Color Models Aware Dynamic Feature Extraction for Forest Fire Detection Using Machine Learning Classifiers
The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an...
Saved in:
Published in | Automatic control and computer sciences Vol. 57; no. 6; pp. 627 - 637 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YC
b
C
r
color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models. |
---|---|
AbstractList | The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YC
b
C
r
color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models. The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YCbCr color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models. |
Author | Avudaiammal, R. Durai Raji V. Rajangam, Vijayarajan Senthil Kumar S. |
Author_xml | – sequence: 1 givenname: R. surname: Avudaiammal fullname: Avudaiammal, R. organization: Department of Electronics and Communication Engineering, St. Joseph’s College of Engineering – sequence: 2 givenname: Vijayarajan surname: Rajangam fullname: Rajangam, Vijayarajan email: viraj2k@gmail.com organization: Centre for Healthcare Advancement, Innovation and Research, SENSE, Vellore Institute of Technology – sequence: 3 surname: Durai Raji V. fullname: Durai Raji V. organization: Department of Computer Science and Engineering, St. Joseph’s College of Engineering – sequence: 4 surname: Senthil Kumar S. fullname: Senthil Kumar S. organization: Department of Electronics and Communication Engineering, Er. Perumal Manimekalai College of Engineering |
BookMark | eNp1kF1LwzAUhoNMcJv-AO8CXlfz1TS5HHVVYcMLHXhX0jadGV0ykw7dvzelghfi1eGc93nP1wxMrLMagGuMbilG9O4FYcYZxpxQxBEi6AxMcZqKBCPxNgHTQU4G_QLMQtghFDXBp2CXu855uHaN7gJcfCqv4f3Jqr2pYaFVf4z58qv3qu6Ns7CNbOG8Dj0szIDqXo_KJhi7hWtVvxur4Uorb4dC3qkQTGu0D5fgvFVd0Fc_cQ42xfI1f0xWzw9P-WKV1ISLPqkYklrqJqNIsqptEKlUw7OUSSoESgXDaSbjyYRJyRVROFINU20laq2yDNM5uBn7Hrz7OMZVy507ehtHlkRIxiinDEUKj1TtXQhet-XBm73ypxKjcnhp-eel0UNGT4is3Wr_2_l_0zdpJXkG |
Cites_doi | 10.17632/gjmr63rz2r.1 10.1016/j.tree.2005.04.025 10.1016/j.firesaf.2019.01.006 10.1108/09653560710758297 10.1139/er-2020-0019 10.1016/j.firesaf.2006.02.001 10.4218/etrij.10.0109.0695 10.1155/2018/7612487 10.3390/s16060893 10.1016/j.procs.2013.06.104 10.1016/j.firesaf.2008.05.005 10.1139/cjfr-2019-0094 10.3390/s20226442 10.1016/j.imavis.2007.07.002 10.1109/iccar.2018.8384711 10.1109/ICIP.2004.1421401 10.4028/www.scientific.net/AMR.518-523.5257 10.1109/iccpct.2014.7054883 10.1109/MHS.1999.820014 |
ContentType | Journal Article |
Copyright | Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 6, pp. 627–637. © Allerton Press, Inc., 2023. |
Copyright_xml | – notice: Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 6, pp. 627–637. © Allerton Press, Inc., 2023. |
DBID | AAYXX CITATION |
DOI | 10.3103/S0146411623060020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-108X |
EndPage | 637 |
ExternalDocumentID | 10_3103_S0146411623060020 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACCUX ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFFNX AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9O PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 XU3 YLTOR Z7R Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c268t-b409e9ed73094bfd02bad675493880584157910324996a2a194bd4afb8cea7713 |
IEDL.DBID | U2A |
ISSN | 0146-4116 |
IngestDate | Thu Oct 10 17:41:46 EDT 2024 Thu Sep 12 19:21:27 EDT 2024 Sat Dec 16 12:04:04 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | forest fire precision accuracy KNN color models SVM machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-b409e9ed73094bfd02bad675493880584157910324996a2a194bd4afb8cea7713 |
PQID | 2894436340 |
PQPubID | 2043879 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2894436340 crossref_primary_10_3103_S0146411623060020 springer_journals_10_3103_S0146411623060020 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Automatic control and computer sciences |
PublicationTitleAbbrev | Aut. Control Comp. Sci |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Çelik, Demirel (CR10) 2009; 44 Pradhan, Dini Hairi Bin Suliman, Arshad Bin Awang (CR3) 2007; 16 CR4 CR6 Mahmoud, Ren (CR16) 2018; 2018 CR8 Vartak, Patil, Randive, Kawitkwar (CR12) 2019; 8 Martinez-De Dios, Arrue, Ollero, Merino, Gómez-Rodríguez (CR20) 2008; 26 CR7 Khan, Hassan (CR22) 2020 Coogan, Robinne, Jain, Flannigan (CR2) 2019; 49 CR15 Vipin (CR21) 2012; 2 Bouabdellah, Noureddine, Larbi (CR14) 2013; 19 Cruz, Eckert, Meneses, Martínez (CR17) 2016; 16 CR11 Sayad (CR18) 2019; 104 Jain, Coogan, Subramanian, Crowley, Taylor, Flannigan (CR5) 2020; 28 Marbach, Loepfe, Brupbacher (CR9) 2005; 41 Celik (CR13) 2010; 32 Bond, Keeley (CR1) 2005; 20 Barmpoutis, Papaioannou, Dimitropoulos, Grammalidis (CR19) 2020; 20 H. Cruz (7623_CR17) 2016; 16 7623_CR11 K. Bouabdellah (7623_CR14) 2013; 19 S.M. Vartak (7623_CR12) 2019; 8 T. Celik (7623_CR13) 2010; 32 P. Barmpoutis (7623_CR19) 2020; 20 W.J. Bond (7623_CR1) 2005; 20 J.R. Martinez-De Dios (7623_CR20) 2008; 26 P. Jain (7623_CR5) 2020; 28 S.C. Coogan (7623_CR2) 2019; 49 B. Pradhan (7623_CR3) 2007; 16 7623_CR8 7623_CR6 7623_CR7 7623_CR4 A. Khan (7623_CR22) 2020 V. Vipin (7623_CR21) 2012; 2 G. Marbach (7623_CR9) 2005; 41 7623_CR15 Yo Sayad (7623_CR18) 2019; 104 T. Çelik (7623_CR10) 2009; 44 M.A.I. Mahmoud (7623_CR16) 2018; 2018 |
References_xml | – ident: CR4 – ident: CR15 – year: 2020 ident: CR22 publication-title: Dataset for forest fire detection doi: 10.17632/gjmr63rz2r.1 contributor: fullname: Hassan – volume: 20 start-page: 387 year: 2005 end-page: 394 ident: CR1 article-title: Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.04.025 contributor: fullname: Keeley – volume: 104 start-page: 130 year: 2019 end-page: 146 ident: CR18 article-title: O., Mousannif, H., and Al Moatassime, H., Predictive modeling of wildfires: A new dataset and machine learning approach publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.01.006 contributor: fullname: Sayad – volume: 16 start-page: 344 year: 2007 end-page: 352 ident: CR3 article-title: Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS), publication-title: An Int. J. doi: 10.1108/09653560710758297 contributor: fullname: Arshad Bin Awang – volume: 28 start-page: 478 year: 2020 end-page: 505 ident: CR5 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. doi: 10.1139/er-2020-0019 contributor: fullname: Flannigan – volume: 41 start-page: 285 year: 2005 end-page: 289 ident: CR9 article-title: An image processing technique for fire detection in video images publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2006.02.001 contributor: fullname: Brupbacher – ident: CR11 – volume: 8 start-page: 115 year: 2019 end-page: 118 ident: CR12 article-title: Fire detection publication-title: Int. J. Comput. Sci. Mobile Comput. contributor: fullname: Kawitkwar – volume: 32 start-page: 881 year: 2010 end-page: 890 ident: CR13 article-title: Fast and efficient method for fire detection using image processing publication-title: ETRI J. doi: 10.4218/etrij.10.0109.0695 contributor: fullname: Celik – volume: 2018 start-page: 7612487 year: 2018 ident: CR16 article-title: Forest fire detection using a rule-based image processing algorithm and temporal variation publication-title: Math. Probl. Eng. doi: 10.1155/2018/7612487 contributor: fullname: Ren – ident: CR6 – volume: 16 start-page: 893 year: 2016 ident: CR17 article-title: Efficient forest fire detection index for application in unmanned aerial systems (UASs) publication-title: Sensors doi: 10.3390/s16060893 contributor: fullname: Martínez – volume: 19 start-page: 794 year: 2013 end-page: 801 ident: CR14 article-title: Using wireless sensor networks for reliable forest fires detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.06.104 contributor: fullname: Larbi – volume: 44 start-page: 147 year: 2009 end-page: 158 ident: CR10 article-title: Fire detection in video sequences using a generic color model publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2008.05.005 contributor: fullname: Demirel – ident: CR7 – ident: CR8 – volume: 49 start-page: 1015 year: 2019 end-page: 1023 ident: CR2 article-title: Scientists’ warning on wildfire—A Canadian perspective publication-title: Can. J. Forest Res. doi: 10.1139/cjfr-2019-0094 contributor: fullname: Flannigan – volume: 2 start-page: 87 year: 2012 end-page: 95 ident: CR21 article-title: Glass defect detection based on image processing publication-title: Int. J. Emerging Technol. Adv. Eng. contributor: fullname: Vipin – volume: 20 start-page: 6442 year: 2020 ident: CR19 article-title: A review on early forest fire detection systems using optical remote sensing publication-title: Sensors doi: 10.3390/s20226442 contributor: fullname: Grammalidis – volume: 26 start-page: 550 year: 2008 end-page: 562 ident: CR20 article-title: Computer vision techniques for forest fire perception publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2007.07.002 contributor: fullname: Gómez-Rodríguez – ident: 7623_CR4 doi: 10.1109/iccar.2018.8384711 – volume: 2018 start-page: 7612487 year: 2018 ident: 7623_CR16 publication-title: Math. Probl. Eng. doi: 10.1155/2018/7612487 contributor: fullname: M.A.I. Mahmoud – volume: 44 start-page: 147 year: 2009 ident: 7623_CR10 publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2008.05.005 contributor: fullname: T. Çelik – ident: 7623_CR8 – ident: 7623_CR15 doi: 10.1109/ICIP.2004.1421401 – volume: 32 start-page: 881 year: 2010 ident: 7623_CR13 publication-title: ETRI J. doi: 10.4218/etrij.10.0109.0695 contributor: fullname: T. Celik – volume: 26 start-page: 550 year: 2008 ident: 7623_CR20 publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2007.07.002 contributor: fullname: J.R. Martinez-De Dios – ident: 7623_CR7 doi: 10.4028/www.scientific.net/AMR.518-523.5257 – volume: 16 start-page: 344 year: 2007 ident: 7623_CR3 publication-title: An Int. J. doi: 10.1108/09653560710758297 contributor: fullname: B. Pradhan – volume: 16 start-page: 893 year: 2016 ident: 7623_CR17 publication-title: Sensors doi: 10.3390/s16060893 contributor: fullname: H. Cruz – volume: 20 start-page: 6442 year: 2020 ident: 7623_CR19 publication-title: Sensors doi: 10.3390/s20226442 contributor: fullname: P. Barmpoutis – volume: 41 start-page: 285 year: 2005 ident: 7623_CR9 publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2006.02.001 contributor: fullname: G. Marbach – volume: 19 start-page: 794 year: 2013 ident: 7623_CR14 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.06.104 contributor: fullname: K. Bouabdellah – ident: 7623_CR11 doi: 10.1109/iccpct.2014.7054883 – volume: 2 start-page: 87 year: 2012 ident: 7623_CR21 publication-title: Int. J. Emerging Technol. Adv. Eng. contributor: fullname: V. Vipin – volume-title: Dataset for forest fire detection year: 2020 ident: 7623_CR22 doi: 10.17632/gjmr63rz2r.1 contributor: fullname: A. Khan – ident: 7623_CR6 doi: 10.1109/MHS.1999.820014 – volume: 49 start-page: 1015 year: 2019 ident: 7623_CR2 publication-title: Can. J. Forest Res. doi: 10.1139/cjfr-2019-0094 contributor: fullname: S.C. Coogan – volume: 8 start-page: 115 year: 2019 ident: 7623_CR12 publication-title: Int. J. Comput. Sci. Mobile Comput. contributor: fullname: S.M. Vartak – volume: 28 start-page: 478 year: 2020 ident: 7623_CR5 publication-title: Environ. Rev. doi: 10.1139/er-2020-0019 contributor: fullname: P. Jain – volume: 104 start-page: 130 year: 2019 ident: 7623_CR18 publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.01.006 contributor: fullname: Yo Sayad – volume: 20 start-page: 387 year: 2005 ident: 7623_CR1 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.04.025 contributor: fullname: W.J. Bond |
SSID | ssj0055886 |
Score | 2.314399 |
Snippet | The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 627 |
SubjectTerms | Accuracy Algorithms Classifiers Color Computer Science Control Structures and Microprogramming Ecological effects False alarms Feature extraction Forest & brush fires Forest fire detection Machine learning Support vector machines |
Title | Color Models Aware Dynamic Feature Extraction for Forest Fire Detection Using Machine Learning Classifiers |
URI | https://link.springer.com/article/10.3103/S0146411623060020 https://www.proquest.com/docview/2894436340 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgUUAUCvLABAo0ie3WY1RaKhBMVIIpshMH8VBAaRD8fO6chDcDY-STB198_r748n0Ae5kSgQ66qSeEkR7v6cRTymYet4HuKzwzrHZqnxdyPOGnV-JqBoL3Txf5_WFzI-kKtaOV3fCIupAk931JmJlAzizMC1JDw3d4EkRN9RWi79wdKdqj8Oom8_cpvp5FHwDz252oO2pGK7BUY0QWVUldhRmbt2C58V9g9XZsweInMcE1uBtgHSsYmZs9TFn0ogvLjiu_eUZA7xmfh69lUf3JwBCsMvLlnJZsdEuhtrTViOsiYOeuy9KyWoD1hjn7zNuMrLPXYTIaXg7GXu2k4CWB7JeeQRZnlU1xOytusrQbGJ0iVeCKtGAQg_iip0haD_mP1IH2MSrlOjP9xOoe8tgNmMsfc7sJjPgG1gXZk4nhYeIrI4UJOfFCyZWftWG_WdP4qRLMiJFoUALiHwloQ6dZ9bjeO9MYKSDnoQw5Dh80mfgY_nOyrX9Fb8MCOcdXnSkdmCuLZ7uD-KI0uzAfnVyfDXfdi_UGqHrETQ |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHUdSIovbgSTNkW9etR4IgyscJEjwt7dYZ1KCBEY1_va_7iIp64Nj0tdn68fr7pa_vB3AecccSVj00HEcyg7oiMDhXkUGVJTyOZ4YSSbbPAeuM6N3YGWfvuOd5tHt-JZl46oRX1u0rHYbEqGkyDZo1ylmHIrWwWIBi4-a-28odsON4icCjtjd0g_Qy8-9Ofh5HXxhz6Vo0OW3aJRjm35kGmTzVFrGsBR9LKRxX_JEd2M7QJ2mky2UX1tS0DKVc2YFkG70MW9_SFO7BYxM95Ixo2bTnOWm8iZki16mSPdEQcoHl1ns8S99IEITBRCt-zmPSnmhTFau0JolPIP0kflORLLXrA0mEOSeRFuXeh1G7NWx2jEyjwQgs5sWGRH6ouArRUXAqo7BuSREiCaFcZ5lBdGM6LtdJ-5BZMWEJE61CKiLpBUq4yJAPoDB9mapDIJrJoMdhLgsktQOTS-ZIm2rGySg3owpc5FPlv6apOHykMHpM_V9jWoFqPpl-tivnPpJLSm1mU6y-zOfmq_rfzo5Wsj6Djc6w3_N7t4PuMWxqffo0_qUKhXi2UCeIYmJ5mq3aTx0I4rc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT8IwFL1RSIw-iKJGFLUPPmkmbOsKfSR8iF_EB0nwabZbZ1CDBEY0_np71y34-WB8XHq3bG13e056ew7AYcQ9RzjV0PI8ySxaE4HFuYosqhxR53rNUCJR--yxbp-eD7xB6nM6zardsy1Jc6YBVZpGcWUcRpWEY1bdCpYkMWrbDAE0Ip5FyFMURspBvnF6e9HOkrHn1ROzR4y38AazsfnzQz4vTXO8-WWLNFl5OgW4y97ZFJw8nsxieRK8fZFz_MdHrcFqikpJw0yjdVhQoyIUMscHkiaAIqx8kC_cgIemzpwTgnZqT1PSeBETRVrG4Z4gtJzp6_ZrPDFnJ4iGxwSdQKcx6QwxVMXKtCR1C-QqqetUJJV8vSeJYecwQrPuTeh32jfNrpV6N1iBw-qxJTVvVFyFOoFwKqOw6kgRanJCOarPaNRjezWOYn6acTHhCFtHhVREsh4oUdPMeQtyo-eR2gaCDEdnIlZjgaRuYHPJPOlSZKKMcjsqwVE2bP7YSHT4mtpgn_rf-rQE5Wxg_fRvnfqadFLqMpfq5uNsnObNvz5s50_RB7B03er4l2e9i11YRtt6UxZThlw8mak9DW5iuZ9O4HcS1uub |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+Models+Aware+Dynamic+Feature+Extraction+for+Forest+Fire+Detection+Using+Machine+Learning+Classifiers&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Avudaiammal%2C+R.&rft.au=Rajangam%2C+Vijayarajan&rft.au=Durai+Raji+V.&rft.au=Senthil+Kumar+S.&rft.date=2023-12-01&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=57&rft.issue=6&rft.spage=627&rft.epage=637&rft_id=info:doi/10.3103%2FS0146411623060020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0146411623060020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon |