Multi-Scale Explicit Matching and Mutual Subject Teacher Learning for Generalizable Person Re-Identification

Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 9; pp. 8881 - 8895
Main Authors Chen, Kaixiang, Fang, Pengfei, Ye, Zi, Zhang, Liyan
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via the image-matching paradigm, which searches for the local correspondences in the feature maps. A common practice of employing pixel-wise matching is typically used to ensure efficient matching. This, however, makes the matching susceptible to deviations caused by identity-irrelevant pixel features. On the other hand, patch-wise matching also demonstrates that it will disregard the spatial orientation of pedestrians and amplify the impact of noise. To address the mentioned issues, this paper proposes the Multi-Scale Query-Adaptive Convolution (QAConv-MS) framework, which encodes patches in the feature maps to pixels using template kernels of various scales. This enables the matching process to enjoy broader receptive fields and robustness to orientations and noises. To stabilize the matching process and facilitate the independent learning of each sub-kernel within the template kernels to capture diverse local patterns, we propose the OrthoGonal Norm (OGNorm), which consists of two orthogonal normalizations. We also present Mutual Subject Teacher Learning (MSTL) to address the potential issues of overconfidence and overfitting in the model. MSTL allows two models to individually select the most challenging data for training, resulting in more dependable soft labels that can provide mutual supervision. Extensive experiments conducted in both single-source and multi-source setups offer compelling evidence of our framework's generalization and competitiveness.
AbstractList Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via the image-matching paradigm, which searches for the local correspondences in the feature maps. A common practice of employing pixel-wise matching is typically used to ensure efficient matching. This, however, makes the matching susceptible to deviations caused by identity-irrelevant pixel features. On the other hand, patch-wise matching also demonstrates that it will disregard the spatial orientation of pedestrians and amplify the impact of noise. To address the mentioned issues, this paper proposes the Multi-Scale Query-Adaptive Convolution (QAConv-MS) framework, which encodes patches in the feature maps to pixels using template kernels of various scales. This enables the matching process to enjoy broader receptive fields and robustness to orientations and noises. To stabilize the matching process and facilitate the independent learning of each sub-kernel within the template kernels to capture diverse local patterns, we propose the OrthoGonal Norm (OGNorm), which consists of two orthogonal normalizations. We also present Mutual Subject Teacher Learning (MSTL) to address the potential issues of overconfidence and overfitting in the model. MSTL allows two models to individually select the most challenging data for training, resulting in more dependable soft labels that can provide mutual supervision. Extensive experiments conducted in both single-source and multi-source setups offer compelling evidence of our framework's generalization and competitiveness.
Author Fang, Pengfei
Chen, Kaixiang
Ye, Zi
Zhang, Liyan
Author_xml – sequence: 1
  givenname: Kaixiang
  orcidid: 0000-0001-6093-951X
  surname: Chen
  fullname: Chen, Kaixiang
  email: ckx19990723@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Pengfei
  orcidid: 0000-0001-8939-0460
  surname: Fang
  fullname: Fang, Pengfei
  email: fangpengfei@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Zi
  surname: Ye
  fullname: Ye, Zi
  email: yuuuileaf@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Liyan
  orcidid: 0000-0002-1549-3317
  surname: Zhang
  fullname: Zhang, Liyan
  email: zhangliyan@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNp9kMtOwzAQRS0EEm3hBxAL_0CKX0nsJapKqdQKRAPbyHEn1JVxKseRgK8nfSwQC1ZzF3PujM4QnfvGA0I3lIwpJequmKzeijEjTIw5l4wzdoYGNE1lwhhJz_tMUppIRtNLNGzbLSFUSJEPkFt2LtpkZbQDPP3cOWtsxEsdzcb6d6z9Gi-72GmHV121BRNxAdpsIOAF6OD3O3UT8Aw8BO3st676nmcIbePxCyTzNfhoa2t0tI2_Qhe1di1cn-YIvT5Mi8ljsniazSf3i8SwTMZkrWiV13XFlCAkE6kRUossZ1oApZkiTMnMCJpKoTOoVJ0ryrmoFNSVIkopPkLs2GtC07YB6nIX7IcOXyUl5d5XefBV7n2VJ189JP9AvYnD2zFo6_5Hb4-oBYBft4QkglP-A4-me38
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TIFS_2025_3543040
crossref_primary_10_1007_s44267_024_00062_x
Cites_doi 10.1145/3394171.3413815
10.1109/ICCV51070.2023.01036
10.1109/ICCV.2015.531
10.1109/ICCV48922.2021.01168
10.1109/CVPR52729.2023.02179
10.1109/ICCV.2017.405
10.1109/CVPR.2018.00474
10.1109/TMM.2023.3283878
10.1109/CVPR52688.2022.00716
10.1609/aaai.v36i2.20065
10.1109/CVPR52688.2022.00721
10.1109/CVPR46437.2021.01588
10.1109/CVPR.2017.389
10.1109/TCSVT.2021.3118060
10.1109/CVPR46437.2021.00621
10.1109/TMM.2022.3183393
10.1109/TPAMI.2023.3312302
10.1109/ICCV51070.2023.01452
10.48550/ARXIV.1706.03762
10.1109/TCSVT.2021.3058111
10.1109/TIP.2022.3217697
10.1109/TPAMI.2013.210
10.1109/CVPR.2019.00081
10.1109/TPAMI.2021.3054775
10.1109/tpami.2023.3346168
10.1109/WACV56688.2023.00166
10.1109/CVPR.2014.27
10.1109/ICME.2018.8486568
10.5555/3495724.3496673
10.1007/978-3-031-19781-9_22
10.1007/978-3-030-01225-0_30
10.1109/TMM.2023.3312939
10.1109/TIP.2023.3263112
10.1109/CVPR46437.2021.00343
10.1007/978-3-030-01225-0_29
10.1109/ICCV.2015.133
10.1109/TCSVT.2022.3142771
10.1109/CVPR52688.2022.00252
10.1109/TCSVT.2020.3043026
10.1109/CVPR46437.2021.00292
10.1109/CVPR.2009.5206848
10.1109/TCSVT.2023.3262832
10.1007/978-3-031-19781-9_17
10.1109/CVPR42600.2020.00321
10.1109/CVPR.2018.00016
10.1109/CVPR42600.2020.00648
10.1007/978-3-030-58621-8_27
10.1109/ICCV.2017.113
10.1007/978-3-031-19781-9_13
10.1109/TCSVT.2023.3285046
10.1109/CVPR52688.2022.00715
10.1609/aaai.v37i1.25180
10.1109/CVPR52688.2022.00471
10.1109/ICME55011.2023.00411
10.1109/TNNLS.2020.3015992
10.1109/ICCV48922.2021.01474
10.1109/TMM.2023.3268369
10.1109/TIP.2020.3026625
10.1109/tcsvt.2024.3395411
10.1109/CVPR.2016.90
10.1109/TIFS.2022.3218449
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSVT.2024.3382322
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 8895
ExternalDocumentID 10_1109_TCSVT_2024_3382322
10480431
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20230031
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 62172212
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c268t-d91b7ffb29400645c48a4672a4e116902986c41584a6eb9f791334b9efb909993
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Tue Jul 01 00:41:26 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-d91b7ffb29400645c48a4672a4e116902986c41584a6eb9f791334b9efb909993
ORCID 0000-0001-6093-951X
0000-0002-1549-3317
0000-0001-8939-0460
PageCount 15
ParticipantIDs crossref_primary_10_1109_TCSVT_2024_3382322
crossref_citationtrail_10_1109_TCSVT_2024_3382322
ieee_primary_10480431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Zhou (ref32)
ref51
ref50
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Xiao (ref46) 2016
ref3
ref6
ref5
Li (ref21)
Ge (ref14)
ref40
ref35
ref34
Han (ref68)
ref36
ref31
ref30
ref33
Yu (ref37) 2021
ref2
ref1
ref39
ref38
Liao (ref29); 34
ref71
ref70
Finn (ref42)
ref24
ref67
ref26
ref25
ref69
ref64
ref63
ref22
ref66
ref65
ref28
ref27
Jia (ref23)
Ang (ref20)
ref60
ref62
ref61
References_xml – year: 2021
  ident: ref37
  article-title: Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
  publication-title: arXiv:2105.12355
– ident: ref48
  doi: 10.1145/3394171.3413815
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref21
  article-title: Uncertainty modeling for out-of-distribution generalization
– ident: ref50
  doi: 10.1109/ICCV51070.2023.01036
– ident: ref66
  doi: 10.1109/ICCV.2015.531
– ident: ref69
  doi: 10.1109/ICCV48922.2021.01168
– ident: ref70
  doi: 10.1109/CVPR52729.2023.02179
– ident: ref44
  doi: 10.1109/ICCV.2017.405
– ident: ref31
  doi: 10.1109/CVPR.2018.00474
– ident: ref22
  doi: 10.1109/TMM.2023.3283878
– ident: ref11
  doi: 10.1109/CVPR52688.2022.00716
– ident: ref40
  doi: 10.1609/aaai.v36i2.20065
– ident: ref17
  doi: 10.1109/CVPR52688.2022.00721
– ident: ref39
  doi: 10.1109/CVPR46437.2021.01588
– ident: ref51
  doi: 10.1109/CVPR.2017.389
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref14
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
– ident: ref15
  doi: 10.1109/TCSVT.2021.3118060
– ident: ref35
  doi: 10.1109/CVPR46437.2021.00621
– ident: ref33
  doi: 10.1109/TMM.2022.3183393
– ident: ref67
  doi: 10.1109/TPAMI.2023.3312302
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref52
  doi: 10.1109/ICCV51070.2023.01452
– ident: ref18
  doi: 10.48550/ARXIV.1706.03762
– year: 2016
  ident: ref46
  article-title: Joint detection and identification feature learning for person search
  publication-title: arXiv:1604.01850
– ident: ref49
  doi: 10.1109/TCSVT.2021.3058111
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref32
  article-title: Domain generalization with MixStyle
– ident: ref71
  doi: 10.1109/TIP.2022.3217697
– ident: ref1
  doi: 10.1109/TPAMI.2013.210
– ident: ref34
  doi: 10.1109/CVPR.2019.00081
– ident: ref8
  doi: 10.1109/TPAMI.2021.3054775
– ident: ref9
  doi: 10.1109/tpami.2023.3346168
– ident: ref63
  doi: 10.1109/WACV56688.2023.00166
– ident: ref45
  doi: 10.1109/CVPR.2014.27
– ident: ref65
  doi: 10.1109/ICME.2018.8486568
– ident: ref13
  doi: 10.5555/3495724.3496673
– ident: ref41
  doi: 10.1007/978-3-031-19781-9_22
– ident: ref58
  doi: 10.1007/978-3-030-01225-0_30
– start-page: 373
  volume-title: Proc. BMVC
  ident: ref20
  article-title: DEX: Domain embedding expansion for generalized person re-identification
– ident: ref53
  doi: 10.1109/TMM.2023.3312939
– ident: ref54
  doi: 10.1109/TIP.2023.3263112
– ident: ref26
  doi: 10.1109/CVPR46437.2021.00343
– ident: ref24
  doi: 10.1007/978-3-030-01225-0_29
– ident: ref43
  doi: 10.1109/ICCV.2015.133
– ident: ref3
  doi: 10.1109/TCSVT.2022.3142771
– ident: ref28
  doi: 10.1109/CVPR52688.2022.00252
– ident: ref6
  doi: 10.1109/TCSVT.2020.3043026
– ident: ref60
  doi: 10.1109/CVPR46437.2021.00292
– ident: ref57
  doi: 10.1109/CVPR.2009.5206848
– ident: ref55
  doi: 10.1109/TCSVT.2023.3262832
– ident: ref27
  doi: 10.1007/978-3-031-19781-9_17
– start-page: 22066
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  ident: ref68
  article-title: Clothing-change feature augmentation for person re-identification
– ident: ref25
  doi: 10.1109/CVPR42600.2020.00321
– ident: ref47
  doi: 10.1109/CVPR.2018.00016
– ident: ref59
  doi: 10.1109/CVPR42600.2020.00648
– ident: ref16
  doi: 10.1007/978-3-030-58621-8_27
– ident: ref10
  doi: 10.1109/ICCV.2017.113
– ident: ref36
  doi: 10.1007/978-3-031-19781-9_13
– ident: ref38
  doi: 10.1109/TCSVT.2023.3285046
– ident: ref5
  doi: 10.1109/CVPR52688.2022.00715
– volume: 34
  start-page: 1992
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NlPS)
  ident: ref29
  article-title: TransMatcher: Deep image matching through transformers for generalizable person re-identification
– ident: ref64
  doi: 10.1609/aaai.v37i1.25180
– ident: ref61
  doi: 10.1109/CVPR52688.2022.00471
– ident: ref19
  doi: 10.1109/ICME55011.2023.00411
– ident: ref2
  doi: 10.1109/TNNLS.2020.3015992
– ident: ref4
  doi: 10.1109/ICCV48922.2021.01474
– ident: ref12
  doi: 10.1109/TMM.2023.3268369
– ident: ref7
  doi: 10.1109/TIP.2020.3026625
– ident: ref56
  doi: 10.1109/tcsvt.2024.3395411
– start-page: 117
  volume-title: Proc. BMVC
  ident: ref23
  article-title: Frustratingly easy person re-identification: Generalizing person Re-ID in practice
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– ident: ref62
  doi: 10.1109/TIFS.2022.3218449
SSID ssj0014847
Score 2.4574225
Snippet Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8881
SubjectTerms Data models
domain generalization
Feature extraction
Identification of persons
multi-scale
mutual-teacher
Pedestrians
Person re-identification
Protocols
Task analysis
Training
Title Multi-Scale Explicit Matching and Mutual Subject Teacher Learning for Generalizable Person Re-Identification
URI https://ieeexplore.ieee.org/document/10480431
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYM3SW2z9CNHGY4hbIjbZLfStIkMRyfSXvzrfS_NxhQUb6UkJfB7zfv-PUJuEhlnIvYLFoTKMGHikIFSCFhkCoUGBqgojEOOxtFwJh7n4dw1q9teGK21LT7THj7aXH6xymsMlcEfLhIkg2mRFnhuTbPWJmUgEjtNDOyFgCWgyNYdMr68m_YnL1PwBbnwepj34vybFtoaq2K1yuCAjNfnaYpJ3ry6Ul7--YOq8d8HPiT7zr6k941AHJEdXR6TvS3WwROytE23bALoaIo1eIt8UdER3MkYjaJZWdBRjW0lFG4VDNNQR_tMHRnrKwVLlzrCaqwKg-88WcudPmvWtP4aFwvskNngYdofMjd0geU8SipWyEDFxiiOE9MjEeYiyeAy5ZnQAabUuEyiHLR-IrJIK2liCV6uUFIbJdHa7J2Sdrkq9RmhXEamp0AGCl8IhRlNkYVxEfMoNrwIgy4J1iCkuWMkx8EYy9R6Jr5MLXApApc64LrkdrPnveHj-HN1B0HZWtngcf7L-wuyi9ubGrJL0q4-an0FRkelrq2wfQFlhNDk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rBZ8X6zMGbpHbT7CNHKZaqbRHbSm_LZjeRYmlFdi_-emeyaamC4m1ZsiHwZTOTmfm-IeQqkmEiwkbGPF8ZJkzoMzAKHgtMptDBABOFccheP-iMxMPYHzuyuuXCaK1t8Zmu46PN5WfztMBQGfzhIkIxmHWyAYbf90q61jJpICLbTww8Bo9FYMoWHJmGvBm2Bi9DuA1yUW9i5ovzb3ZopbGKtSvtXdJfrKgsJ3mrF7mqp58_xBr_veQ9suM8THpbbol9sqZnB2R7RXfwkEwt7ZYNAB9NsQpvkk5y2oNTGeNRNJlltFcgsYTCuYKBGuqEn6mTY32l4OtSJ1mNdWEwz5P13emzZiX517hoYJWM2nfDVoe5tgss5UGUs0x6KjRGceyZHgg_FVECxylPhPYwqcZlFKRg9yORBFpJE0q45woltVES_c3mEanM5jN9TCiXgWkq2AVZQwiFOU2R-GEW8iA0PPO9GvEWIMSp0yTH1hjT2N5NGjK2wMUIXOyAq5Hr5TfvpSLHn6OrCMrKyBKPk1_eX5LNzrDXjbv3_cdTsoVTlRVlZ6SSfxT6HFyQXF3YjfcFd1TULQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Explicit+Matching+and+Mutual+Subject+Teacher+Learning+for+Generalizable+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Kaixiang&rft.au=Fang%2C+Pengfei&rft.au=Ye%2C+Zi&rft.au=Zhang%2C+Liyan&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=9&rft.spage=8881&rft.epage=8895&rft_id=info:doi/10.1109%2FTCSVT.2024.3382322&rft.externalDocID=10480431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon