Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error

In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process,...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods of statistics Vol. 32; no. 4; pp. 223 - 240
Main Authors Ahangari, Maryam, Golalizadeh, Mousa, Ghahroodi, Zahra Rezaei
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1066-5307
1934-8045
DOI10.3103/S1066530723040026

Cover

Loading…
Abstract In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure.
AbstractList In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure.
Author Ghahroodi, Zahra Rezaei
Ahangari, Maryam
Golalizadeh, Mousa
Author_xml – sequence: 1
  givenname: Maryam
  surname: Ahangari
  fullname: Ahangari, Maryam
  organization: Department of Statistics, Tarbiat Modares University
– sequence: 2
  givenname: Mousa
  surname: Golalizadeh
  fullname: Golalizadeh, Mousa
  email: golalizadeh@modares.ac.ir
  organization: Department of Statistics, Tarbiat Modares University
– sequence: 3
  givenname: Zahra Rezaei
  surname: Ghahroodi
  fullname: Ghahroodi, Zahra Rezaei
  organization: School of Mathematics, Statistics and Computer Science, University of Tehran
BookMark eNp1kE1LAzEQhoMo-PkDvAU8r042mzR7lPoJrYItXpfs7kRTtpuaZCv6K_zJplTwIJ5m4H2eYXgPyW7veiTklME5Z8AvZgykFBxGOYcCIJc75ICVvMgUFGI37SnONvk-OQxhAQAKGByQr2fd2VZH63p6paPOJq7REVs6da01ttkmxnkaX5FOhy7aDtfY0ctedx_BBuoMndqwkV6ct59JfXBLm1L6hGHl-oD03cZXOnZr7W3CAp0N9QKbSKOjU9Rh8LjEPtJr750_JntGdwFPfuYRmd9cz8d32eTx9n58OcmaXKqYmZGqFUjBihxakLzkwmBdGjPSRuUaRNOokZSSC11y1bKiFKrBopC1RqhbfkTOtmdX3r0NGGK1cINPX4cqL0HwQuYCEsW2VONdCB5NtfJ2qf1HxaDa9F796T05-dYJie1f0P9e_l_6BtcIiEc
Cites_doi 10.1093/biomet/86.4.843
10.1097/EDE.0b013e3182117c85
10.1080/01621459.1994.10476474
10.1201/9781420074086
10.1080/03610926.2014.887115
10.1007/s001800300132
10.1093/oxfordjournals.aje.a009251
10.1007/978-1-4684-0192-9
10.1016/j.csda.2012.07.018
10.1002/sim.7509
10.1201/9780203489437
10.1111/rssc.12081
10.1016/j.annepidem.2010.03.012
10.1111/j.0006-341X.2002.00675.x
10.1201/9781420010138
10.1080/03610918.2011.611312
10.1002/sim.8532
10.1093/comjnl/7.4.308
10.1002/sim.8073
10.1080/03610929908832292
10.1080/01621459.1998.10474106
10.1111/1541-0420.00077
10.1111/biom.12730
10.1201/9781420066586
10.1177/1471082X0700700303
10.1080/02664763.2019.1582613
10.1002/0471249688
10.1007/978-1-4939-6640-0
ContentType Journal Article
Copyright Allerton Press, Inc. 2023
Allerton Press, Inc. 2023.
Copyright_xml – notice: Allerton Press, Inc. 2023
– notice: Allerton Press, Inc. 2023.
DBID AAYXX
CITATION
JQ2
DOI 10.3103/S1066530723040026
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1934-8045
EndPage 240
ExternalDocumentID 10_3103_S1066530723040026
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
29M
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PQQKQ
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c268t-f78b80651420d063935feb9ff7af82a05cc8766635a938d14958ce446bae0bd3
IEDL.DBID U2A
ISSN 1066-5307
IngestDate Fri Jul 25 19:19:48 EDT 2025
Tue Jul 01 02:27:07 EDT 2025
Fri Feb 21 02:40:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords measurement error
multivariate Gauss–Hermite quadrature
nominal response
multinomial logit random effects regression model
misclassification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-f78b80651420d063935feb9ff7af82a05cc8766635a938d14958ce446bae0bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2905346250
PQPubID 43936
PageCount 18
ParticipantIDs proquest_journals_2905346250
crossref_primary_10_3103_S1066530723040026
springer_journals_10_3103_S1066530723040026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Mathematical methods of statistics
PublicationTitleAbbrev Math. Meth. Stat
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References WangN.LinX.GuttierrezR. G.A bias correction regression calibration approach in generalized linear mixed measurement error modelsCommunications in Statistics19992821723210.1080/03610929908832292
TorabiM.Likelihood inference in generalized linear mixed measurement error modelsComputational Statistics and Data Analysis201357549557298110810.1016/j.csda.2012.07.018
ShuD.YiG. Y.Weighted causal inference methods with mismeasured covariates and misclassified outcomesStatistics in Medicine20193818351854393482210.1002/sim.8073
BuonaccorsiJ. P.RomeoG.ThoresenM.Model-based bootstapping when correcting for measurement error with application to logistic regressionBiometrics201874135144377793410.1111/biom.12730
PaulinoC. D.SoaresP.NeuhausJ.Binomial regression with misclassificationBiometrics200359670675200427210.1111/1541-0420.00077
XieX.XueX.StricklerH. D.Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limitsStatistics in Medicine201737119136373806610.1002/sim.7509
JaeckelP.A Note on Multivariate Gauss-Hermite Quadrature2005LondonABN-Amro
McCullachC. E.SearleS. R.NeuhausJ. M.Generalized, Linear, and Mixed Models2008LondonJohn Wiley & Sons
WangN.LinX.GuttierrezR. G.CarrollR. J.Bias analysis and SIMEX approach in generalized linear mixed measurement error modelsJournal of American Statistical Association199893249261161463610.1080/01621459.1998.10474106
StroupW. W.Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications2012Boca RatonCRC Press
RoyS.Accounting for response misclassification and covariate measurement error using a random effect logit modelCommunications in Statistics-Simulation and Computation20124116231636292400710.1080/03610918.2011.611312
NeuhausJ. M.Analysis of clustered and longitudinal binary data subject to response misclassificationBiometrics200258675683192612010.1111/j.0006-341X.2002.00675.x
LylesR. H.TangL.SuperakH. M.KingC. C.CelentanoD. D.LoY.SobelJ. D.Validation data-based adjustments for outcome misclassification in logistic regression: An illustrationEpidemiology (Cambridge, Mass.)20112258910.1097/EDE.0b013e3182117c85
GerlachR.StameyJ.Bayesian model selection for logistic regression with misclassified outcomesStatistical Modelling20077255273274999310.1177/1471082X0700700303
NeuhausJ. M.Bias and efficiency loss due to misclassified responses in binary regressionBiometrika199986843855174198110.1093/biomet/86.4.843
KeoghR. H.ShawP. A.GustafsonP.CarrollR. J.DeffnerV.DoddK. W.KchenhoffH.ToozeJ. A.WallaceM. P.KipnisV.FreedmanL. S.STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-basic theory and simple methods of adjustmentStatistics in Medicine20203921972231410876010.1002/sim.8532
WuL.Mixed Effects Models for Complex Data2009Boca RatonCRC Press10.1201/9781420074086
RoyS.Analysis of ordered probit model with surrogate response data and measurement error in covariatesCommunications in Statistics-Theory and Methods20164526652678348334110.1080/03610926.2014.887115
AgrestiA.Categorical Data Analysis2002New YorkJohn Wiley and Sons10.1002/0471249688
MagderL. S.HughesJ. P.Logistic regression when the outcome is measured with uncertaintyAmerican Journal of Epidemiology199714619520310.1093/oxfordjournals.aje.a009251
MolenberghsG.VerbekeG.Models for Discrete Longitudinal Data2006New YorkSpringer
TannerM. A.Tools for Statistical Inference: Observed Data and Data Augmentation1993New YorkSpringer10.1007/978-1-4684-0192-9
ChengD.BranscumA. J.StameyJ. D.Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studiesAnnals of Epidemiology20102056256710.1016/j.annepidem.2010.03.012
DiggleP. J.LiangK. Y.ZegerS. L.Analysis of Longitudinal Data1994OxfordOxford University Press
McCullachC. E.Maximum likelihood variance components estimation for binary dataJournal of the American Statistical Association19948933033510.1080/01621459.1994.10476474
NelderJ. A.MeadR.A simplex algorithm for function minimizationComputer Journal19657308313336340910.1093/comjnl/7.4.308
BuonaccorsiJ. P.Measurement Error, Models, Methods, and Applications2010New YorkCRC Press10.1201/9781420066586
SkrondalA.Rabe-HeskethS.Generalized Latent Variable Modeling2004Boca RatonCRC Press10.1201/9780203489437
NaranjoL.PrezC. J.MartnJ.MutsvariT.LesaffreE.A Bayesian approach for misclassified ordinal response dataJournal of Applied Statistics20194621982215398355610.1080/02664763.2019.1582613
YiG. Y.Statistical Analysis with Measurement Error or Misclassification2017New YorkSpringer10.1007/978-1-4939-6640-0
PanJ.ThompsonR.Gauss-hermite quadrature approximation estimation in generalized linear mixed modelsComputational Statistics2003185778196524410.1007/s001800300132
TangL.LylesR. H.KingC. C.HoganJ. W.LoY.Regression analysis for differentially misclassified correlated binary outcomesJournal of the Royal Statistical Society. Series C, Applied Statistics201564433449332545710.1111/rssc.12081
CarrollR. J.RuppertD.StefanskiL. A.CrainiceanuC. M.Measurement Error in Nonlinear Models: A Modern Perspective2006Boca RatonCRC Press10.1201/9781420010138
A. Skrondal (5038_CR30) 2004
C. D. Paulino (5038_CR17) 2003; 59
J. A. Nelder (5038_CR33) 1965; 7
J. P. Buonaccorsi (5038_CR9) 2018; 74
S. Roy (5038_CR25) 2016; 45
X. Xie (5038_CR12) 2017; 37
A. Agresti (5038_CR29) 2002
W. W. Stroup (5038_CR4) 2012
D. Cheng (5038_CR22) 2010; 20
M. Torabi (5038_CR11) 2013; 57
G. Molenberghs (5038_CR31) 2006
C. E. McCullach (5038_CR2) 1994; 89
N. Wang (5038_CR7) 1999; 28
R. H. Lyles (5038_CR20) 2011; 22
J. P. Buonaccorsi (5038_CR26) 2010
J. Pan (5038_CR32) 2003; 18
L. S. Magder (5038_CR14) 1997; 146
J. M. Neuhaus (5038_CR16) 2002; 58
J. M. Neuhaus (5038_CR15) 1999; 86
L. Wu (5038_CR3) 2009
R. H. Keogh (5038_CR27) 2020; 39
R. Gerlach (5038_CR18) 2007; 7
S. Roy (5038_CR24) 2012; 41
P. Jaeckel (5038_CR28) 2005
P. J. Diggle (5038_CR5) 1994
M. A. Tanner (5038_CR6) 1993
N. Wang (5038_CR8) 1998; 93
G. Y. Yi (5038_CR13) 2017
L. Tang (5038_CR19) 2015; 64
D. Shu (5038_CR23) 2019; 38
R. J. Carroll (5038_CR10) 2006
L. Naranjo (5038_CR21) 2019; 46
C. E. McCullach (5038_CR1) 2008
References_xml – reference: BuonaccorsiJ. P.Measurement Error, Models, Methods, and Applications2010New YorkCRC Press10.1201/9781420066586
– reference: KeoghR. H.ShawP. A.GustafsonP.CarrollR. J.DeffnerV.DoddK. W.KchenhoffH.ToozeJ. A.WallaceM. P.KipnisV.FreedmanL. S.STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-basic theory and simple methods of adjustmentStatistics in Medicine20203921972231410876010.1002/sim.8532
– reference: McCullachC. E.SearleS. R.NeuhausJ. M.Generalized, Linear, and Mixed Models2008LondonJohn Wiley & Sons
– reference: RoyS.Accounting for response misclassification and covariate measurement error using a random effect logit modelCommunications in Statistics-Simulation and Computation20124116231636292400710.1080/03610918.2011.611312
– reference: TorabiM.Likelihood inference in generalized linear mixed measurement error modelsComputational Statistics and Data Analysis201357549557298110810.1016/j.csda.2012.07.018
– reference: CarrollR. J.RuppertD.StefanskiL. A.CrainiceanuC. M.Measurement Error in Nonlinear Models: A Modern Perspective2006Boca RatonCRC Press10.1201/9781420010138
– reference: PaulinoC. D.SoaresP.NeuhausJ.Binomial regression with misclassificationBiometrics200359670675200427210.1111/1541-0420.00077
– reference: NeuhausJ. M.Analysis of clustered and longitudinal binary data subject to response misclassificationBiometrics200258675683192612010.1111/j.0006-341X.2002.00675.x
– reference: WangN.LinX.GuttierrezR. G.CarrollR. J.Bias analysis and SIMEX approach in generalized linear mixed measurement error modelsJournal of American Statistical Association199893249261161463610.1080/01621459.1998.10474106
– reference: WuL.Mixed Effects Models for Complex Data2009Boca RatonCRC Press10.1201/9781420074086
– reference: TangL.LylesR. H.KingC. C.HoganJ. W.LoY.Regression analysis for differentially misclassified correlated binary outcomesJournal of the Royal Statistical Society. Series C, Applied Statistics201564433449332545710.1111/rssc.12081
– reference: DiggleP. J.LiangK. Y.ZegerS. L.Analysis of Longitudinal Data1994OxfordOxford University Press
– reference: NaranjoL.PrezC. J.MartnJ.MutsvariT.LesaffreE.A Bayesian approach for misclassified ordinal response dataJournal of Applied Statistics20194621982215398355610.1080/02664763.2019.1582613
– reference: MolenberghsG.VerbekeG.Models for Discrete Longitudinal Data2006New YorkSpringer
– reference: GerlachR.StameyJ.Bayesian model selection for logistic regression with misclassified outcomesStatistical Modelling20077255273274999310.1177/1471082X0700700303
– reference: LylesR. H.TangL.SuperakH. M.KingC. C.CelentanoD. D.LoY.SobelJ. D.Validation data-based adjustments for outcome misclassification in logistic regression: An illustrationEpidemiology (Cambridge, Mass.)20112258910.1097/EDE.0b013e3182117c85
– reference: JaeckelP.A Note on Multivariate Gauss-Hermite Quadrature2005LondonABN-Amro
– reference: AgrestiA.Categorical Data Analysis2002New YorkJohn Wiley and Sons10.1002/0471249688
– reference: SkrondalA.Rabe-HeskethS.Generalized Latent Variable Modeling2004Boca RatonCRC Press10.1201/9780203489437
– reference: StroupW. W.Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications2012Boca RatonCRC Press
– reference: YiG. Y.Statistical Analysis with Measurement Error or Misclassification2017New YorkSpringer10.1007/978-1-4939-6640-0
– reference: ChengD.BranscumA. J.StameyJ. D.Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studiesAnnals of Epidemiology20102056256710.1016/j.annepidem.2010.03.012
– reference: NelderJ. A.MeadR.A simplex algorithm for function minimizationComputer Journal19657308313336340910.1093/comjnl/7.4.308
– reference: ShuD.YiG. Y.Weighted causal inference methods with mismeasured covariates and misclassified outcomesStatistics in Medicine20193818351854393482210.1002/sim.8073
– reference: TannerM. A.Tools for Statistical Inference: Observed Data and Data Augmentation1993New YorkSpringer10.1007/978-1-4684-0192-9
– reference: BuonaccorsiJ. P.RomeoG.ThoresenM.Model-based bootstapping when correcting for measurement error with application to logistic regressionBiometrics201874135144377793410.1111/biom.12730
– reference: RoyS.Analysis of ordered probit model with surrogate response data and measurement error in covariatesCommunications in Statistics-Theory and Methods20164526652678348334110.1080/03610926.2014.887115
– reference: WangN.LinX.GuttierrezR. G.A bias correction regression calibration approach in generalized linear mixed measurement error modelsCommunications in Statistics19992821723210.1080/03610929908832292
– reference: McCullachC. E.Maximum likelihood variance components estimation for binary dataJournal of the American Statistical Association19948933033510.1080/01621459.1994.10476474
– reference: NeuhausJ. M.Bias and efficiency loss due to misclassified responses in binary regressionBiometrika199986843855174198110.1093/biomet/86.4.843
– reference: MagderL. S.HughesJ. P.Logistic regression when the outcome is measured with uncertaintyAmerican Journal of Epidemiology199714619520310.1093/oxfordjournals.aje.a009251
– reference: XieX.XueX.StricklerH. D.Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limitsStatistics in Medicine201737119136373806610.1002/sim.7509
– reference: PanJ.ThompsonR.Gauss-hermite quadrature approximation estimation in generalized linear mixed modelsComputational Statistics2003185778196524410.1007/s001800300132
– volume: 86
  start-page: 843
  year: 1999
  ident: 5038_CR15
  publication-title: Biometrika
  doi: 10.1093/biomet/86.4.843
– volume: 22
  start-page: 589
  year: 2011
  ident: 5038_CR20
  publication-title: Epidemiology (Cambridge, Mass.)
  doi: 10.1097/EDE.0b013e3182117c85
– volume: 89
  start-page: 330
  year: 1994
  ident: 5038_CR2
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1994.10476474
– volume-title: Mixed Effects Models for Complex Data
  year: 2009
  ident: 5038_CR3
  doi: 10.1201/9781420074086
– volume: 45
  start-page: 2665
  year: 2016
  ident: 5038_CR25
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610926.2014.887115
– volume: 18
  start-page: 57
  year: 2003
  ident: 5038_CR32
  publication-title: Computational Statistics
  doi: 10.1007/s001800300132
– volume: 146
  start-page: 195
  year: 1997
  ident: 5038_CR14
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a009251
– volume-title: Tools for Statistical Inference: Observed Data and Data Augmentation
  year: 1993
  ident: 5038_CR6
  doi: 10.1007/978-1-4684-0192-9
– volume: 57
  start-page: 549
  year: 2013
  ident: 5038_CR11
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.07.018
– volume: 37
  start-page: 119
  year: 2017
  ident: 5038_CR12
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7509
– volume-title: Generalized Latent Variable Modeling
  year: 2004
  ident: 5038_CR30
  doi: 10.1201/9780203489437
– volume: 64
  start-page: 433
  year: 2015
  ident: 5038_CR19
  publication-title: Journal of the Royal Statistical Society. Series C, Applied Statistics
  doi: 10.1111/rssc.12081
– volume: 20
  start-page: 562
  year: 2010
  ident: 5038_CR22
  publication-title: Annals of Epidemiology
  doi: 10.1016/j.annepidem.2010.03.012
– volume: 58
  start-page: 675
  year: 2002
  ident: 5038_CR16
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00675.x
– volume-title: Measurement Error in Nonlinear Models: A Modern Perspective
  year: 2006
  ident: 5038_CR10
  doi: 10.1201/9781420010138
– volume-title: Models for Discrete Longitudinal Data
  year: 2006
  ident: 5038_CR31
– volume-title: Generalized, Linear, and Mixed Models
  year: 2008
  ident: 5038_CR1
– volume: 41
  start-page: 1623
  year: 2012
  ident: 5038_CR24
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2011.611312
– volume: 39
  start-page: 2197
  year: 2020
  ident: 5038_CR27
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8532
– volume: 7
  start-page: 308
  year: 1965
  ident: 5038_CR33
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.4.308
– volume: 38
  start-page: 1835
  year: 2019
  ident: 5038_CR23
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8073
– volume-title: A Note on Multivariate Gauss-Hermite Quadrature
  year: 2005
  ident: 5038_CR28
– volume-title: Analysis of Longitudinal Data
  year: 1994
  ident: 5038_CR5
– volume: 28
  start-page: 217
  year: 1999
  ident: 5038_CR7
  publication-title: Communications in Statistics
  doi: 10.1080/03610929908832292
– volume: 93
  start-page: 249
  year: 1998
  ident: 5038_CR8
  publication-title: Journal of American Statistical Association
  doi: 10.1080/01621459.1998.10474106
– volume: 59
  start-page: 670
  year: 2003
  ident: 5038_CR17
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00077
– volume-title: Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications
  year: 2012
  ident: 5038_CR4
– volume: 74
  start-page: 135
  year: 2018
  ident: 5038_CR9
  publication-title: Biometrics
  doi: 10.1111/biom.12730
– volume-title: Measurement Error, Models, Methods, and Applications
  year: 2010
  ident: 5038_CR26
  doi: 10.1201/9781420066586
– volume: 7
  start-page: 255
  year: 2007
  ident: 5038_CR18
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X0700700303
– volume: 46
  start-page: 2198
  year: 2019
  ident: 5038_CR21
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2019.1582613
– volume-title: Categorical Data Analysis
  year: 2002
  ident: 5038_CR29
  doi: 10.1002/0471249688
– volume-title: Statistical Analysis with Measurement Error or Misclassification
  year: 2017
  ident: 5038_CR13
  doi: 10.1007/978-1-4939-6640-0
SSID ssj0008010
Score 2.2656713
Snippet In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 223
SubjectTerms Error analysis
Hermite-Gaussian modes
Mathematics and Statistics
Measurement errors
Quadratures
Statistical inference
Statistical Theory and Methods
Statistics
Time dependence
Time measurement
Title Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error
URI https://link.springer.com/article/10.3103/S1066530723040026
https://www.proquest.com/docview/2905346250
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAPEWhVB6YQBZpEqfuWEEBAenASzBFSWyjSqhGaWDgV_CTuYsbKl4Dsx-D73z-vrvzHcBemKNZ7HY7XEe-4WFgUi57QnBB6uIrX3rVL_54GJ3dhuf34n76j3tSZ7vXIcnKUle80gsOrzsUJUCVJDcmUYd5WBBE3VGJb_3-p_lFk-tKEEQRp-kulPn7Fl8foxnC_BYUrd6akxVYnoJE1ndSXYU5PV6DpfizwupkDRYJJboiy-vwfodo2jVHYsdpmfJLS4lOisVWUSqQG0F4ynAHVv25faJkIVaXJGHWsHg0oUWPthi94dKhrdp9sSuXRKsZeWzZkX1Fck34lKHJIR8OKy2LZ45GNigKW2zAzcng5uiMT1st8NyPZMlNV2YUYu2EvqcItQTC6Iz8uamRfuqJPEezSegk7QVSEa2SuUYqmaXay1SwCY2xHestYEqFuouHLASO55HJZMfoUGpPqNQg9W3Cfn3kybMrqJEgESH5JD_k04RWLZRkercmid9DwxEib_OacFALajb852bb_5q9A4vUWd5lrrSgURYvehfxR5m1YaF_-nAxaFd69wG8PNKb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xGIAB8RTl6YEJZJEmceqOVQEVaDpAQWxREtsICdUoDQz8Cn4yd3FDxWtgtuPB53z-vrvzHcBhmCMstlpNriPf8DAwKZdtIbig4-IrX3rVK_54EPVuw8t7cT95xz2us93rkGSF1JWu9IKTmyZFCfBIkhuTpMMszCMXkJTHdet3PuEXIdeVIIgiTtNdKPP3Jb5eRlOG-S0oWt015yuwPCGJrOOsugozerQGS_FnhdXxGiwSS3RFltfh_Q7ZtGuOxE7TMuV9S4lOisVWUSqQG0F6ynAFVr25faJkIVaXJGHWsPhxTB892OLxDT8d2KrdF7t2SbSakceWde0rimvipwwhh3w4rLQsnjoa2VlR2GIDhudnw26PT1ot8NyPZMlNS2YUYm2GvqeItQTC6Iz8uamRfuqJPEfYJHaStgOpSFbJXKOUzFLtZSrYhLmRHektYEqFuoWbLASO55HJZNPoUGpPqNSg9G3AUb3lybMrqJGgECH7JD_s04Dd2ijJ5N8aJ34bgSNE3eY14Lg21HT4z8W2_zX7ABZ6w7if9C8GVzuwSF3mXRbLLsyVxYveQy5SZvvV2fsAMbDT-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYJAQHxCqGNQdOoGi6pZM5ImDE1hFiE7eqbRKEhCaoUzjwFXwydjNlxHbgnOUQO857tmMD7EYFmsVOx-c6DgyPQpNx2RWCC1KXQAXSq3_xJ_345DY6uxf3oz6nwybbvQlJuj8NVKVpULWflWnXHNML29c-RQxQPcmlSTRiEqbRGvuk1rfBwacpRvPryhHEMafpLqz5-xZfH6Yx2vwWIK3fnd4CzI8AIztwEl6ECT1Ygrnks9rqcAlmCTG6gsvL8H6HyNo1SmJHWZXxC0tJT4olVlFakBtBqMpwB1b_v32ixCHWlCdh1rDkcUiLHmz5-IZL-7Zu_cWuXEKtZuS9ZYf2FYk2YVWG5of8OayyLBk7HdlxWdpyBW56xzeHJ3zUdoEXQSwrbjoyp3CrHwWeIgQTCqNz8u1mRgaZJ4oCTSghlawbSkUUSxYaaWWeaS9X4SpMDexArwFTKtIdPGQhcLyITS59oyOpPaEygzS4BXvNkafPrrhGiqSE5JP-kE8LNhuhpKN7NkyDLhqRCDmc14L9RlDj4T83W__X7B2YuTzqpRen_fMNmKWG8y6hZROmqvJFbyEsqfLtWvU-AJIV2DY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+Data-Located+Modification+for+the+Multilevel+Analysis+of+Miscategorized+Nominal+Response+with+Covariates+Subject+to+Measurement+Error&rft.jtitle=Mathematical+methods+of+statistics&rft.au=Ahangari%2C+Maryam&rft.au=Golalizadeh%2C+Mousa&rft.au=Ghahroodi%2C+Zahra+Rezaei&rft.date=2023-12-01&rft.issn=1066-5307&rft.eissn=1934-8045&rft.volume=32&rft.issue=4&rft.spage=223&rft.epage=240&rft_id=info:doi/10.3103%2FS1066530723040026&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1066530723040026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5307&client=summon