Color Models Aware Dynamic Feature Extraction for Forest Fire Detection Using Machine Learning Classifiers

The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an...

Full description

Saved in:
Bibliographic Details
Published inAutomatic control and computer sciences Vol. 57; no. 6; pp. 627 - 637
Main Authors Avudaiammal, R., Rajangam, Vijayarajan, Durai Raji V., Senthil Kumar S.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YC b C r color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models.
AbstractList The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YC b C r color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models.
The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and ecological losses. Hence, preserving forest resources from fires is very essential to reduce environmental disasters. Controlling forest fire at an early stage is necessary to control their spread. This requirement enforces the necessity of fast and reliable fire detection algorithms. In this paper, a color models aware dynamic feature extraction for forest fire detection using machine learning classifiers is proposed to achieve early detection of fire and reduced false alarm rate. The proposed algorithm extracts fire detection index, wavelet energy, and gray level co-occurrence matrix features from RGB, L*a*b*, and YCbCr color models respectively to train the machine learning classifiers. The performance of the proposed model is analysed using various machine learning algorithms and the standard classification metrics. The proposed color-aware feature extraction gives precision, recall, F1-score, and accuracy of 99, 95, 94, and 97% respectively for the K-nearest neighbourhood model. The support vector machine model delivers 98, 95, 93, and 96.5% respectively. The accuracy of the proposed model is improved by a minimum of 3%, and a maximum of 11% than other color models. Similarly, the false rate reduction is a minimum of 5% and a maximum of 17% than other models.
Author Avudaiammal, R.
Durai Raji V.
Rajangam, Vijayarajan
Senthil Kumar S.
Author_xml – sequence: 1
  givenname: R.
  surname: Avudaiammal
  fullname: Avudaiammal, R.
  organization: Department of Electronics and Communication Engineering, St. Joseph’s College of Engineering
– sequence: 2
  givenname: Vijayarajan
  surname: Rajangam
  fullname: Rajangam, Vijayarajan
  email: viraj2k@gmail.com
  organization: Centre for Healthcare Advancement, Innovation and Research, SENSE, Vellore Institute of Technology
– sequence: 3
  surname: Durai Raji V.
  fullname: Durai Raji V.
  organization: Department of Computer Science and Engineering, St. Joseph’s College of Engineering
– sequence: 4
  surname: Senthil Kumar S.
  fullname: Senthil Kumar S.
  organization: Department of Electronics and Communication Engineering, Er. Perumal Manimekalai College of Engineering
BookMark eNp1kF1LwzAUhoNMcJv-AO8CXlfz1TS5HHVVYcMLHXhX0jadGV0ykw7dvzelghfi1eGc93nP1wxMrLMagGuMbilG9O4FYcYZxpxQxBEi6AxMcZqKBCPxNgHTQU4G_QLMQtghFDXBp2CXu855uHaN7gJcfCqv4f3Jqr2pYaFVf4z58qv3qu6Ns7CNbOG8Dj0szIDqXo_KJhi7hWtVvxur4Uorb4dC3qkQTGu0D5fgvFVd0Fc_cQ42xfI1f0xWzw9P-WKV1ISLPqkYklrqJqNIsqptEKlUw7OUSSoESgXDaSbjyYRJyRVROFINU20laq2yDNM5uBn7Hrz7OMZVy507ehtHlkRIxiinDEUKj1TtXQhet-XBm73ypxKjcnhp-eel0UNGT4is3Wr_2_l_0zdpJXkG
Cites_doi 10.17632/gjmr63rz2r.1
10.1016/j.tree.2005.04.025
10.1016/j.firesaf.2019.01.006
10.1108/09653560710758297
10.1139/er-2020-0019
10.1016/j.firesaf.2006.02.001
10.4218/etrij.10.0109.0695
10.1155/2018/7612487
10.3390/s16060893
10.1016/j.procs.2013.06.104
10.1016/j.firesaf.2008.05.005
10.1139/cjfr-2019-0094
10.3390/s20226442
10.1016/j.imavis.2007.07.002
10.1109/iccar.2018.8384711
10.1109/ICIP.2004.1421401
10.4028/www.scientific.net/AMR.518-523.5257
10.1109/iccpct.2014.7054883
10.1109/MHS.1999.820014
ContentType Journal Article
Copyright Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 6, pp. 627–637. © Allerton Press, Inc., 2023.
Copyright_xml – notice: Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 6, pp. 627–637. © Allerton Press, Inc., 2023.
DBID AAYXX
CITATION
DOI 10.3103/S0146411623060020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 637
ExternalDocumentID 10_3103_S0146411623060020
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACCUX
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
Z7R
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c268t-b409e9ed73094bfd02bad675493880584157910324996a2a194bd4afb8cea7713
IEDL.DBID U2A
ISSN 0146-4116
IngestDate Thu Oct 10 17:41:46 EDT 2024
Thu Sep 12 19:21:27 EDT 2024
Sat Dec 16 12:04:04 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords forest fire
precision
accuracy
KNN
color models
SVM
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-b409e9ed73094bfd02bad675493880584157910324996a2a194bd4afb8cea7713
PQID 2894436340
PQPubID 2043879
PageCount 11
ParticipantIDs proquest_journals_2894436340
crossref_primary_10_3103_S0146411623060020
springer_journals_10_3103_S0146411623060020
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Çelik, Demirel (CR10) 2009; 44
Pradhan, Dini Hairi Bin Suliman, Arshad Bin Awang (CR3) 2007; 16
CR4
CR6
Mahmoud, Ren (CR16) 2018; 2018
CR8
Vartak, Patil, Randive, Kawitkwar (CR12) 2019; 8
Martinez-De Dios, Arrue, Ollero, Merino, Gómez-Rodríguez (CR20) 2008; 26
CR7
Khan, Hassan (CR22) 2020
Coogan, Robinne, Jain, Flannigan (CR2) 2019; 49
CR15
Vipin (CR21) 2012; 2
Bouabdellah, Noureddine, Larbi (CR14) 2013; 19
Cruz, Eckert, Meneses, Martínez (CR17) 2016; 16
CR11
Sayad (CR18) 2019; 104
Jain, Coogan, Subramanian, Crowley, Taylor, Flannigan (CR5) 2020; 28
Marbach, Loepfe, Brupbacher (CR9) 2005; 41
Celik (CR13) 2010; 32
Bond, Keeley (CR1) 2005; 20
Barmpoutis, Papaioannou, Dimitropoulos, Grammalidis (CR19) 2020; 20
H. Cruz (7623_CR17) 2016; 16
7623_CR11
K. Bouabdellah (7623_CR14) 2013; 19
S.M. Vartak (7623_CR12) 2019; 8
T. Celik (7623_CR13) 2010; 32
P. Barmpoutis (7623_CR19) 2020; 20
W.J. Bond (7623_CR1) 2005; 20
J.R. Martinez-De Dios (7623_CR20) 2008; 26
P. Jain (7623_CR5) 2020; 28
S.C. Coogan (7623_CR2) 2019; 49
B. Pradhan (7623_CR3) 2007; 16
7623_CR8
7623_CR6
7623_CR7
7623_CR4
A. Khan (7623_CR22) 2020
V. Vipin (7623_CR21) 2012; 2
G. Marbach (7623_CR9) 2005; 41
7623_CR15
Yo Sayad (7623_CR18) 2019; 104
T. Çelik (7623_CR10) 2009; 44
M.A.I. Mahmoud (7623_CR16) 2018; 2018
References_xml – ident: CR4
– ident: CR15
– year: 2020
  ident: CR22
  publication-title: Dataset for forest fire detection
  doi: 10.17632/gjmr63rz2r.1
  contributor:
    fullname: Hassan
– volume: 20
  start-page: 387
  year: 2005
  end-page: 394
  ident: CR1
  article-title: Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.04.025
  contributor:
    fullname: Keeley
– volume: 104
  start-page: 130
  year: 2019
  end-page: 146
  ident: CR18
  article-title: O., Mousannif, H., and Al Moatassime, H., Predictive modeling of wildfires: A new dataset and machine learning approach
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.01.006
  contributor:
    fullname: Sayad
– volume: 16
  start-page: 344
  year: 2007
  end-page: 352
  ident: CR3
  article-title: Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS),
  publication-title: An Int. J.
  doi: 10.1108/09653560710758297
  contributor:
    fullname: Arshad Bin Awang
– volume: 28
  start-page: 478
  year: 2020
  end-page: 505
  ident: CR5
  article-title: A review of machine learning applications in wildfire science and management
  publication-title: Environ. Rev.
  doi: 10.1139/er-2020-0019
  contributor:
    fullname: Flannigan
– volume: 41
  start-page: 285
  year: 2005
  end-page: 289
  ident: CR9
  article-title: An image processing technique for fire detection in video images
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2006.02.001
  contributor:
    fullname: Brupbacher
– ident: CR11
– volume: 8
  start-page: 115
  year: 2019
  end-page: 118
  ident: CR12
  article-title: Fire detection
  publication-title: Int. J. Comput. Sci. Mobile Comput.
  contributor:
    fullname: Kawitkwar
– volume: 32
  start-page: 881
  year: 2010
  end-page: 890
  ident: CR13
  article-title: Fast and efficient method for fire detection using image processing
  publication-title: ETRI J.
  doi: 10.4218/etrij.10.0109.0695
  contributor:
    fullname: Celik
– volume: 2018
  start-page: 7612487
  year: 2018
  ident: CR16
  article-title: Forest fire detection using a rule-based image processing algorithm and temporal variation
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/7612487
  contributor:
    fullname: Ren
– ident: CR6
– volume: 16
  start-page: 893
  year: 2016
  ident: CR17
  article-title: Efficient forest fire detection index for application in unmanned aerial systems (UASs)
  publication-title: Sensors
  doi: 10.3390/s16060893
  contributor:
    fullname: Martínez
– volume: 19
  start-page: 794
  year: 2013
  end-page: 801
  ident: CR14
  article-title: Using wireless sensor networks for reliable forest fires detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.06.104
  contributor:
    fullname: Larbi
– volume: 44
  start-page: 147
  year: 2009
  end-page: 158
  ident: CR10
  article-title: Fire detection in video sequences using a generic color model
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2008.05.005
  contributor:
    fullname: Demirel
– ident: CR7
– ident: CR8
– volume: 49
  start-page: 1015
  year: 2019
  end-page: 1023
  ident: CR2
  article-title: Scientists’ warning on wildfire—A Canadian perspective
  publication-title: Can. J. Forest Res.
  doi: 10.1139/cjfr-2019-0094
  contributor:
    fullname: Flannigan
– volume: 2
  start-page: 87
  year: 2012
  end-page: 95
  ident: CR21
  article-title: Glass defect detection based on image processing
  publication-title: Int. J. Emerging Technol. Adv. Eng.
  contributor:
    fullname: Vipin
– volume: 20
  start-page: 6442
  year: 2020
  ident: CR19
  article-title: A review on early forest fire detection systems using optical remote sensing
  publication-title: Sensors
  doi: 10.3390/s20226442
  contributor:
    fullname: Grammalidis
– volume: 26
  start-page: 550
  year: 2008
  end-page: 562
  ident: CR20
  article-title: Computer vision techniques for forest fire perception
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2007.07.002
  contributor:
    fullname: Gómez-Rodríguez
– ident: 7623_CR4
  doi: 10.1109/iccar.2018.8384711
– volume: 2018
  start-page: 7612487
  year: 2018
  ident: 7623_CR16
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/7612487
  contributor:
    fullname: M.A.I. Mahmoud
– volume: 44
  start-page: 147
  year: 2009
  ident: 7623_CR10
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2008.05.005
  contributor:
    fullname: T. Çelik
– ident: 7623_CR8
– ident: 7623_CR15
  doi: 10.1109/ICIP.2004.1421401
– volume: 32
  start-page: 881
  year: 2010
  ident: 7623_CR13
  publication-title: ETRI J.
  doi: 10.4218/etrij.10.0109.0695
  contributor:
    fullname: T. Celik
– volume: 26
  start-page: 550
  year: 2008
  ident: 7623_CR20
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2007.07.002
  contributor:
    fullname: J.R. Martinez-De Dios
– ident: 7623_CR7
  doi: 10.4028/www.scientific.net/AMR.518-523.5257
– volume: 16
  start-page: 344
  year: 2007
  ident: 7623_CR3
  publication-title: An Int. J.
  doi: 10.1108/09653560710758297
  contributor:
    fullname: B. Pradhan
– volume: 16
  start-page: 893
  year: 2016
  ident: 7623_CR17
  publication-title: Sensors
  doi: 10.3390/s16060893
  contributor:
    fullname: H. Cruz
– volume: 20
  start-page: 6442
  year: 2020
  ident: 7623_CR19
  publication-title: Sensors
  doi: 10.3390/s20226442
  contributor:
    fullname: P. Barmpoutis
– volume: 41
  start-page: 285
  year: 2005
  ident: 7623_CR9
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2006.02.001
  contributor:
    fullname: G. Marbach
– volume: 19
  start-page: 794
  year: 2013
  ident: 7623_CR14
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.06.104
  contributor:
    fullname: K. Bouabdellah
– ident: 7623_CR11
  doi: 10.1109/iccpct.2014.7054883
– volume: 2
  start-page: 87
  year: 2012
  ident: 7623_CR21
  publication-title: Int. J. Emerging Technol. Adv. Eng.
  contributor:
    fullname: V. Vipin
– volume-title: Dataset for forest fire detection
  year: 2020
  ident: 7623_CR22
  doi: 10.17632/gjmr63rz2r.1
  contributor:
    fullname: A. Khan
– ident: 7623_CR6
  doi: 10.1109/MHS.1999.820014
– volume: 49
  start-page: 1015
  year: 2019
  ident: 7623_CR2
  publication-title: Can. J. Forest Res.
  doi: 10.1139/cjfr-2019-0094
  contributor:
    fullname: S.C. Coogan
– volume: 8
  start-page: 115
  year: 2019
  ident: 7623_CR12
  publication-title: Int. J. Comput. Sci. Mobile Comput.
  contributor:
    fullname: S.M. Vartak
– volume: 28
  start-page: 478
  year: 2020
  ident: 7623_CR5
  publication-title: Environ. Rev.
  doi: 10.1139/er-2020-0019
  contributor:
    fullname: P. Jain
– volume: 104
  start-page: 130
  year: 2019
  ident: 7623_CR18
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.01.006
  contributor:
    fullname: Yo Sayad
– volume: 20
  start-page: 387
  year: 2005
  ident: 7623_CR1
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.04.025
  contributor:
    fullname: W.J. Bond
SSID ssj0055886
Score 2.314399
Snippet The earth’s ecology is well balanced and protected by forests. On the other hand, forest fires affect forest resources, thus causing both economical and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 627
SubjectTerms Accuracy
Algorithms
Classifiers
Color
Computer Science
Control Structures and Microprogramming
Ecological effects
False alarms
Feature extraction
Forest & brush fires
Forest fire detection
Machine learning
Support vector machines
Title Color Models Aware Dynamic Feature Extraction for Forest Fire Detection Using Machine Learning Classifiers
URI https://link.springer.com/article/10.3103/S0146411623060020
https://www.proquest.com/docview/2894436340
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xWGDgUUAUCvLABAo0ie3WY1RaKhBMVIIpshMH8VBAaRD8fO6chDcDY-STB198_r748n0Ae5kSgQ66qSeEkR7v6cRTymYet4HuKzwzrHZqnxdyPOGnV-JqBoL3Txf5_WFzI-kKtaOV3fCIupAk931JmJlAzizMC1JDw3d4EkRN9RWi79wdKdqj8Oom8_cpvp5FHwDz252oO2pGK7BUY0QWVUldhRmbt2C58V9g9XZsweInMcE1uBtgHSsYmZs9TFn0ogvLjiu_eUZA7xmfh69lUf3JwBCsMvLlnJZsdEuhtrTViOsiYOeuy9KyWoD1hjn7zNuMrLPXYTIaXg7GXu2k4CWB7JeeQRZnlU1xOytusrQbGJ0iVeCKtGAQg_iip0haD_mP1IH2MSrlOjP9xOoe8tgNmMsfc7sJjPgG1gXZk4nhYeIrI4UJOfFCyZWftWG_WdP4qRLMiJFoUALiHwloQ6dZ9bjeO9MYKSDnoQw5Dh80mfgY_nOyrX9Fb8MCOcdXnSkdmCuLZ7uD-KI0uzAfnVyfDXfdi_UGqHrETQ
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROKgHUdSIovbgSTNkW9etR4IgyscJEjwt7dYZ1KCBEY1_va_7iIp64Nj0tdn68fr7pa_vB3AecccSVj00HEcyg7oiMDhXkUGVJTyOZ4YSSbbPAeuM6N3YGWfvuOd5tHt-JZl46oRX1u0rHYbEqGkyDZo1ylmHIrWwWIBi4-a-28odsON4icCjtjd0g_Qy8-9Ofh5HXxhz6Vo0OW3aJRjm35kGmTzVFrGsBR9LKRxX_JEd2M7QJ2mky2UX1tS0DKVc2YFkG70MW9_SFO7BYxM95Ixo2bTnOWm8iZki16mSPdEQcoHl1ns8S99IEITBRCt-zmPSnmhTFau0JolPIP0kflORLLXrA0mEOSeRFuXeh1G7NWx2jEyjwQgs5sWGRH6ouArRUXAqo7BuSREiCaFcZ5lBdGM6LtdJ-5BZMWEJE61CKiLpBUq4yJAPoDB9mapDIJrJoMdhLgsktQOTS-ZIm2rGySg3owpc5FPlv6apOHykMHpM_V9jWoFqPpl-tivnPpJLSm1mU6y-zOfmq_rfzo5Wsj6Djc6w3_N7t4PuMWxqffo0_qUKhXi2UCeIYmJ5mq3aTx0I4rc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT8IwFL1RSIw-iKJGFLUPPmkmbOsKfSR8iF_EB0nwabZbZ1CDBEY0_np71y34-WB8XHq3bG13e056ew7AYcQ9RzjV0PI8ySxaE4HFuYosqhxR53rNUCJR--yxbp-eD7xB6nM6zardsy1Jc6YBVZpGcWUcRpWEY1bdCpYkMWrbDAE0Ip5FyFMURspBvnF6e9HOkrHn1ROzR4y38AazsfnzQz4vTXO8-WWLNFl5OgW4y97ZFJw8nsxieRK8fZFz_MdHrcFqikpJw0yjdVhQoyIUMscHkiaAIqx8kC_cgIemzpwTgnZqT1PSeBETRVrG4Z4gtJzp6_ZrPDFnJ4iGxwSdQKcx6QwxVMXKtCR1C-QqqetUJJV8vSeJYecwQrPuTeh32jfNrpV6N1iBw-qxJTVvVFyFOoFwKqOw6kgRanJCOarPaNRjezWOYn6acTHhCFtHhVREsh4oUdPMeQtyo-eR2gaCDEdnIlZjgaRuYHPJPOlSZKKMcjsqwVE2bP7YSHT4mtpgn_rf-rQE5Wxg_fRvnfqadFLqMpfq5uNsnObNvz5s50_RB7B03er4l2e9i11YRtt6UxZThlw8mak9DW5iuZ9O4HcS1uub
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+Models+Aware+Dynamic+Feature+Extraction+for+Forest+Fire+Detection+Using+Machine+Learning+Classifiers&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Avudaiammal%2C+R.&rft.au=Rajangam%2C+Vijayarajan&rft.au=Durai+Raji+V.&rft.au=Senthil+Kumar+S.&rft.date=2023-12-01&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=57&rft.issue=6&rft.spage=627&rft.epage=637&rft_id=info:doi/10.3103%2FS0146411623060020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0146411623060020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon