Multi-Scale Explicit Matching and Mutual Subject Teacher Learning for Generalizable Person Re-Identification
Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 34; no. 9; pp. 8881 - 8895 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via the image-matching paradigm, which searches for the local correspondences in the feature maps. A common practice of employing pixel-wise matching is typically used to ensure efficient matching. This, however, makes the matching susceptible to deviations caused by identity-irrelevant pixel features. On the other hand, patch-wise matching also demonstrates that it will disregard the spatial orientation of pedestrians and amplify the impact of noise. To address the mentioned issues, this paper proposes the Multi-Scale Query-Adaptive Convolution (QAConv-MS) framework, which encodes patches in the feature maps to pixels using template kernels of various scales. This enables the matching process to enjoy broader receptive fields and robustness to orientations and noises. To stabilize the matching process and facilitate the independent learning of each sub-kernel within the template kernels to capture diverse local patterns, we propose the OrthoGonal Norm (OGNorm), which consists of two orthogonal normalizations. We also present Mutual Subject Teacher Learning (MSTL) to address the potential issues of overconfidence and overfitting in the model. MSTL allows two models to individually select the most challenging data for training, resulting in more dependable soft labels that can provide mutual supervision. Extensive experiments conducted in both single-source and multi-source setups offer compelling evidence of our framework's generalization and competitiveness. |
---|---|
AbstractList | Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which enables the direct deployment of pre-trained models in unseen and real scenarios. Recent works have made significant efforts in this task via the image-matching paradigm, which searches for the local correspondences in the feature maps. A common practice of employing pixel-wise matching is typically used to ensure efficient matching. This, however, makes the matching susceptible to deviations caused by identity-irrelevant pixel features. On the other hand, patch-wise matching also demonstrates that it will disregard the spatial orientation of pedestrians and amplify the impact of noise. To address the mentioned issues, this paper proposes the Multi-Scale Query-Adaptive Convolution (QAConv-MS) framework, which encodes patches in the feature maps to pixels using template kernels of various scales. This enables the matching process to enjoy broader receptive fields and robustness to orientations and noises. To stabilize the matching process and facilitate the independent learning of each sub-kernel within the template kernels to capture diverse local patterns, we propose the OrthoGonal Norm (OGNorm), which consists of two orthogonal normalizations. We also present Mutual Subject Teacher Learning (MSTL) to address the potential issues of overconfidence and overfitting in the model. MSTL allows two models to individually select the most challenging data for training, resulting in more dependable soft labels that can provide mutual supervision. Extensive experiments conducted in both single-source and multi-source setups offer compelling evidence of our framework's generalization and competitiveness. |
Author | Fang, Pengfei Chen, Kaixiang Ye, Zi Zhang, Liyan |
Author_xml | – sequence: 1 givenname: Kaixiang orcidid: 0000-0001-6093-951X surname: Chen fullname: Chen, Kaixiang email: ckx19990723@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Pengfei orcidid: 0000-0001-8939-0460 surname: Fang fullname: Fang, Pengfei email: fangpengfei@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Zi surname: Ye fullname: Ye, Zi email: yuuuileaf@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Liyan orcidid: 0000-0002-1549-3317 surname: Zhang fullname: Zhang, Liyan email: zhangliyan@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BookMark | eNp9kMtOwzAQRS0EEm3hBxAL_0CKX0nsJapKqdQKRAPbyHEn1JVxKseRgK8nfSwQC1ZzF3PujM4QnfvGA0I3lIwpJequmKzeijEjTIw5l4wzdoYGNE1lwhhJz_tMUppIRtNLNGzbLSFUSJEPkFt2LtpkZbQDPP3cOWtsxEsdzcb6d6z9Gi-72GmHV121BRNxAdpsIOAF6OD3O3UT8Aw8BO3st676nmcIbePxCyTzNfhoa2t0tI2_Qhe1di1cn-YIvT5Mi8ljsniazSf3i8SwTMZkrWiV13XFlCAkE6kRUossZ1oApZkiTMnMCJpKoTOoVJ0ryrmoFNSVIkopPkLs2GtC07YB6nIX7IcOXyUl5d5XefBV7n2VJ189JP9AvYnD2zFo6_5Hb4-oBYBft4QkglP-A4-me38 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TIFS_2025_3543040 crossref_primary_10_1007_s44267_024_00062_x |
Cites_doi | 10.1145/3394171.3413815 10.1109/ICCV51070.2023.01036 10.1109/ICCV.2015.531 10.1109/ICCV48922.2021.01168 10.1109/CVPR52729.2023.02179 10.1109/ICCV.2017.405 10.1109/CVPR.2018.00474 10.1109/TMM.2023.3283878 10.1109/CVPR52688.2022.00716 10.1609/aaai.v36i2.20065 10.1109/CVPR52688.2022.00721 10.1109/CVPR46437.2021.01588 10.1109/CVPR.2017.389 10.1109/TCSVT.2021.3118060 10.1109/CVPR46437.2021.00621 10.1109/TMM.2022.3183393 10.1109/TPAMI.2023.3312302 10.1109/ICCV51070.2023.01452 10.48550/ARXIV.1706.03762 10.1109/TCSVT.2021.3058111 10.1109/TIP.2022.3217697 10.1109/TPAMI.2013.210 10.1109/CVPR.2019.00081 10.1109/TPAMI.2021.3054775 10.1109/tpami.2023.3346168 10.1109/WACV56688.2023.00166 10.1109/CVPR.2014.27 10.1109/ICME.2018.8486568 10.5555/3495724.3496673 10.1007/978-3-031-19781-9_22 10.1007/978-3-030-01225-0_30 10.1109/TMM.2023.3312939 10.1109/TIP.2023.3263112 10.1109/CVPR46437.2021.00343 10.1007/978-3-030-01225-0_29 10.1109/ICCV.2015.133 10.1109/TCSVT.2022.3142771 10.1109/CVPR52688.2022.00252 10.1109/TCSVT.2020.3043026 10.1109/CVPR46437.2021.00292 10.1109/CVPR.2009.5206848 10.1109/TCSVT.2023.3262832 10.1007/978-3-031-19781-9_17 10.1109/CVPR42600.2020.00321 10.1109/CVPR.2018.00016 10.1109/CVPR42600.2020.00648 10.1007/978-3-030-58621-8_27 10.1109/ICCV.2017.113 10.1007/978-3-031-19781-9_13 10.1109/TCSVT.2023.3285046 10.1109/CVPR52688.2022.00715 10.1609/aaai.v37i1.25180 10.1109/CVPR52688.2022.00471 10.1109/ICME55011.2023.00411 10.1109/TNNLS.2020.3015992 10.1109/ICCV48922.2021.01474 10.1109/TMM.2023.3268369 10.1109/TIP.2020.3026625 10.1109/tcsvt.2024.3395411 10.1109/CVPR.2016.90 10.1109/TIFS.2022.3218449 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TCSVT.2024.3382322 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 8895 |
ExternalDocumentID | 10_1109_TCSVT_2024_3382322 10480431 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20230031 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 62172212 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c268t-d91b7ffb29400645c48a4672a4e116902986c41584a6eb9f791334b9efb909993 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Tue Jul 01 00:41:26 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Wed Aug 27 01:58:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-d91b7ffb29400645c48a4672a4e116902986c41584a6eb9f791334b9efb909993 |
ORCID | 0000-0001-6093-951X 0000-0002-1549-3317 0000-0001-8939-0460 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2024_3382322 crossref_citationtrail_10_1109_TCSVT_2024_3382322 ieee_primary_10480431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Zhou (ref32) ref51 ref50 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 Xiao (ref46) 2016 ref3 ref6 ref5 Li (ref21) Ge (ref14) ref40 ref35 ref34 Han (ref68) ref36 ref31 ref30 ref33 Yu (ref37) 2021 ref2 ref1 ref39 ref38 Liao (ref29); 34 ref71 ref70 Finn (ref42) ref24 ref67 ref26 ref25 ref69 ref64 ref63 ref22 ref66 ref65 ref28 ref27 Jia (ref23) Ang (ref20) ref60 ref62 ref61 |
References_xml | – year: 2021 ident: ref37 article-title: Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification publication-title: arXiv:2105.12355 – ident: ref48 doi: 10.1145/3394171.3413815 – start-page: 1 volume-title: Proc. ICLR ident: ref21 article-title: Uncertainty modeling for out-of-distribution generalization – ident: ref50 doi: 10.1109/ICCV51070.2023.01036 – ident: ref66 doi: 10.1109/ICCV.2015.531 – ident: ref69 doi: 10.1109/ICCV48922.2021.01168 – ident: ref70 doi: 10.1109/CVPR52729.2023.02179 – ident: ref44 doi: 10.1109/ICCV.2017.405 – ident: ref31 doi: 10.1109/CVPR.2018.00474 – ident: ref22 doi: 10.1109/TMM.2023.3283878 – ident: ref11 doi: 10.1109/CVPR52688.2022.00716 – ident: ref40 doi: 10.1609/aaai.v36i2.20065 – ident: ref17 doi: 10.1109/CVPR52688.2022.00721 – ident: ref39 doi: 10.1109/CVPR46437.2021.01588 – ident: ref51 doi: 10.1109/CVPR.2017.389 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref14 article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification – ident: ref15 doi: 10.1109/TCSVT.2021.3118060 – ident: ref35 doi: 10.1109/CVPR46437.2021.00621 – ident: ref33 doi: 10.1109/TMM.2022.3183393 – ident: ref67 doi: 10.1109/TPAMI.2023.3312302 – start-page: 1126 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref42 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref52 doi: 10.1109/ICCV51070.2023.01452 – ident: ref18 doi: 10.48550/ARXIV.1706.03762 – year: 2016 ident: ref46 article-title: Joint detection and identification feature learning for person search publication-title: arXiv:1604.01850 – ident: ref49 doi: 10.1109/TCSVT.2021.3058111 – start-page: 1 volume-title: Proc. ICLR ident: ref32 article-title: Domain generalization with MixStyle – ident: ref71 doi: 10.1109/TIP.2022.3217697 – ident: ref1 doi: 10.1109/TPAMI.2013.210 – ident: ref34 doi: 10.1109/CVPR.2019.00081 – ident: ref8 doi: 10.1109/TPAMI.2021.3054775 – ident: ref9 doi: 10.1109/tpami.2023.3346168 – ident: ref63 doi: 10.1109/WACV56688.2023.00166 – ident: ref45 doi: 10.1109/CVPR.2014.27 – ident: ref65 doi: 10.1109/ICME.2018.8486568 – ident: ref13 doi: 10.5555/3495724.3496673 – ident: ref41 doi: 10.1007/978-3-031-19781-9_22 – ident: ref58 doi: 10.1007/978-3-030-01225-0_30 – start-page: 373 volume-title: Proc. BMVC ident: ref20 article-title: DEX: Domain embedding expansion for generalized person re-identification – ident: ref53 doi: 10.1109/TMM.2023.3312939 – ident: ref54 doi: 10.1109/TIP.2023.3263112 – ident: ref26 doi: 10.1109/CVPR46437.2021.00343 – ident: ref24 doi: 10.1007/978-3-030-01225-0_29 – ident: ref43 doi: 10.1109/ICCV.2015.133 – ident: ref3 doi: 10.1109/TCSVT.2022.3142771 – ident: ref28 doi: 10.1109/CVPR52688.2022.00252 – ident: ref6 doi: 10.1109/TCSVT.2020.3043026 – ident: ref60 doi: 10.1109/CVPR46437.2021.00292 – ident: ref57 doi: 10.1109/CVPR.2009.5206848 – ident: ref55 doi: 10.1109/TCSVT.2023.3262832 – ident: ref27 doi: 10.1007/978-3-031-19781-9_17 – start-page: 22066 volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. ident: ref68 article-title: Clothing-change feature augmentation for person re-identification – ident: ref25 doi: 10.1109/CVPR42600.2020.00321 – ident: ref47 doi: 10.1109/CVPR.2018.00016 – ident: ref59 doi: 10.1109/CVPR42600.2020.00648 – ident: ref16 doi: 10.1007/978-3-030-58621-8_27 – ident: ref10 doi: 10.1109/ICCV.2017.113 – ident: ref36 doi: 10.1007/978-3-031-19781-9_13 – ident: ref38 doi: 10.1109/TCSVT.2023.3285046 – ident: ref5 doi: 10.1109/CVPR52688.2022.00715 – volume: 34 start-page: 1992 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NlPS) ident: ref29 article-title: TransMatcher: Deep image matching through transformers for generalizable person re-identification – ident: ref64 doi: 10.1609/aaai.v37i1.25180 – ident: ref61 doi: 10.1109/CVPR52688.2022.00471 – ident: ref19 doi: 10.1109/ICME55011.2023.00411 – ident: ref2 doi: 10.1109/TNNLS.2020.3015992 – ident: ref4 doi: 10.1109/ICCV48922.2021.01474 – ident: ref12 doi: 10.1109/TMM.2023.3268369 – ident: ref7 doi: 10.1109/TIP.2020.3026625 – ident: ref56 doi: 10.1109/tcsvt.2024.3395411 – start-page: 117 volume-title: Proc. BMVC ident: ref23 article-title: Frustratingly easy person re-identification: Generalizing person Re-ID in practice – ident: ref30 doi: 10.1109/CVPR.2016.90 – ident: ref62 doi: 10.1109/TIFS.2022.3218449 |
SSID | ssj0014847 |
Score | 2.4574225 |
Snippet | Domain generalization in person re-identification (DG-ReID) stands out as the most challenging task and practically important branch in the ReID field, which... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 8881 |
SubjectTerms | Data models domain generalization Feature extraction Identification of persons multi-scale mutual-teacher Pedestrians Person re-identification Protocols Task analysis Training |
Title | Multi-Scale Explicit Matching and Mutual Subject Teacher Learning for Generalizable Person Re-Identification |
URI | https://ieeexplore.ieee.org/document/10480431 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYM3SW2z9CNHGY4hbIjbZLfStIkMRyfSXvzrfS_NxhQUb6UkJfB7zfv-PUJuEhlnIvYLFoTKMGHikIFSCFhkCoUGBqgojEOOxtFwJh7n4dw1q9teGK21LT7THj7aXH6xymsMlcEfLhIkg2mRFnhuTbPWJmUgEjtNDOyFgCWgyNYdMr68m_YnL1PwBbnwepj34vybFtoaq2K1yuCAjNfnaYpJ3ry6Ul7--YOq8d8HPiT7zr6k941AHJEdXR6TvS3WwROytE23bALoaIo1eIt8UdER3MkYjaJZWdBRjW0lFG4VDNNQR_tMHRnrKwVLlzrCaqwKg-88WcudPmvWtP4aFwvskNngYdofMjd0geU8SipWyEDFxiiOE9MjEeYiyeAy5ZnQAabUuEyiHLR-IrJIK2liCV6uUFIbJdHa7J2Sdrkq9RmhXEamp0AGCl8IhRlNkYVxEfMoNrwIgy4J1iCkuWMkx8EYy9R6Jr5MLXApApc64LrkdrPnveHj-HN1B0HZWtngcf7L-wuyi9ubGrJL0q4-an0FRkelrq2wfQFlhNDk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rBZ8X6zMGbpHbT7CNHKZaqbRHbSm_LZjeRYmlFdi_-emeyaamC4m1ZsiHwZTOTmfm-IeQqkmEiwkbGPF8ZJkzoMzAKHgtMptDBABOFccheP-iMxMPYHzuyuuXCaK1t8Zmu46PN5WfztMBQGfzhIkIxmHWyAYbf90q61jJpICLbTww8Bo9FYMoWHJmGvBm2Bi9DuA1yUW9i5ovzb3ZopbGKtSvtXdJfrKgsJ3mrF7mqp58_xBr_veQ9suM8THpbbol9sqZnB2R7RXfwkEwt7ZYNAB9NsQpvkk5y2oNTGeNRNJlltFcgsYTCuYKBGuqEn6mTY32l4OtSJ1mNdWEwz5P13emzZiX517hoYJWM2nfDVoe5tgss5UGUs0x6KjRGceyZHgg_FVECxylPhPYwqcZlFKRg9yORBFpJE0q45woltVES_c3mEanM5jN9TCiXgWkq2AVZQwiFOU2R-GEW8iA0PPO9GvEWIMSp0yTH1hjT2N5NGjK2wMUIXOyAq5Hr5TfvpSLHn6OrCMrKyBKPk1_eX5LNzrDXjbv3_cdTsoVTlRVlZ6SSfxT6HFyQXF3YjfcFd1TULQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Explicit+Matching+and+Mutual+Subject+Teacher+Learning+for+Generalizable+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Kaixiang&rft.au=Fang%2C+Pengfei&rft.au=Ye%2C+Zi&rft.au=Zhang%2C+Liyan&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=9&rft.spage=8881&rft.epage=8895&rft_id=info:doi/10.1109%2FTCSVT.2024.3382322&rft.externalDocID=10480431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |