. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.3103/S1066530723040026 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1934-8045 |
EndPage | 240 |
ExternalDocumentID | 10_3103_S1066530723040026 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 29M 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PQQKQ PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR ZMTXR AAPKM AAYXX ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c268t-f78b80651420d063935feb9ff7af82a05cc8766635a938d14958ce446bae0bd3 |
IEDL.DBID | U2A |
ISSN | 1066-5307 |
IngestDate | Fri Jul 25 19:19:48 EDT 2025 Tue Jul 01 02:27:07 EDT 2025 Fri Feb 21 02:40:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | measurement error multivariate Gauss–Hermite quadrature nominal response multinomial logit random effects regression model misclassification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-f78b80651420d063935feb9ff7af82a05cc8766635a938d14958ce446bae0bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2905346250 |
PQPubID | 43936 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2905346250 crossref_primary_10_3103_S1066530723040026 springer_journals_10_3103_S1066530723040026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Mathematical methods of statistics |
PublicationTitleAbbrev | Math. Meth. Stat |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | WangN.LinX.GuttierrezR. G.A bias correction regression calibration approach in generalized linear mixed measurement error modelsCommunications in Statistics19992821723210.1080/03610929908832292 TorabiM.Likelihood inference in generalized linear mixed measurement error modelsComputational Statistics and Data Analysis201357549557298110810.1016/j.csda.2012.07.018 ShuD.YiG. Y.Weighted causal inference methods with mismeasured covariates and misclassified outcomesStatistics in Medicine20193818351854393482210.1002/sim.8073 BuonaccorsiJ. P.RomeoG.ThoresenM.Model-based bootstapping when correcting for measurement error with application to logistic regressionBiometrics201874135144377793410.1111/biom.12730 PaulinoC. D.SoaresP.NeuhausJ.Binomial regression with misclassificationBiometrics200359670675200427210.1111/1541-0420.00077 XieX.XueX.StricklerH. D.Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limitsStatistics in Medicine201737119136373806610.1002/sim.7509 JaeckelP.A Note on Multivariate Gauss-Hermite Quadrature2005LondonABN-Amro McCullachC. E.SearleS. R.NeuhausJ. M.Generalized, Linear, and Mixed Models2008LondonJohn Wiley & Sons WangN.LinX.GuttierrezR. G.CarrollR. J.Bias analysis and SIMEX approach in generalized linear mixed measurement error modelsJournal of American Statistical Association199893249261161463610.1080/01621459.1998.10474106 StroupW. W.Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications2012Boca RatonCRC Press RoyS.Accounting for response misclassification and covariate measurement error using a random effect logit modelCommunications in Statistics-Simulation and Computation20124116231636292400710.1080/03610918.2011.611312 NeuhausJ. M.Analysis of clustered and longitudinal binary data subject to response misclassificationBiometrics200258675683192612010.1111/j.0006-341X.2002.00675.x LylesR. H.TangL.SuperakH. M.KingC. C.CelentanoD. D.LoY.SobelJ. D.Validation data-based adjustments for outcome misclassification in logistic regression: An illustrationEpidemiology (Cambridge, Mass.)20112258910.1097/EDE.0b013e3182117c85 GerlachR.StameyJ.Bayesian model selection for logistic regression with misclassified outcomesStatistical Modelling20077255273274999310.1177/1471082X0700700303 NeuhausJ. M.Bias and efficiency loss due to misclassified responses in binary regressionBiometrika199986843855174198110.1093/biomet/86.4.843 KeoghR. H.ShawP. A.GustafsonP.CarrollR. J.DeffnerV.DoddK. W.KchenhoffH.ToozeJ. A.WallaceM. P.KipnisV.FreedmanL. S.STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-basic theory and simple methods of adjustmentStatistics in Medicine20203921972231410876010.1002/sim.8532 WuL.Mixed Effects Models for Complex Data2009Boca RatonCRC Press10.1201/9781420074086 RoyS.Analysis of ordered probit model with surrogate response data and measurement error in covariatesCommunications in Statistics-Theory and Methods20164526652678348334110.1080/03610926.2014.887115 AgrestiA.Categorical Data Analysis2002New YorkJohn Wiley and Sons10.1002/0471249688 MagderL. S.HughesJ. P.Logistic regression when the outcome is measured with uncertaintyAmerican Journal of Epidemiology199714619520310.1093/oxfordjournals.aje.a009251 MolenberghsG.VerbekeG.Models for Discrete Longitudinal Data2006New YorkSpringer TannerM. A.Tools for Statistical Inference: Observed Data and Data Augmentation1993New YorkSpringer10.1007/978-1-4684-0192-9 ChengD.BranscumA. J.StameyJ. D.Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studiesAnnals of Epidemiology20102056256710.1016/j.annepidem.2010.03.012 DiggleP. J.LiangK. Y.ZegerS. L.Analysis of Longitudinal Data1994OxfordOxford University Press McCullachC. E.Maximum likelihood variance components estimation for binary dataJournal of the American Statistical Association19948933033510.1080/01621459.1994.10476474 NelderJ. A.MeadR.A simplex algorithm for function minimizationComputer Journal19657308313336340910.1093/comjnl/7.4.308 BuonaccorsiJ. P.Measurement Error, Models, Methods, and Applications2010New YorkCRC Press10.1201/9781420066586 SkrondalA.Rabe-HeskethS.Generalized Latent Variable Modeling2004Boca RatonCRC Press10.1201/9780203489437 NaranjoL.PrezC. J.MartnJ.MutsvariT.LesaffreE.A Bayesian approach for misclassified ordinal response dataJournal of Applied Statistics20194621982215398355610.1080/02664763.2019.1582613 YiG. Y.Statistical Analysis with Measurement Error or Misclassification2017New YorkSpringer10.1007/978-1-4939-6640-0 PanJ.ThompsonR.Gauss-hermite quadrature approximation estimation in generalized linear mixed modelsComputational Statistics2003185778196524410.1007/s001800300132 TangL.LylesR. H.KingC. C.HoganJ. W.LoY.Regression analysis for differentially misclassified correlated binary outcomesJournal of the Royal Statistical Society. Series C, Applied Statistics201564433449332545710.1111/rssc.12081 CarrollR. J.RuppertD.StefanskiL. A.CrainiceanuC. M.Measurement Error in Nonlinear Models: A Modern Perspective2006Boca RatonCRC Press10.1201/9781420010138 A. Skrondal (5038_CR30) 2004 C. D. Paulino (5038_CR17) 2003; 59 J. A. Nelder (5038_CR33) 1965; 7 J. P. Buonaccorsi (5038_CR9) 2018; 74 S. Roy (5038_CR25) 2016; 45 X. Xie (5038_CR12) 2017; 37 A. Agresti (5038_CR29) 2002 W. W. Stroup (5038_CR4) 2012 D. Cheng (5038_CR22) 2010; 20 M. Torabi (5038_CR11) 2013; 57 G. Molenberghs (5038_CR31) 2006 C. E. McCullach (5038_CR2) 1994; 89 N. Wang (5038_CR7) 1999; 28 R. H. Lyles (5038_CR20) 2011; 22 J. P. Buonaccorsi (5038_CR26) 2010 J. Pan (5038_CR32) 2003; 18 L. S. Magder (5038_CR14) 1997; 146 J. M. Neuhaus (5038_CR16) 2002; 58 J. M. Neuhaus (5038_CR15) 1999; 86 L. Wu (5038_CR3) 2009 R. H. Keogh (5038_CR27) 2020; 39 R. Gerlach (5038_CR18) 2007; 7 S. Roy (5038_CR24) 2012; 41 P. Jaeckel (5038_CR28) 2005 P. J. Diggle (5038_CR5) 1994 M. A. Tanner (5038_CR6) 1993 N. Wang (5038_CR8) 1998; 93 G. Y. Yi (5038_CR13) 2017 L. Tang (5038_CR19) 2015; 64 D. Shu (5038_CR23) 2019; 38 R. J. Carroll (5038_CR10) 2006 L. Naranjo (5038_CR21) 2019; 46 C. E. McCullach (5038_CR1) 2008 |
References_xml | – reference: BuonaccorsiJ. P.Measurement Error, Models, Methods, and Applications2010New YorkCRC Press10.1201/9781420066586 – reference: KeoghR. H.ShawP. A.GustafsonP.CarrollR. J.DeffnerV.DoddK. W.KchenhoffH.ToozeJ. A.WallaceM. P.KipnisV.FreedmanL. S.STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-basic theory and simple methods of adjustmentStatistics in Medicine20203921972231410876010.1002/sim.8532 – reference: McCullachC. E.SearleS. R.NeuhausJ. M.Generalized, Linear, and Mixed Models2008LondonJohn Wiley & Sons – reference: RoyS.Accounting for response misclassification and covariate measurement error using a random effect logit modelCommunications in Statistics-Simulation and Computation20124116231636292400710.1080/03610918.2011.611312 – reference: TorabiM.Likelihood inference in generalized linear mixed measurement error modelsComputational Statistics and Data Analysis201357549557298110810.1016/j.csda.2012.07.018 – reference: CarrollR. J.RuppertD.StefanskiL. A.CrainiceanuC. M.Measurement Error in Nonlinear Models: A Modern Perspective2006Boca RatonCRC Press10.1201/9781420010138 – reference: PaulinoC. D.SoaresP.NeuhausJ.Binomial regression with misclassificationBiometrics200359670675200427210.1111/1541-0420.00077 – reference: NeuhausJ. M.Analysis of clustered and longitudinal binary data subject to response misclassificationBiometrics200258675683192612010.1111/j.0006-341X.2002.00675.x – reference: WangN.LinX.GuttierrezR. G.CarrollR. J.Bias analysis and SIMEX approach in generalized linear mixed measurement error modelsJournal of American Statistical Association199893249261161463610.1080/01621459.1998.10474106 – reference: WuL.Mixed Effects Models for Complex Data2009Boca RatonCRC Press10.1201/9781420074086 – reference: TangL.LylesR. H.KingC. C.HoganJ. W.LoY.Regression analysis for differentially misclassified correlated binary outcomesJournal of the Royal Statistical Society. Series C, Applied Statistics201564433449332545710.1111/rssc.12081 – reference: DiggleP. J.LiangK. Y.ZegerS. L.Analysis of Longitudinal Data1994OxfordOxford University Press – reference: NaranjoL.PrezC. J.MartnJ.MutsvariT.LesaffreE.A Bayesian approach for misclassified ordinal response dataJournal of Applied Statistics20194621982215398355610.1080/02664763.2019.1582613 – reference: MolenberghsG.VerbekeG.Models for Discrete Longitudinal Data2006New YorkSpringer – reference: GerlachR.StameyJ.Bayesian model selection for logistic regression with misclassified outcomesStatistical Modelling20077255273274999310.1177/1471082X0700700303 – reference: LylesR. H.TangL.SuperakH. M.KingC. C.CelentanoD. D.LoY.SobelJ. D.Validation data-based adjustments for outcome misclassification in logistic regression: An illustrationEpidemiology (Cambridge, Mass.)20112258910.1097/EDE.0b013e3182117c85 – reference: JaeckelP.A Note on Multivariate Gauss-Hermite Quadrature2005LondonABN-Amro – reference: AgrestiA.Categorical Data Analysis2002New YorkJohn Wiley and Sons10.1002/0471249688 – reference: SkrondalA.Rabe-HeskethS.Generalized Latent Variable Modeling2004Boca RatonCRC Press10.1201/9780203489437 – reference: StroupW. W.Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications2012Boca RatonCRC Press – reference: YiG. Y.Statistical Analysis with Measurement Error or Misclassification2017New YorkSpringer10.1007/978-1-4939-6640-0 – reference: ChengD.BranscumA. J.StameyJ. D.Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studiesAnnals of Epidemiology20102056256710.1016/j.annepidem.2010.03.012 – reference: NelderJ. A.MeadR.A simplex algorithm for function minimizationComputer Journal19657308313336340910.1093/comjnl/7.4.308 – reference: ShuD.YiG. Y.Weighted causal inference methods with mismeasured covariates and misclassified outcomesStatistics in Medicine20193818351854393482210.1002/sim.8073 – reference: TannerM. A.Tools for Statistical Inference: Observed Data and Data Augmentation1993New YorkSpringer10.1007/978-1-4684-0192-9 – reference: BuonaccorsiJ. P.RomeoG.ThoresenM.Model-based bootstapping when correcting for measurement error with application to logistic regressionBiometrics201874135144377793410.1111/biom.12730 – reference: RoyS.Analysis of ordered probit model with surrogate response data and measurement error in covariatesCommunications in Statistics-Theory and Methods20164526652678348334110.1080/03610926.2014.887115 – reference: WangN.LinX.GuttierrezR. G.A bias correction regression calibration approach in generalized linear mixed measurement error modelsCommunications in Statistics19992821723210.1080/03610929908832292 – reference: McCullachC. E.Maximum likelihood variance components estimation for binary dataJournal of the American Statistical Association19948933033510.1080/01621459.1994.10476474 – reference: NeuhausJ. M.Bias and efficiency loss due to misclassified responses in binary regressionBiometrika199986843855174198110.1093/biomet/86.4.843 – reference: MagderL. S.HughesJ. P.Logistic regression when the outcome is measured with uncertaintyAmerican Journal of Epidemiology199714619520310.1093/oxfordjournals.aje.a009251 – reference: XieX.XueX.StricklerH. D.Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limitsStatistics in Medicine201737119136373806610.1002/sim.7509 – reference: PanJ.ThompsonR.Gauss-hermite quadrature approximation estimation in generalized linear mixed modelsComputational Statistics2003185778196524410.1007/s001800300132 – volume: 86 start-page: 843 year: 1999 ident: 5038_CR15 publication-title: Biometrika doi: 10.1093/biomet/86.4.843 – volume: 22 start-page: 589 year: 2011 ident: 5038_CR20 publication-title: Epidemiology (Cambridge, Mass.) doi: 10.1097/EDE.0b013e3182117c85 – volume: 89 start-page: 330 year: 1994 ident: 5038_CR2 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1994.10476474 – volume-title: Mixed Effects Models for Complex Data year: 2009 ident: 5038_CR3 doi: 10.1201/9781420074086 – volume: 45 start-page: 2665 year: 2016 ident: 5038_CR25 publication-title: Communications in Statistics-Theory and Methods doi: 10.1080/03610926.2014.887115 – volume: 18 start-page: 57 year: 2003 ident: 5038_CR32 publication-title: Computational Statistics doi: 10.1007/s001800300132 – volume: 146 start-page: 195 year: 1997 ident: 5038_CR14 publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a009251 – volume-title: Tools for Statistical Inference: Observed Data and Data Augmentation year: 1993 ident: 5038_CR6 doi: 10.1007/978-1-4684-0192-9 – volume: 57 start-page: 549 year: 2013 ident: 5038_CR11 publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2012.07.018 – volume: 37 start-page: 119 year: 2017 ident: 5038_CR12 publication-title: Statistics in Medicine doi: 10.1002/sim.7509 – volume-title: Generalized Latent Variable Modeling year: 2004 ident: 5038_CR30 doi: 10.1201/9780203489437 – volume: 64 start-page: 433 year: 2015 ident: 5038_CR19 publication-title: Journal of the Royal Statistical Society. Series C, Applied Statistics doi: 10.1111/rssc.12081 – volume: 20 start-page: 562 year: 2010 ident: 5038_CR22 publication-title: Annals of Epidemiology doi: 10.1016/j.annepidem.2010.03.012 – volume: 58 start-page: 675 year: 2002 ident: 5038_CR16 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00675.x – volume-title: Measurement Error in Nonlinear Models: A Modern Perspective year: 2006 ident: 5038_CR10 doi: 10.1201/9781420010138 – volume-title: Models for Discrete Longitudinal Data year: 2006 ident: 5038_CR31 – volume-title: Generalized, Linear, and Mixed Models year: 2008 ident: 5038_CR1 – volume: 41 start-page: 1623 year: 2012 ident: 5038_CR24 publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918.2011.611312 – volume: 39 start-page: 2197 year: 2020 ident: 5038_CR27 publication-title: Statistics in Medicine doi: 10.1002/sim.8532 – volume: 7 start-page: 308 year: 1965 ident: 5038_CR33 publication-title: Computer Journal doi: 10.1093/comjnl/7.4.308 – volume: 38 start-page: 1835 year: 2019 ident: 5038_CR23 publication-title: Statistics in Medicine doi: 10.1002/sim.8073 – volume-title: A Note on Multivariate Gauss-Hermite Quadrature year: 2005 ident: 5038_CR28 – volume-title: Analysis of Longitudinal Data year: 1994 ident: 5038_CR5 – volume: 28 start-page: 217 year: 1999 ident: 5038_CR7 publication-title: Communications in Statistics doi: 10.1080/03610929908832292 – volume: 93 start-page: 249 year: 1998 ident: 5038_CR8 publication-title: Journal of American Statistical Association doi: 10.1080/01621459.1998.10474106 – volume: 59 start-page: 670 year: 2003 ident: 5038_CR17 publication-title: Biometrics doi: 10.1111/1541-0420.00077 – volume-title: Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications year: 2012 ident: 5038_CR4 – volume: 74 start-page: 135 year: 2018 ident: 5038_CR9 publication-title: Biometrics doi: 10.1111/biom.12730 – volume-title: Measurement Error, Models, Methods, and Applications year: 2010 ident: 5038_CR26 doi: 10.1201/9781420066586 – volume: 7 start-page: 255 year: 2007 ident: 5038_CR18 publication-title: Statistical Modelling doi: 10.1177/1471082X0700700303 – volume: 46 start-page: 2198 year: 2019 ident: 5038_CR21 publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2019.1582613 – volume-title: Categorical Data Analysis year: 2002 ident: 5038_CR29 doi: 10.1002/0471249688 – volume-title: Statistical Analysis with Measurement Error or Misclassification year: 2017 ident: 5038_CR13 doi: 10.1007/978-1-4939-6640-0 |
SSID | ssj0008010 |
Score | 2.2656713 |
Snippet | In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 223 |
SubjectTerms | Error analysis Hermite-Gaussian modes Mathematics and Statistics Measurement errors Quadratures Statistical inference Statistical Theory and Methods Statistics Time dependence Time measurement |
Title | Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error |
URI | https://link.springer.com/article/10.3103/S1066530723040026 https://www.proquest.com/docview/2905346250 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAPEWhVB6YQBZpEqfuWEEBAenASzBFSWyjSqhGaWDgV_CTuYsbKl4Dsx-D73z-vrvzHcBemKNZ7HY7XEe-4WFgUi57QnBB6uIrX3rVL_54GJ3dhuf34n76j3tSZ7vXIcnKUle80gsOrzsUJUCVJDcmUYd5WBBE3VGJb_3-p_lFk-tKEEQRp-kulPn7Fl8foxnC_BYUrd6akxVYnoJE1ndSXYU5PV6DpfizwupkDRYJJboiy-vwfodo2jVHYsdpmfJLS4lOisVWUSqQG0F4ynAHVv25faJkIVaXJGHWsHg0oUWPthi94dKhrdp9sSuXRKsZeWzZkX1Fck34lKHJIR8OKy2LZ45GNigKW2zAzcng5uiMT1st8NyPZMlNV2YUYu2EvqcItQTC6Iz8uamRfuqJPEezSegk7QVSEa2SuUYqmaXay1SwCY2xHestYEqFuouHLASO55HJZMfoUGpPqNQg9W3Cfn3kybMrqJEgESH5JD_k04RWLZRkercmid9DwxEib_OacFALajb852bb_5q9A4vUWd5lrrSgURYvehfxR5m1YaF_-nAxaFd69wG8PNKb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGIAB8RTl6YEJZJEmceqOVQEVaDpAQWxREtsICdUoDQz8Cn4yd3FDxWtgtuPB53z-vrvzHcBhmCMstlpNriPf8DAwKZdtIbig4-IrX3rVK_54EPVuw8t7cT95xz2us93rkGSF1JWu9IKTmyZFCfBIkhuTpMMszCMXkJTHdet3PuEXIdeVIIgiTtNdKPP3Jb5eRlOG-S0oWt015yuwPCGJrOOsugozerQGS_FnhdXxGiwSS3RFltfh_Q7ZtGuOxE7TMuV9S4lOisVWUSqQG0F6ynAFVr25faJkIVaXJGHWsPhxTB892OLxDT8d2KrdF7t2SbSakceWde0rimvipwwhh3w4rLQsnjoa2VlR2GIDhudnw26PT1ot8NyPZMlNS2YUYm2GvqeItQTC6Iz8uamRfuqJPEfYJHaStgOpSFbJXKOUzFLtZSrYhLmRHektYEqFuoWbLASO55HJZNPoUGpPqNSg9G3AUb3lybMrqJGgECH7JD_s04Dd2ijJ5N8aJ34bgSNE3eY14Lg21HT4z8W2_zX7ABZ6w7if9C8GVzuwSF3mXRbLLsyVxYveQy5SZvvV2fsAMbDT-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYJAQHxCqGNQdOoGi6pZM5ImDE1hFiE7eqbRKEhCaoUzjwFXwydjNlxHbgnOUQO857tmMD7EYFmsVOx-c6DgyPQpNx2RWCC1KXQAXSq3_xJ_345DY6uxf3oz6nwybbvQlJuj8NVKVpULWflWnXHNML29c-RQxQPcmlSTRiEqbRGvuk1rfBwacpRvPryhHEMafpLqz5-xZfH6Yx2vwWIK3fnd4CzI8AIztwEl6ECT1Ygrnks9rqcAlmCTG6gsvL8H6HyNo1SmJHWZXxC0tJT4olVlFakBtBqMpwB1b_v32ixCHWlCdh1rDkcUiLHmz5-IZL-7Zu_cWuXEKtZuS9ZYf2FYk2YVWG5of8OayyLBk7HdlxWdpyBW56xzeHJ3zUdoEXQSwrbjoyp3CrHwWeIgQTCqNz8u1mRgaZJ4oCTSghlawbSkUUSxYaaWWeaS9X4SpMDexArwFTKtIdPGQhcLyITS59oyOpPaEygzS4BXvNkafPrrhGiqSE5JP-kE8LNhuhpKN7NkyDLhqRCDmc14L9RlDj4T83W__X7B2YuTzqpRen_fMNmKWG8y6hZROmqvJFbyEsqfLtWvU-AJIV2DY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+Data-Located+Modification+for+the+Multilevel+Analysis+of+Miscategorized+Nominal+Response+with+Covariates+Subject+to+Measurement+Error&rft.jtitle=Mathematical+methods+of+statistics&rft.au=Ahangari%2C+Maryam&rft.au=Golalizadeh%2C+Mousa&rft.au=Ghahroodi%2C+Zahra+Rezaei&rft.date=2023-12-01&rft.issn=1066-5307&rft.eissn=1934-8045&rft.volume=32&rft.issue=4&rft.spage=223&rft.epage=240&rft_id=info:doi/10.3103%2FS1066530723040026&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1066530723040026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5307&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5307&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5307&client=summon |