On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems
Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via c...
Saved in:
Published in | IEEE control systems letters Vol. 7; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2475-1456 2475-1456 |
DOI | 10.1109/LCSYS.2023.3326836 |
Cover
Loading…
Abstract | Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via contractive fixed point recursions. These recursions can be seen as dynamic versions of the well-known Sinkhorn iterations, and under mild assumptions, they solve the so-called Schrödinger systems with guaranteed linear convergence. In this work, we study a priori estimates for the contraction coefficients associated with the convergence of respective Schrödinger systems. We provide new geometric and control-theoretic interpretations for the same. Building on these newfound interpretations, we point out the possibility of improved computation for the worst-case contraction coefficients of linear SBPs by preconditioning the endpoint support sets. |
---|---|
AbstractList | Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline constraints. A popular method to numerically solve the Schrödinger bridge problems, in both classical and in the linear system settings, is via contractive fixed point recursions. These recursions can be seen as dynamic versions of the well-known Sinkhorn iterations, and under mild assumptions, they solve the so-called Schrödinger systems with guaranteed linear convergence. In this work, we study a priori estimates for the contraction coefficients associated with the convergence of respective Schrödinger systems. We provide new geometric and control-theoretic interpretations for the same. Building on these newfound interpretations, we point out the possibility of improved computation for the worst-case contraction coefficients of linear SBPs by preconditioning the endpoint support sets. |
Author | Teter, Alexis M.H. Chen, Yongxin Halder, Abhishek |
Author_xml | – sequence: 1 givenname: Alexis M.H. surname: Teter fullname: Teter, Alexis M.H. organization: Department of Department of Applied Mathematics, University of California, Santa Cruz, CA, USA – sequence: 2 givenname: Yongxin orcidid: 0000-0002-1459-6365 surname: Chen fullname: Chen, Yongxin organization: Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Abhishek orcidid: 0000-0002-1509-5853 surname: Halder fullname: Halder, Abhishek organization: Department of Aerospace Engineering, Iowa State University, Ames, IA, USA |
BookMark | eNp9kDtOAzEQhi0UJELIBRCFL7DBr9jrEla8pJVSLAhRrRxnnBglXmS7ycW4ABdj8ygiCqr5NTPfaP7_Eg1CFwCha0omlBJ9W1fNRzNhhPEJ50yWXJ6hIRNqWlAxlYMTfYHGKX0SQmjJFGF6iN5nAecV4KoLORqbfRd6Dc556yFk3Ln9uLGr-PO98GEJEd9Hv1gCdl3ETe7syqTsLa59ANN3tinDJl2hc2fWCcbHOkJvjw-v1XNRz55eqru6sP2jubCGEZhPKRfUOVZKJZmWVksqKQcpuBHlYk61BqKsFlY7rRVRoJw0pXBizkeoPNy1sUspgmutz2Zno7fj1y0l7S6jdp9Ru8uoPWbUo-wP-hX9xsTt_9DNAfIAcAIwzWm_8Asgg3WB |
CODEN | ICSLBO |
CitedBy_id | crossref_primary_10_1137_24M1646145 |
Cites_doi | 10.1137/16M1074953 10.1016/j.jat.2004.02.006 10.1145/3083724 10.1016/0024-3795(89)90490-4 10.1007/978-1-4613-3557-3 10.1016/j.jfa.2011.11.026 10.1007/s00440-004-0340-4 10.1137/20M1339982 10.1109/ROBOT.1997.606761 10.1007/BF01448847 10.1007/s10957-015-0803-z 10.1007/BF00247467 10.1109/56.2083 10.1007/s10915-020-01325-7 10.1007/BF02096204 10.1137/16M1061382 10.1109/TAC.2021.3060704 10.1109/LCSYS.2020.3045105 10.1515/9781400873173 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2023.3326836 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 1 |
ExternalDocumentID | 10_1109_LCSYS_2023_3326836 10293168 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION EJD RIG |
ID | FETCH-LOGICAL-c268t-ca20eb51341ff28676296c961613e643a48db199e07c94c9f99707e7f6a84f4b3 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 04:06:42 EDT 2025 Wed Aug 27 02:37:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-ca20eb51341ff28676296c961613e643a48db199e07c94c9f99707e7f6a84f4b3 |
ORCID | 0000-0002-1459-6365 0000-0002-1509-5853 0009-0002-9925-5187 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10293168 crossref_primary_10_1109_LCSYS_2023_3326836 crossref_citationtrail_10_1109_LCSYS_2023_3326836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 chen (ref6) 2021; 63 ref11 hiriart-urruty (ref12) 1996; 305 ref10 ref16 ref19 caluya (ref14) 2020 lee (ref18) 1967; 87 wakolbinger (ref3) 1990 ref24 ref23 ref26 ref25 ref20 ref22 stromme (ref17) 2023 ref21 ref27 schrödinger (ref1) 1931; 10 ref8 ref7 ref9 ref4 ref5 de bortoli (ref15) 2021 schrödinger (ref2) 1932; 2 |
References_xml | – volume: 305 year: 1996 ident: ref12 publication-title: Convex Analysis and Minimization Algorithms Fundamentals – start-page: 17695 year: 2021 ident: ref15 article-title: Diffusion Schrödinger bridge with applications to score-based generative modeling publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1137/16M1074953 – ident: ref19 doi: 10.1016/j.jat.2004.02.006 – volume: 87 year: 1967 ident: ref18 publication-title: Foundations of Optimal Control Theory – volume: 2 start-page: 269 year: 1932 ident: ref2 article-title: Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique publication-title: Annales de l'Institut Henri Poincaré – ident: ref22 doi: 10.1145/3083724 – start-page: 4058 year: 2023 ident: ref17 article-title: Sampling from a Schrödinger bridge publication-title: Proc Int Conf Artif Intell Statist – year: 2020 ident: ref14 article-title: Reflected Schrödinger bridge: Density control with path constraints publication-title: arXiv 2003 13895 – ident: ref11 doi: 10.1016/0024-3795(89)90490-4 – ident: ref24 doi: 10.1007/978-1-4613-3557-3 – ident: ref4 doi: 10.1016/j.jfa.2011.11.026 – ident: ref26 doi: 10.1007/s00440-004-0340-4 – volume: 63 start-page: 249 year: 2021 ident: ref6 article-title: Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge publication-title: SIAM Rev doi: 10.1137/20M1339982 – ident: ref21 doi: 10.1109/ROBOT.1997.606761 – volume: 10 start-page: 144 year: 1931 ident: ref1 article-title: Über die umkehrung der naturgesetze publication-title: Sitzungsberichte der Preuss Phys Math Klasse – start-page: 61 year: 1990 ident: ref3 article-title: Schrödinger bridges from 1931 to 1991 publication-title: Proc 4th Latin Amer Congr Probability Math Statist Mex City – ident: ref23 doi: 10.1007/BF01448847 – ident: ref5 doi: 10.1007/s10957-015-0803-z – ident: ref10 doi: 10.1007/BF00247467 – ident: ref20 doi: 10.1109/56.2083 – ident: ref27 doi: 10.1007/s10915-020-01325-7 – ident: ref9 doi: 10.1007/BF02096204 – ident: ref8 doi: 10.1137/16M1061382 – ident: ref7 doi: 10.1109/TAC.2021.3060704 – ident: ref16 doi: 10.1109/LCSYS.2020.3045105 – ident: ref13 doi: 10.1515/9781400873173 |
SSID | ssj0001827029 |
Score | 2.2413821 |
Snippet | Schrödinger bridge is a stochastic optimal control problem to steer a given initial state density to another, subject to controlled diffusion and deadline... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Bridges Convergence Linear systems Markov processes Optimal control Probability density function Stochastic optimal control stochastic systems |
Title | On the Contraction Coefficient of the Schrödinger Bridge for Stochastic Linear Systems |
URI | https://ieeexplore.ieee.org/document/10293168 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66kxc_cOL8Igdv0pqubZocdTiG6DzU4TyVJE0YKK2M7uIP8w_4x3yTdG4IirfQJiXfed63eZ4XoXMd88hE2gQslTxINBWBIMYEJFY2_hQVpVPgux_T0SS5nabTlqzuuDBaa3f5TIc26f7ll7VaWFcZrHA4nCLKNtEmWG6erLVyqDBLreJLYgzhl3eD_DkPbXzwMAaU4mWYV4fPWjQVd5gMd9B4WQ1_h-QlXDQyVO8_FBr_Xc9dtN3CSnzl58Ee2tDVPnp6qDDgO2wVqOaewABp7UQj4AO4Nu51rmbzz4_S-ffwtSNwYYCyOG9qNRNWxxmDxQorArfy5l00Gd48DkZBG0ghUNDsJlCiT7RMrXabMX1GYQPkVHEKaC_WAElEwkoZca5JpniiuOE8I5nODBUsMYmMD1Cnqit9iDClVpGQw0aQ0EQIyllZpoxkEjJL0Y97KFr2cKFalXEb7OK1cNYG4YUblcKOStGOSg9dfJd58xobf-bu2h5fy-k7--iX58doyxb3bpMT1GnmC30KQKKRZ24CfQEnVsV5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWgDLDwEEWUpwc2lJA0jmOPUFEVaMuQVpQpchxblUAJqtKFD-MH-DGunZRWSCA2K3Esv-_xjc-5CF2ogPvaV9phYcodoqhwhKe14wXSxJ-iIrMKfIMh7Y3J_SSc1GR1y4VRStnLZ8o1SfsvPyvk3LjKYIWDcfIpW0cbYPgJr-haS5cKM-QqvqDGePyq34mfY9dECHcDwCmVEPPS_KzEU7HmpLuDhouKVLdIXtx5mbry_YdG479ruou2a2CJr6uZsIfWVL6Pnh5zDAgPGw2qWUVhgLSyshFQAC60fR3L6ezzI7MePnxjKVwYwCyOy0JOhVFyxnBmhTWBa4HzJhp3b0ednlOHUnAkNLt0pGh7Kg2NepvWbUZhC-RUcgp4L1AASgRhWepzrrxIciK55jzyIhVpKhjRJA0OUCMvcnWIMKVGk5DDVkAoEYJylmUh86IUMqeiHbSQv-jhRNY64ybcxWtizxseT-yoJGZUknpUWujy-5u3SmXjz9xN0-MrOavOPvrl-Tna7I0G_aR_N3w4RlumqMqJcoIa5WyuTgFWlOmZnUxfsxrIyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Contraction+Coefficient+of+the+Schr%C3%B6dinger+Bridge+for+Stochastic+Linear+Systems&rft.jtitle=IEEE+control+systems+letters&rft.au=Teter%2C+Alexis+M.H.&rft.au=Chen%2C+Yongxin&rft.au=Halder%2C+Abhishek&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2475-1456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLCSYS.2023.3326836&rft.externalDocID=10293168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |