Asymptotically exact formulas for channel flows over liquid-infused surfaces
Analytical formulas are derived describing channel flows over liquid-infused surfaces. The formulas are explicit, asymptotically exact and readily evaluated; no numerical scheme beyond simple quadrature is needed to calculate the flows. The formulas are obtained using a three-stage asymptotic analys...
Saved in:
Published in | IMA journal of applied mathematics Vol. 89; no. 4; pp. 623 - 660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
11.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analytical formulas are derived describing channel flows over liquid-infused surfaces. The formulas are explicit, asymptotically exact and readily evaluated; no numerical scheme beyond simple quadrature is needed to calculate the flows. The formulas are obtained using a three-stage asymptotic analysis under the assumptions that an array of aligned finite-length grooves on the lower wall of a channel are (i) slender, (ii) well separated from the upper channel wall and (iii) well separated from each other. Despite these apparently limiting assumptions it is found, by comparison with full numerical simulations, that the formulas give excellent approximations to the flow across a much broader range of operating conditions. Useful formulas for the hydrodynamic slip lengths of the liquid-infused surfaces are reported and tested against both numerical simulations and other approximate formulas appearing in the literature. The formulas are also expected to be useful in assessing the possibility of so-called shear-induced failure of liquid-infused surfaces. |
---|---|
AbstractList | Analytical formulas are derived describing channel flows over liquid-infused surfaces. The formulas are explicit, asymptotically exact and readily evaluated; no numerical scheme beyond simple quadrature is needed to calculate the flows. The formulas are obtained using a three-stage asymptotic analysis under the assumptions that an array of aligned finite-length grooves on the lower wall of a channel are (i) slender, (ii) well separated from the upper channel wall and (iii) well separated from each other. Despite these apparently limiting assumptions it is found, by comparison with full numerical simulations, that the formulas give excellent approximations to the flow across a much broader range of operating conditions. Useful formulas for the hydrodynamic slip lengths of the liquid-infused surfaces are reported and tested against both numerical simulations and other approximate formulas appearing in the literature. The formulas are also expected to be useful in assessing the possibility of so-called shear-induced failure of liquid-infused surfaces. |
Author | Rodriguez-Broadbent, Henry Miyoshi, Hiroyuki Crowdy, Darren G |
Author_xml | – sequence: 1 givenname: Henry orcidid: 0000-0002-6301-8860 surname: Rodriguez-Broadbent fullname: Rodriguez-Broadbent, Henry email: h.rodriguez-broadbent20@alumni.imperial.ac.uk – sequence: 2 givenname: Hiroyuki orcidid: 0000-0002-3678-1641 surname: Miyoshi fullname: Miyoshi, Hiroyuki – sequence: 3 givenname: Darren G orcidid: 0000-0002-7162-0181 surname: Crowdy fullname: Crowdy, Darren G |
BookMark | eNot0LtPwzAYBHALFYm0sDJ7ZTD9HD8Sj1XFS4rEAnPk-KEGOXGIE2j-e6ja6W466X5rtOpj7xC6p_BIQbFt2-lOT9vDUTvI5RXKKJecMMn4CmWQFznhSsINWqf0BQBUFJChapeWbpji1BodwoLdUZsJ-zh2c9DpVLA56L53AfsQfxOOP27Eof2eW0va3s_JWZzm0Wvj0i269jokd3fJDfp8fvrYv5Lq_eVtv6uIyWU5EcvKxgrKjFYN0EJYKpwSheOu4apsgDVemUIyw02uJRVeQMm80tY4Jhj3bIMezrtxHuph_D8-LjWF-sRQnxnqCwP7A27lVm0 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 |
DBID | TOX |
DOI | 10.1093/imamat/hxae026 |
DatabaseName | Oxford Journals Open Access Collection (Oxford University Press) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection (Oxford University Press) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 660 |
ExternalDocumentID | 10.1093/imamat/hxae026 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDBF ABDFA ABDPE ABDTM ABEFU ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABVLG ABWST ABXVV ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPQN ACUFI ACUHS ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AI. AIAGR AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M43 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OXVGQ O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TOX TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 |
ID | FETCH-LOGICAL-c268t-d38bd513ca9b0175d15e957e4eb498b03bf9c763c4c2a615f5083f9adce3534f3 |
IEDL.DBID | TOX |
ISSN | 0272-4960 |
IngestDate | Mon Jun 30 08:34:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | asymptotic analysis complex analysis microfluidics |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-d38bd513ca9b0175d15e957e4eb498b03bf9c763c4c2a615f5083f9adce3534f3 |
ORCID | 0000-0002-7162-0181 0000-0002-6301-8860 0000-0002-3678-1641 |
OpenAccessLink | https://dx.doi.org/10.1093/imamat/hxae026 |
PageCount | 38 |
ParticipantIDs | oup_primary_10_1093_imamat_hxae026 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-11 |
PublicationDateYYYYMMDD | 2024-12-11 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0001570 |
Score | 2.353086 |
Snippet | Analytical formulas are derived describing channel flows over liquid-infused surfaces. The formulas are explicit, asymptotically exact and readily evaluated;... |
SourceID | oup |
SourceType | Publisher |
StartPage | 623 |
Title | Asymptotically exact formulas for channel flows over liquid-infused surfaces |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7Skx7EFXeCeA3tTJKZybGIRcTqpYXehiwvWJgudmaw_fe-dIYi4sFbDsnlJXnfl7d8IeRBSnBSa3ydWNBMSNtjSnjHfBSibj7mHkKD8_AteR6Ll4mctGLR5R8pfMW705lG8tb9WGvABwN6W0TgoJI_ep_sfG4k0yaaksZMICnfyTP-Xt70sf2AkMEROWy5H-03m3VM9mB-Qg6GO-HU8pS89svNbFktthHmYkNhrW1FA7GskeaGAQ2tunMoqC8WXyUNFZi0mH7WU8fwsNQlOFrWKx8qrc7IePA0enxm7YcHzMZJVjHHM-NkxK1WaKhUukiCkikIMEJlpseNVxYdghU21khFfNBy90o7C1xy4fk56cwXc7ggNCQ9vDOZScAJpTO8uE7yxMQJ4rkHeUnu0Q75spG0yJtUNM8bY-Wtsa7-M-ma7McI9KHEI4puSKda1XCLQF2Zu-0efQOarpQ6 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotically+exact+formulas+for+channel+flows+over+liquid-infused+surfaces&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Rodriguez-Broadbent%2C+Henry&rft.au=Miyoshi%2C+Hiroyuki&rft.au=Crowdy%2C+Darren+G&rft.date=2024-12-11&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=89&rft.issue=4&rft.spage=623&rft.epage=660&rft_id=info:doi/10.1093%2Fimamat%2Fhxae026&rft.externalDocID=10.1093%2Fimamat%2Fhxae026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |