On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems

Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via c...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 7; p. 1
Main Authors Teter, Alexis M.H., Chen, Yongxin, Halder, Abhishek
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2023
Subjects
Online AccessGet full text
ISSN2475-1456
2475-1456
DOI10.1109/LCSYS.2023.3326836

Cover

Loading…
Abstract Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via contractive fixed point recursions. These recursions can be seen as dynamic versions of the well-known Sinkhorn iterations, and under mild assumptions, they solve the so-called Schrödinger systems with guaranteed linear convergence. In this work, we study a priori estimates for the contraction coefficients associated with the convergence of respective Schrödinger systems. We provide new geometric and control-theoretic interpretations for the same. Building on these newfound interpretations, we point out the possibility of improved computation for the worst-case contraction coefficients of linear SBPs by preconditioning the endpoint support sets.
AbstractList Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via contractive fixed point recursions. These recursions can be seen as dynamic versions of the well-known Sinkhorn iterations, and under mild assumptions, they solve the so-called Schrödinger systems with guaranteed linear convergence. In this work, we study a priori estimates for the contraction coefficients associated with the convergence of respective Schrödinger systems. We provide new geometric and control-theoretic interpretations for the same. Building on these newfound interpretations, we point out the possibility of improved computation for the worst-case contraction coefficients of linear SBPs by preconditioning the endpoint support sets.
Author Teter, Alexis M.H.
Chen, Yongxin
Halder, Abhishek
Author_xml – sequence: 1
  givenname: Alexis M.H.
  surname: Teter
  fullname: Teter, Alexis M.H.
  organization: Department of Department of Applied Mathematics, University of California, Santa Cruz, CA, USA
– sequence: 2
  givenname: Yongxin
  orcidid: 0000-0002-1459-6365
  surname: Chen
  fullname: Chen, Yongxin
  organization: Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Abhishek
  orcidid: 0000-0002-1509-5853
  surname: Halder
  fullname: Halder, Abhishek
  organization: Department of Aerospace Engineering, Iowa State University, Ames, IA, USA
BookMark eNp9kDtOAzEQhi0UJELIBRCFL7DBr9jrEla8pJVSLAhRrRxnnBglXmS7ycW4ABdj8ygiCqr5NTPfaP7_Eg1CFwCha0omlBJ9W1fNRzNhhPEJ50yWXJ6hIRNqWlAxlYMTfYHGKX0SQmjJFGF6iN5nAecV4KoLORqbfRd6Dc556yFk3Ln9uLGr-PO98GEJEd9Hv1gCdl3ETe7syqTsLa59ANN3tinDJl2hc2fWCcbHOkJvjw-v1XNRz55eqru6sP2jubCGEZhPKRfUOVZKJZmWVksqKQcpuBHlYk61BqKsFlY7rRVRoJw0pXBizkeoPNy1sUspgmutz2Zno7fj1y0l7S6jdp9Ru8uoPWbUo-wP-hX9xsTt_9DNAfIAcAIwzWm_8Asgg3WB
CODEN ICSLBO
CitedBy_id crossref_primary_10_1137_24M1646145
Cites_doi 10.1137/16M1074953
10.1016/j.jat.2004.02.006
10.1145/3083724
10.1016/0024-3795(89)90490-4
10.1007/978-1-4613-3557-3
10.1016/j.jfa.2011.11.026
10.1007/s00440-004-0340-4
10.1137/20M1339982
10.1109/ROBOT.1997.606761
10.1007/BF01448847
10.1007/s10957-015-0803-z
10.1007/BF00247467
10.1109/56.2083
10.1007/s10915-020-01325-7
10.1007/BF02096204
10.1137/16M1061382
10.1109/TAC.2021.3060704
10.1109/LCSYS.2020.3045105
10.1515/9781400873173
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2023.3326836
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 1
ExternalDocumentID 10_1109_LCSYS_2023_3326836
10293168
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
RIG
ID FETCH-LOGICAL-c268t-ca20eb51341ff28676296c961613e643a48db199e07c94c9f99707e7f6a84f4b3
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Thu Apr 24 22:53:59 EDT 2025
Tue Jul 01 04:06:42 EDT 2025
Wed Aug 27 02:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-ca20eb51341ff28676296c961613e643a48db199e07c94c9f99707e7f6a84f4b3
ORCID 0000-0002-1459-6365
0000-0002-1509-5853
0009-0002-9925-5187
PageCount 1
ParticipantIDs ieee_primary_10293168
crossref_primary_10_1109_LCSYS_2023_3326836
crossref_citationtrail_10_1109_LCSYS_2023_3326836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
chen (ref6) 2021; 63
ref11
hiriart-urruty (ref12) 1996; 305
ref10
ref16
ref19
caluya (ref14) 2020
lee (ref18) 1967; 87
wakolbinger (ref3) 1990
ref24
ref23
ref26
ref25
ref20
ref22
stromme (ref17) 2023
ref21
ref27
schrödinger (ref1) 1931; 10
ref8
ref7
ref9
ref4
ref5
de bortoli (ref15) 2021
schrödinger (ref2) 1932; 2
References_xml – volume: 305
  year: 1996
  ident: ref12
  publication-title: Convex Analysis and Minimization Algorithms Fundamentals
– start-page: 17695
  year: 2021
  ident: ref15
  article-title: Diffusion Schrödinger bridge with applications to score-based generative modeling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1137/16M1074953
– ident: ref19
  doi: 10.1016/j.jat.2004.02.006
– volume: 87
  year: 1967
  ident: ref18
  publication-title: Foundations of Optimal Control Theory
– volume: 2
  start-page: 269
  year: 1932
  ident: ref2
  article-title: Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique
  publication-title: Annales de l'Institut Henri Poincaré
– ident: ref22
  doi: 10.1145/3083724
– start-page: 4058
  year: 2023
  ident: ref17
  article-title: Sampling from a Schrödinger bridge
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2020
  ident: ref14
  article-title: Reflected Schrödinger bridge: Density control with path constraints
  publication-title: arXiv 2003 13895
– ident: ref11
  doi: 10.1016/0024-3795(89)90490-4
– ident: ref24
  doi: 10.1007/978-1-4613-3557-3
– ident: ref4
  doi: 10.1016/j.jfa.2011.11.026
– ident: ref26
  doi: 10.1007/s00440-004-0340-4
– volume: 63
  start-page: 249
  year: 2021
  ident: ref6
  article-title: Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge
  publication-title: SIAM Rev
  doi: 10.1137/20M1339982
– ident: ref21
  doi: 10.1109/ROBOT.1997.606761
– volume: 10
  start-page: 144
  year: 1931
  ident: ref1
  article-title: Über die umkehrung der naturgesetze
  publication-title: Sitzungsberichte der Preuss Phys Math Klasse
– start-page: 61
  year: 1990
  ident: ref3
  article-title: Schrödinger bridges from 1931 to 1991
  publication-title: Proc 4th Latin Amer Congr Probability Math Statist Mex City
– ident: ref23
  doi: 10.1007/BF01448847
– ident: ref5
  doi: 10.1007/s10957-015-0803-z
– ident: ref10
  doi: 10.1007/BF00247467
– ident: ref20
  doi: 10.1109/56.2083
– ident: ref27
  doi: 10.1007/s10915-020-01325-7
– ident: ref9
  doi: 10.1007/BF02096204
– ident: ref8
  doi: 10.1137/16M1061382
– ident: ref7
  doi: 10.1109/TAC.2021.3060704
– ident: ref16
  doi: 10.1109/LCSYS.2020.3045105
– ident: ref13
  doi: 10.1515/9781400873173
SSID ssj0001827029
Score 2.2413821
Snippet Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bridges
Convergence
Linear systems
Markov processes
Optimal control
Probability density function
Stochastic optimal control
stochastic systems
Title On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems
URI https://ieeexplore.ieee.org/document/10293168
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66kxc_cOL8Igdv0pqubZocdTiG6DzU4TyVJE0YKK2M7uIP8w_4x3yTdG4IirfQJiXfed63eZ4XoXMd88hE2gQslTxINBWBIMYEJFY2_hQVpVPgux_T0SS5nabTlqzuuDBaa3f5TIc26f7ll7VaWFcZrHA4nCLKNtEmWG6erLVyqDBLreJLYgzhl3eD_DkPbXzwMAaU4mWYV4fPWjQVd5gMd9B4WQ1_h-QlXDQyVO8_FBr_Xc9dtN3CSnzl58Ee2tDVPnp6qDDgO2wVqOaewABp7UQj4AO4Nu51rmbzz4_S-ffwtSNwYYCyOG9qNRNWxxmDxQorArfy5l00Gd48DkZBG0ghUNDsJlCiT7RMrXabMX1GYQPkVHEKaC_WAElEwkoZca5JpniiuOE8I5nODBUsMYmMD1Cnqit9iDClVpGQw0aQ0EQIyllZpoxkEjJL0Y97KFr2cKFalXEb7OK1cNYG4YUblcKOStGOSg9dfJd58xobf-bu2h5fy-k7--iX58doyxb3bpMT1GnmC30KQKKRZ24CfQEnVsV5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWgDLDwEEWUpwc2lJA0jmOPUFEVaMuQVpQpchxblUAJqtKFD-MH-DGunZRWSCA2K3Esv-_xjc-5CF2ogPvaV9phYcodoqhwhKe14wXSxJ-iIrMKfIMh7Y3J_SSc1GR1y4VRStnLZ8o1SfsvPyvk3LjKYIWDcfIpW0cbYPgJr-haS5cKM-QqvqDGePyq34mfY9dECHcDwCmVEPPS_KzEU7HmpLuDhouKVLdIXtx5mbry_YdG479ruou2a2CJr6uZsIfWVL6Pnh5zDAgPGw2qWUVhgLSyshFQAC60fR3L6ezzI7MePnxjKVwYwCyOy0JOhVFyxnBmhTWBa4HzJhp3b0ednlOHUnAkNLt0pGh7Kg2NepvWbUZhC-RUcgp4L1AASgRhWepzrrxIciK55jzyIhVpKhjRJA0OUCMvcnWIMKVGk5DDVkAoEYJylmUh86IUMqeiHbSQv-jhRNY64ybcxWtizxseT-yoJGZUknpUWujy-5u3SmXjz9xN0-MrOavOPvrl-Tna7I0G_aR_N3w4RlumqMqJcoIa5WyuTgFWlOmZnUxfsxrIyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Contraction+Coefficient+of+the+Schr%C3%B6dinger+Bridge+for+Stochastic+Linear+Systems&rft.jtitle=IEEE+control+systems+letters&rft.au=Teter%2C+Alexis+M.H.&rft.au=Chen%2C+Yongxin&rft.au=Halder%2C+Abhishek&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2475-1456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLCSYS.2023.3326836&rft.externalDocID=10293168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon