Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data

In this paper, we investigate a problem of optimal control over a finite time interval for a linear system with constant coefficients and a small parameter in the initial data in the class of piecewise continuous controls with smooth geometric constraints. We consider a terminal convex performance i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Steklov Institute of Mathematics Vol. 323; no. Suppl 1; pp. S85 - S97
Main Authors Danilin, A. R., Kovrizhnykh, O. O.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0081-5438
1531-8605
DOI10.1134/S008154382306007X

Cover

Loading…
Abstract In this paper, we investigate a problem of optimal control over a finite time interval for a linear system with constant coefficients and a small parameter in the initial data in the class of piecewise continuous controls with smooth geometric constraints. We consider a terminal convex performance index. We substantiate the limit relations as the small parameter tends to zero for the optimal value of the performance index and for the vector generating the optimal control in the problem. We show that the asymptotics of the solution can be of complicated nature. In particular, it may have no expansion in the Poincaré sense in any asymptotic sequence of rational functions of the small parameter or its logarithms.
AbstractList In this paper, we investigate a problem of optimal control over a finite time interval for a linear system with constant coefficients and a small parameter in the initial data in the class of piecewise continuous controls with smooth geometric constraints. We consider a terminal convex performance index. We substantiate the limit relations as the small parameter tends to zero for the optimal value of the performance index and for the vector generating the optimal control in the problem. We show that the asymptotics of the solution can be of complicated nature. In particular, it may have no expansion in the Poincaré sense in any asymptotic sequence of rational functions of the small parameter or its logarithms.
Author Danilin, A. R.
Kovrizhnykh, O. O.
Author_xml – sequence: 1
  givenname: A. R.
  surname: Danilin
  fullname: Danilin, A. R.
  email: dar@imm.uran.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: O. O.
  surname: Kovrizhnykh
  fullname: Kovrizhnykh, O. O.
  email: koo@imm.uran.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University
BookMark eNp1kM1KAzEUhYNUsK0-gLuA69Ek85dZlvpXKLTQCu6GJJPYKTPJmKRqn8DXNuMILsTVhXu-cy73TMBIGy0BuMToGuM4udkgRHGaxJTEKEMofz4BY5zGOKIZSkdg3MtRr5-BiXN7hJI0T4ox-Jy5Y9t542vhoFGQwY1pDr42GnoDmYarztcta-DcaG9NA9fW8Ea28L32u0BvpW1rPehv8gOupVXGtkwLCRe6Chumq8CFvT9Yzr6Twx2_6_Xa18F6yzw7B6eKNU5e_MwpeLq_284fo-XqYTGfLSNBMuojrniWKRlzopKMxDmhpKBFFnPJmcAyr7hApKKqKLjgtBCqQjylSBQSVxRRFk_B1ZDbWfN6kM6Xe3Ow4QFXkoKkaZIkKQkUHihhjXNWqrKzoQV7LDEq-77LP30HDxk8LrD6Rdrf5P9NX4sJhZs
Cites_doi 10.1134/S00051179220110017
10.1134/S0012266106110048
10.1007/s10957-017-1156-6
10.1134/S0005117906010012
10.1134/S0965542506120062
10.20310/1810-0198-2019-24-125-119-136
10.1134/S0081543820040033
10.1007/s10957-021-01916-w
10.20537/2226-3594-2017-50-09
ContentType Journal Article
Conference Proceeding
Copyright Pleiades Publishing, Ltd. 2023
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
DOI 10.1134/S008154382306007X
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8605
EndPage S97
ExternalDocumentID 10_1134_S008154382306007X
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
YNT
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c268t-bfb66fe3b2f4623728298963bebac1e7dbc02d8f99bcb89cfd0b580c9e1d808a3
IEDL.DBID AGYKE
ISSN 0081-5438
IngestDate Fri Jul 25 11:21:23 EDT 2025
Tue Jul 01 03:08:48 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords terminal convex performance index
optimal control
asymptotic expansion
small parameter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-bfb66fe3b2f4623728298963bebac1e7dbc02d8f99bcb89cfd0b580c9e1d808a3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 2925544452
PQPubID 2044165
ParticipantIDs proquest_journals_2925544452
crossref_primary_10_1134_S008154382306007X
springer_journals_10_1134_S008154382306007X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Proceedings of the Steklov Institute of Mathematics
PublicationTitleAbbrev Proc. Steklov Inst. Math
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References KurinaGAKalashnikovaMASingularly perturbed problems with multi-tempo fast variablesAutom. Remote Control2022831116791723455540510.1134/S00051179220110017
ShaburovAAAsymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral performance index and smooth control constraintsIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2017502110120367833810.20537/2226-3594-2017-50-09
NguyenTHAsymptotic solution of a singularly perturbed linear–quadratic problem in critical case with cheap controlJ. Optim. Theory Appl.20171752324340371733310.1007/s10957-017-1156-6
KrasovskiiNNTheory of Motion Control: Linear Systems1968MoscowNaukain Russian
DanilinARIl’inAMOn the structure of the solution of a perturbed time-optimal problemFundam. Prikl. Mat.1998439059261800042
DanilinARKovrizhnykhOOAsymptotics of the solution to a singularly perturbed time-optimal control problem with two small parametersProc. Steklov Inst. Math.2020309Suppl. 1S10S2310.1134/S0081543820040033
NguyenTHAsymptotic solution of a singularly perturbed optimal problem with integral constraintJ. Optim. Theory Appl.20211903931950431067710.1007/s10957-021-01916-w
DanilinARAsymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular caseComput. Math. Math. Phys.2006461220682079234496310.1134/S0965542506120062
ParyshevaYuVAsymptotics of a solution to a linear optimal control problem in the singular caseTr. Inst. Mat. Mekh. UrO RAN2011173266270
PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1961MoscowFizmatgiz
ShaburovAAAsymptotic expansion of a solution of a singularly perturbed optimal control problem with smooth control constraints an integral convex performance index whose terminal part depends only on the slow variablesVestn. Ross. Univ. Mat.20192412511913610.20310/1810-0198-2019-24-125-119-136
DmitrievMGKurinaGASingular perturbations in control problemsAutom. Remote Control2006671143220616910.1134/S0005117906010012
ZhangYNaiduDSCaiCZouYSingular perturbations and time scales in control theories and applications: An overview 2002–2012Int. J. Inf. Syst. Sci.201491136
GaleevEMTikhomirovVMA Short Course in the Theory of Extremal Problems1989MoscowIzd. Mosk. Gos. Univ.in Russian
DanilinARAsymptotics of the optimal value of the performance functional for a rapidly stabilizing indirect control in the regular caseDiffer. Equations2006421115451552234707710.1134/S0012266106110048
LeeEBMarkusLFoundations of Optimal Control Theory1967New YorkWiley
LS Pontryagin (8371_CR1) 1961
EB Lee (8371_CR3) 1967
YuV Parysheva (8371_CR10) 2011; 17
TH Nguyen (8371_CR14) 2017; 175
Y Zhang (8371_CR13) 2014; 9
AR Danilin (8371_CR8) 2006; 42
AR Danilin (8371_CR9) 2006; 46
AA Shaburov (8371_CR12) 2019; 24
AR Danilin (8371_CR16) 2020; 309
TH Nguyen (8371_CR15) 2021; 190
GA Kurina (8371_CR6) 2022; 83
EM Galeev (8371_CR7) 1989
MG Dmitriev (8371_CR5) 2006; 67
AA Shaburov (8371_CR11) 2017; 50
AR Danilin (8371_CR4) 1998; 4
NN Krasovskii (8371_CR2) 1968
References_xml – reference: PontryaginLSBoltyanskiiVGGamkrelidzeRVMishchenkoEFThe Mathematical Theory of Optimal Processes1961MoscowFizmatgiz
– reference: KrasovskiiNNTheory of Motion Control: Linear Systems1968MoscowNaukain Russian
– reference: DmitrievMGKurinaGASingular perturbations in control problemsAutom. Remote Control2006671143220616910.1134/S0005117906010012
– reference: GaleevEMTikhomirovVMA Short Course in the Theory of Extremal Problems1989MoscowIzd. Mosk. Gos. Univ.in Russian
– reference: ShaburovAAAsymptotic expansion of a solution of a singularly perturbed optimal control problem with smooth control constraints an integral convex performance index whose terminal part depends only on the slow variablesVestn. Ross. Univ. Mat.20192412511913610.20310/1810-0198-2019-24-125-119-136
– reference: DanilinARAsymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular caseComput. Math. Math. Phys.2006461220682079234496310.1134/S0965542506120062
– reference: NguyenTHAsymptotic solution of a singularly perturbed linear–quadratic problem in critical case with cheap controlJ. Optim. Theory Appl.20171752324340371733310.1007/s10957-017-1156-6
– reference: ShaburovAAAsymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral performance index and smooth control constraintsIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2017502110120367833810.20537/2226-3594-2017-50-09
– reference: DanilinARKovrizhnykhOOAsymptotics of the solution to a singularly perturbed time-optimal control problem with two small parametersProc. Steklov Inst. Math.2020309Suppl. 1S10S2310.1134/S0081543820040033
– reference: NguyenTHAsymptotic solution of a singularly perturbed optimal problem with integral constraintJ. Optim. Theory Appl.20211903931950431067710.1007/s10957-021-01916-w
– reference: DanilinARIl’inAMOn the structure of the solution of a perturbed time-optimal problemFundam. Prikl. Mat.1998439059261800042
– reference: ParyshevaYuVAsymptotics of a solution to a linear optimal control problem in the singular caseTr. Inst. Mat. Mekh. UrO RAN2011173266270
– reference: DanilinARAsymptotics of the optimal value of the performance functional for a rapidly stabilizing indirect control in the regular caseDiffer. Equations2006421115451552234707710.1134/S0012266106110048
– reference: KurinaGAKalashnikovaMASingularly perturbed problems with multi-tempo fast variablesAutom. Remote Control2022831116791723455540510.1134/S00051179220110017
– reference: LeeEBMarkusLFoundations of Optimal Control Theory1967New YorkWiley
– reference: ZhangYNaiduDSCaiCZouYSingular perturbations and time scales in control theories and applications: An overview 2002–2012Int. J. Inf. Syst. Sci.201491136
– volume-title: Theory of Motion Control: Linear Systems
  year: 1968
  ident: 8371_CR2
– volume: 4
  start-page: 905
  issue: 3
  year: 1998
  ident: 8371_CR4
  publication-title: Fundam. Prikl. Mat.
– volume: 83
  start-page: 1679
  issue: 11
  year: 2022
  ident: 8371_CR6
  publication-title: Autom. Remote Control
  doi: 10.1134/S00051179220110017
– volume: 17
  start-page: 266
  issue: 3
  year: 2011
  ident: 8371_CR10
  publication-title: Tr. Inst. Mat. Mekh. UrO RAN
– volume: 42
  start-page: 1545
  issue: 11
  year: 2006
  ident: 8371_CR8
  publication-title: Differ. Equations
  doi: 10.1134/S0012266106110048
– volume: 175
  start-page: 324
  issue: 2
  year: 2017
  ident: 8371_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1156-6
– volume: 67
  start-page: 1
  issue: 1
  year: 2006
  ident: 8371_CR5
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117906010012
– volume: 46
  start-page: 2068
  issue: 12
  year: 2006
  ident: 8371_CR9
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542506120062
– volume-title: A Short Course in the Theory of Extremal Problems
  year: 1989
  ident: 8371_CR7
– volume: 24
  start-page: 119
  issue: 125
  year: 2019
  ident: 8371_CR12
  publication-title: Vestn. Ross. Univ. Mat.
  doi: 10.20310/1810-0198-2019-24-125-119-136
– volume-title: The Mathematical Theory of Optimal Processes
  year: 1961
  ident: 8371_CR1
– volume-title: Foundations of Optimal Control Theory
  year: 1967
  ident: 8371_CR3
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  ident: 8371_CR13
  publication-title: Int. J. Inf. Syst. Sci.
– volume: 309
  start-page: S10
  issue: Suppl. 1
  year: 2020
  ident: 8371_CR16
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543820040033
– volume: 190
  start-page: 931
  issue: 3
  year: 2021
  ident: 8371_CR15
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-021-01916-w
– volume: 50
  start-page: 110
  issue: 2
  year: 2017
  ident: 8371_CR11
  publication-title: Izv. Inst. Mat. Inform. Udmurt. Gos. Univ.
  doi: 10.20537/2226-3594-2017-50-09
SSID ssj0045749
Score 2.2706997
Snippet In this paper, we investigate a problem of optimal control over a finite time interval for a linear system with constant coefficients and a small parameter in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage S85
SubjectTerms Asymptotic properties
Geometric constraints
Mathematics
Mathematics and Statistics
Optimal control
Parameters
Performance indices
Rational functions
Title Asymptotics of a Solution to an Optimal Control Problem with a Terminal Convex Performance Index and a Perturbation of the Initial Data
URI https://link.springer.com/article/10.1134/S008154382306007X
https://www.proquest.com/docview/2925544452
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzILtAgfeiPFSDpxARVmbrMlxGxsDBOwwpHGqkjSVELAhVhDwA_w2Th9MvA4cW6duWjt-xI4NsEcVpVZS6SlVVx5LpPUEEy5pnEkjQ25MVsD0_KLRu2KnQz4sznFPymz3MiSZSeq87wjLzvSivndxK-qKqg9noYrmB_UrUG0eX591SgHMeFhYvaLuuQeKYOavSL6qo6mN-S0smmmb7iIMynnmSSa3h0-pPjRv30o4_vNDlmChsD5JM2eXZZixoxWYP_8s3TpZhffm5PX-IR27KzJOiCLlzhlJx0SNyCUKmXtE0s6T3Ek_b0lD3I4ujh7k2TUZ_Nm-kP70ZAI5caUZEUeM4_A-ajudMYZ7D04B4TcocO7IkUrVGlx1O4N2zyu6NXjGb4jU04luNBIbaD9haFOFLkQrcHlrq5Wp2zDWhvqxSKTURgtpkphqLqiRth4LKlSwDpXReGQ3gMToh2pLA65iyQyXwoqYh4ZT3xoW-LwG-yXRooe8KEeUOTMBi3783Rpsl2SNivU5iXyJrhRjjPs1OCipNAX_iWzzX6O3YM51p8-zX7ahkj4-2R20YVK9izzbbbUudgve_QAo_ejq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1JTsMwcATlABzYEYUCPnACBbmJ3djHqixlKXAoUjlFtuNICNoiGhDwAb7NOAsV24Fj4snEydizeDaAHaootZJKT6m68lgirSeYcEHjTBoZcmOyAqadi0b7mp32eK_I4x6V0e6lSzLj1HnfEZbl9KK8d34r6oqq9yZhiqEJziow1Ty-OTssGTDjYaH1irrnHiicmb8i-SqOxjrmN7doJm2O5qFbzjMPMrnbf0r1vnn7VsLxnx-yAHOF9kma-XJZhAk7WILZzmfp1tEyvDdHr_2HdOiuyDAhipQnZyQdEjUgl8hk-oiklQe5k6u8JQ1xJ7oI3c2ja7LxZ_tCrsaZCeTElWZEHDHC4X2UdjpbGO49OAUcv0WGc08OVKpW4ProsNtqe0W3Bs_4DZF6OtGNRmID7ScMdarQuWgFbm9ttTJ1G8baUD8WiZTaaCFNElPNBTXS1mNBhQpWoTIYDuwakBjtUG1pwFUsmeFSWBHz0HDqW8MCn1dhtyRa9JAX5YgyYyZg0Y-_W4VaSdao2J-jyJdoSjHGuF-FvZJK4-E_ka3_C3obptvdznl0fnJxtgEzrlN9HglTg0r6-GQ3UZ9J9Vaxfj8A8FrqXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBGDATlwAhWyNlmT4zQYb9gBpHEqeVVCQDexgoA_wN8m6YOJ1wFxbJO6ae3Edux8BtjAAmPDMfeEqAuPxNx4jDCXNE644iFVKgMwPT1rHFySoy7tFnVOB2W2exmSzM80OJSmJN3p67ioQUKy871W97sYFnYA691RGCMOm70CY839q-O9cjEmNCwsYFb33ANFYPNHIp9V09De_BIizTRPexquyzHnCSe324-p3FavX-Ac__FRMzBVWKWomYvRLIyYZA4mTz8gXQfz8NYcvNz30567Qr0YCVTuqKG0h0SCzu3ic2-JtPLkd9TJS9Ugt9Nre1_kWTdZ-5N5Rp3hiQV06CAbLQ1t-9n7VgvKTGDce-wQbPuNXYju0K5IxQJctvcuWgdeUcXBU36DpZ6MZaMRm0D6MbG2VuhCt8xOe2mkUHUTaqmwr1nMuVSScRVrLCnDipu6ZpiJYBEqSS8xS4C09U-lwQEVmhNFOTNM01BR7BtFAp9WYbNkYNTPwTqizMkJSPTt71ahVrI4KubtIPK5dbEIIdSvwlbJsWHzr8SW_9R7HcY7u-3o5PDseAUmXAH7PEGmBpX04dGsWjMnlWuFKL8DNtnzQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=Asymptotics+of+a+Solution+to+an+Optimal+Control+Problem+with+a+Terminal+Convex+Performance+Index+and+a+Perturbation+of+the+Initial+Data&rft.au=Danilin%2C+A+R&rft.au=Kovrizhnykh%2C+O+O&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=323&rft.issue=1&rft.spage=S85&rft.epage=S97&rft_id=info:doi/10.1134%2FS008154382306007X&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon