Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion
TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challeng...
Saved in:
Published in | Frontiers of materials science Vol. 18; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s
−1
scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks. |
---|---|
AbstractList | TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s
−1
scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks. TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s−1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks. |
ArticleNumber | 240710 |
Author | Lei, Peiran Xu, Haijie Zheng, Zhiyu Essa, Khamis Shu, Chang Shu, Xuedao |
Author_xml | – sequence: 1 givenname: Chang surname: Shu fullname: Shu, Chang organization: Department of Mechanical Engineering, University of Birmingham – sequence: 2 givenname: Zhiyu surname: Zheng fullname: Zheng, Zhiyu organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University – sequence: 3 givenname: Peiran surname: Lei fullname: Lei, Peiran organization: Department of Mechanical Engineering, University of Birmingham – sequence: 4 givenname: Haijie surname: Xu fullname: Xu, Haijie organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University – sequence: 5 givenname: Xuedao surname: Shu fullname: Shu, Xuedao email: shuxuedao@nbu.edu.cn organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University – sequence: 6 givenname: Khamis surname: Essa fullname: Essa, Khamis email: k.e.a.essa@bham.ac.uk organization: Department of Mechanical Engineering, University of Birmingham |
BookMark | eNp1UE1LAzEQDaJgrf0B3gKeVzO7m6R7lOIXFHrpwVvIZpOSsk3WJFXaX2_qip6cyxuG997MvCt07rzTCN0AuQNC-H0E4IQVpKwLwoEUxzM0KUlD84TNz397-naJZjFuSS4KtKlhgvrVkOzOHmWy3mFv8BC80jHiQQa500mHiI0PeL0AwLLv_QF_WImTtL0P1m1wVNK57yYFmfTmgK3DvYw64MF_dhla3WGzj9n_Gl0Y2Uc9-8EpWj89rhcvxXL1_Lp4WBYq35sKqQijjVRVpcrKyK6VhDW0ZAo6rnjNmNGyJXpO56RhHTSU88q0NYWK13XLqym6HW3zL-97HZPY-n1weaOooC4ZgZLSzIKRpYKPMWgjhmB3MhwEEHGKVYyxihyrOMUqjllTjpo4nJ7X4c_5f9EXH1Z9XQ |
Cites_doi | 10.1016/j.addma.2023.103831 10.1016/j.jmrt.2023.10.283 10.1016/0021-9991(81)90145-5 10.1016/j.matchar.2020.110718 10.1016/j.jmatprotec.2010.12.016 10.1007/s00170-021-06810-3 10.1016/j.heliyon.2022.e11725 10.1007/s11706-015-0315-7 10.1007/s11665-021-05800-6 10.1016/j.addma.2014.08.001 10.3390/met12122053 10.3390/met13050983 10.1016/j.matdes.2019.108091 10.1016/j.msea.2014.10.044 10.1016/j.matdes.2013.11.044 10.1016/j.matdes.2016.10.037 10.1016/j.ijmachtools.2021.103797 10.1016/j.jmapro.2021.12.033 10.1016/j.actamat.2019.11.053 10.1016/j.addma.2019.02.020 10.1016/j.addma.2021.102278 10.1016/j.jmapro.2021.12.064 10.1016/j.addma.2014.08.002 10.1142/S0217984919504050 10.1016/j.actamat.2015.06.004 10.1016/j.matdes.2022.110505 10.1016/j.ijheatmasstransfer.2021.121602 10.1016/j.jmst.2020.08.061 10.1016/j.ijmachtools.2017.08.004 10.1016/j.matchar.2024.114434 10.1016/j.addma.2018.03.031 10.1016/j.jmrt.2022.07.121 10.1016/j.jallcom.2018.11.312 10.1016/j.cja.2020.10.021 10.1007/s40195-021-01297-z 10.1016/j.addma.2020.101249 10.1016/j.addma.2022.102913 10.1007/s11706-016-0354-8 10.1016/j.optlastec.2021.107246 10.1016/j.addma.2023.103504 10.1016/j.jallcom.2021.162665 10.1016/j.powtec.2023.118610 10.3390/mi13081366 10.1016/j.msea.2020.138989 |
ContentType | Journal Article |
Copyright | Higher Education Press 2024 Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: Higher Education Press 2024 – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-024-0710-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_024_0710_z |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c268t-ac0659ac33c23fadba069526c1d7c7466feab0e858096d195773fb4513744b73 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 11:17:56 EDT 2025 Tue Jul 01 02:09:55 EDT 2025 Fri Feb 21 02:44:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | numerical modelling TC11 mechanical property parameter optimization laser powder bed fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-ac0659ac33c23fadba069526c1d7c7466feab0e858096d195773fb4513744b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3142601255 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_3142601255 crossref_primary_10_1007_s11706_024_0710_z springer_journals_10_1007_s11706_024_0710_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2024 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Q Huang (710_CR5) 2015; 9 A Chouhan (710_CR18) 2021; 178 N Ahmed (710_CR7) 2022; 75 N Sanaei (710_CR9) 2019; 182 C Shu (710_CR10) 2024; 217 J L Bartlett (710_CR44) 2019; 27 T Gao (710_CR1) 2020; 776 C Shu (710_CR14) 2023; 27 C Zeng (710_CR29) 2022; 8 H Jia (710_CR42) 2021; 113 C Qiu (710_CR33) 2015; 96 J Liu (710_CR40) 2022; 215 Z Yan (710_CR39) 2023; 67 C F Gao (710_CR23) 2022; 12 S R Narasimharaju (710_CR38) 2022; 75 X Zong (710_CR2) 2019; 781 X B Lu (710_CR16) 2023; 13 R Shi (710_CR19) 2020; 184 B Cox (710_CR21) 2023; 425 N T Aboulkhair (710_CR11) 2014; 1–4 C Wang (710_CR43) 2022; 895 J Colombo-Pulgarín (710_CR45) 2021; 30 D Zhang (710_CR20) 2018; 21 H Chen (710_CR28) 2017; 123 M Bayat (710_CR17) 2021; 47 L Cao (710_CR24) 2021; 142 H J Gong (710_CR13) 2014; 1–4 C W Hirt (710_CR35) 1981; 39 S Chowdhury (710_CR8) 2022; 20 C C Zhang (710_CR6) 2021; 75 Y Y Zhu (710_CR3) 2014; 56 P Zhao (710_CR26) 2015; 621 U S Bertoli (710_CR15) 2017; 113 X Tang (710_CR12) 2020; 170 A Queva (710_CR30) 2020; 35 X Li (710_CR34) 2021; 170 S Zhou (710_CR31) 2019; 33 E Li (710_CR32) 2022; 56 Z Li (710_CR41) 2022; 13 F Rahimi (710_CR37) 2023; 78 Q Huang (710_CR4) 2016; 10 Z H Zhao (710_CR27) 2021; 34 L Zhang (710_CR36) 2022; 35 C Körner (710_CR22) 2011; 211 G F Vander Voort (710_CR25) 2012 |
References_xml | – volume: 78 start-page: 103831 year: 2023 ident: 710_CR37 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2023.103831 – volume: 27 start-page: 3835 year: 2023 ident: 710_CR14 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2023.10.283 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 710_CR35 publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(81)90145-5 – volume: 170 start-page: 110718 year: 2020 ident: 710_CR12 publication-title: Materials Characterization doi: 10.1016/j.matchar.2020.110718 – volume: 211 start-page: 978 issue: 6 year: 2011 ident: 710_CR22 publication-title: Journal of Materials Processing Technology doi: 10.1016/j.jmatprotec.2010.12.016 – volume: 113 start-page: 2413 issue: 9–10 year: 2021 ident: 710_CR42 publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-021-06810-3 – volume: 8 start-page: e11725 issue: 11 year: 2022 ident: 710_CR29 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e11725 – volume: 9 start-page: 373 issue: 4 year: 2015 ident: 710_CR5 publication-title: Frontiers of Materials Science doi: 10.1007/s11706-015-0315-7 – volume: 30 start-page: 6365 issue: 9 year: 2021 ident: 710_CR45 publication-title: Journal of Materials Engineering and Performance doi: 10.1007/s11665-021-05800-6 – volume: 1–4 start-page: 77 year: 2014 ident: 710_CR11 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2014.08.001 – volume: 12 start-page: 2053 issue: 12 year: 2022 ident: 710_CR23 publication-title: Metals doi: 10.3390/met12122053 – volume: 13 start-page: 983 issue: 5 year: 2023 ident: 710_CR16 publication-title: Metals doi: 10.3390/met13050983 – volume: 182 start-page: 108091 year: 2019 ident: 710_CR9 publication-title: Materials & Design doi: 10.1016/j.matdes.2019.108091 – volume: 621 start-page: 149 year: 2015 ident: 710_CR26 publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2014.10.044 – volume: 56 start-page: 445 year: 2014 ident: 710_CR3 publication-title: Materials & Design doi: 10.1016/j.matdes.2013.11.044 – volume: 113 start-page: 331 year: 2017 ident: 710_CR15 publication-title: Materials & Design doi: 10.1016/j.matdes.2016.10.037 – volume: 170 start-page: 103797 year: 2021 ident: 710_CR34 publication-title: International Journal of Machine Tools & Manufacture doi: 10.1016/j.ijmachtools.2021.103797 – volume: 75 start-page: 375 year: 2022 ident: 710_CR38 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2021.12.033 – volume: 184 start-page: 284 year: 2020 ident: 710_CR19 publication-title: Acta Materialia doi: 10.1016/j.actamat.2019.11.053 – volume-title: Applied Metallography year: 2012 ident: 710_CR25 – volume: 27 start-page: 131 year: 2019 ident: 710_CR44 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2019.02.020 – volume: 47 start-page: 102278 year: 2021 ident: 710_CR17 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2021.102278 – volume: 75 start-page: 415 year: 2022 ident: 710_CR7 publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2021.12.064 – volume: 1–4 start-page: 87 year: 2014 ident: 710_CR13 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2014.08.002 – volume: 33 start-page: 1950405 issue: 32 year: 2019 ident: 710_CR31 publication-title: Modern Physics Letters B doi: 10.1142/S0217984919504050 – volume: 96 start-page: 72 year: 2015 ident: 710_CR33 publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.06.004 – volume: 215 start-page: 110505 year: 2022 ident: 710_CR40 publication-title: Materials & Design doi: 10.1016/j.matdes.2022.110505 – volume: 178 start-page: 121602 year: 2021 ident: 710_CR18 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2021.121602 – volume: 75 start-page: 174 year: 2021 ident: 710_CR6 publication-title: Journal of Materials Science & Technology doi: 10.1016/j.jmst.2020.08.061 – volume: 123 start-page: 146 year: 2017 ident: 710_CR28 publication-title: International Journal of Machine Tools & Manufacture doi: 10.1016/j.ijmachtools.2017.08.004 – volume: 217 start-page: 114434 year: 2024 ident: 710_CR10 publication-title: Materials Characterization doi: 10.1016/j.matchar.2024.114434 – volume: 21 start-page: 567 year: 2018 ident: 710_CR20 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2018.03.031 – volume: 20 start-page: 2109 year: 2022 ident: 710_CR8 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2022.07.121 – volume: 781 start-page: 47 year: 2019 ident: 710_CR2 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2018.11.312 – volume: 34 start-page: 73 issue: 7 year: 2021 ident: 710_CR27 publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2020.10.021 – volume: 35 start-page: 439 issue: 3 year: 2022 ident: 710_CR36 publication-title: 5Zr–0.3Si titanium alloy. Acta Metallurgica Sinica-English Letters doi: 10.1007/s40195-021-01297-z – volume: 35 start-page: 101249 year: 2020 ident: 710_CR30 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101249 – volume: 56 start-page: 102913 year: 2022 ident: 710_CR32 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2022.102913 – volume: 10 start-page: 428 issue: 4 year: 2016 ident: 710_CR4 publication-title: Frontiers of Materials Science doi: 10.1007/s11706-016-0354-8 – volume: 142 start-page: 107246 year: 2021 ident: 710_CR24 publication-title: Optics & Laser Technology doi: 10.1016/j.optlastec.2021.107246 – volume: 67 start-page: 103504 year: 2023 ident: 710_CR39 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2023.103504 – volume: 895 start-page: 162665 year: 2022 ident: 710_CR43 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.162665 – volume: 425 start-page: 118610 year: 2023 ident: 710_CR21 publication-title: Powder Technology doi: 10.1016/j.powtec.2023.118610 – volume: 13 start-page: 1366 issue: 8 year: 2022 ident: 710_CR41 publication-title: Micromachines doi: 10.3390/mi13081366 – volume: 776 start-page: 138989 year: 2020 ident: 710_CR1 publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2020.138989 |
SSID | ssj0000515941 |
Score | 2.3358455 |
Snippet | TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Beds (process engineering) Blisks Chemistry and Materials Science Computational fluid dynamics Design of experiments Impact analysis Lasers Materials Science Optimization Powder beds Process parameters Reliability Research Article Tensile strength Titanium alloys Titanium base alloys |
Title | Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion |
URI | https://link.springer.com/article/10.1007/s11706-024-0710-z https://www.proquest.com/docview/3142601255 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20vehB_MRqLXvwpCxks585ltJaFPXSQj2FJLuBgk1L0yrtr3d3kxgVPXgKJGEPs5nM25k3bwC4DqQk2ngCkgH1kYHUCkmVcKSpEBHTBjC7POTjEx-O6f2ETco-7rxiu1clSfenrpvdrNILMjHFNt14aLsLmswc3S2Pa-x3PxMrdmhJ4CZW-p7rPmaTqpr52yrf41ENMn_URV24GRyCgxInwm6xsUdgR2fHYP-LeuAJeH027j4r-yjhPIWLgvQPrZz3zNJccmggKRz1MIa2vr6Bb9MIWsqoY93BPCkGFsG8kKjdwGkGDZrWS7iYvytzibWC6dom1E7BaNAf9YaoHJ6AEp_LFYoSWzGNEkISn6SRiiOPB8znCVYiEZTzVEexpyWT5hCjcMCEIGlMGSaC0liQM9DI5pk-B5CYu8ynMddU0kCmBjEyLLSw6MPDUrXATWXBcFFIZIS1GLI1d2jMHVpzh9sWaFc2DktvyUOCrU6-gVqsBW4ru9eP_1zs4l9vX4I93-6746K0QWO1XOsrgyhWcQc0u3cvD_2O-5I-AF-gw4M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEtJ_MxYVVQF2rKkUjcrD0eqRNOqaUHtr8d2EgIIBqZIieXhcpf74vvuOwBufSGw0pGAhE88pCF1gkQSM6QI5yFVGjDbc8jBkPVG5GlMx2Ufd16x3auSpP1S181uRukF6Zximm4ctNkGOxoLCOPKI6_9ebBihpb4dmKl59juYzquqpm_7fI9H9Ug80dd1Kab7iE4KHEibBcv9ghsqewY7H9RDzwBry863KdlHyWcpXBekP6hkfOeGppLDjUkhUHHdaGpr6_h2ySEhjJqWXcwj4uBRTAvJGrXcJJBjabVAs5n74m-RCqB6cocqJ2CoPsQdHqoHJ6AYo-JJQpjUzENY4xjD6dhEoUO86nHYjfhMSeMpSqMHCWo0D8xietTznEaEepiTkjE8RloZLNMnQOI9V3qkYgpIogvUo0YqcsVN-jDcUXSBHeVBeW8kMiQtRiyMbfU5pbG3HLTBK3KxrKMllxi1-jka6hFm-C-snv9-M_NLv61-gbs9oJBX_Yfh8-XYM8zPmB5KS3QWC5W6kqji2V0bb3pA5b7xOI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUuz2d3s5liqpb6qhxZ6C0l2AwWbhiZV2l_vbh5GRQ-eAknYw2SG-TIz3zcAXLpCEKUjAQmX2khDaomEDB2kKOc-Uxow53XIp4HTH9H7MRuXe07Tatq9akkWnAaj0hRn7URG7Zr4ZlRfkM4vhoBjodU62KCGDKwdemR3PossZoGJm2-vtK2ciczGVWfzt1O-56YacP7okeapp7cLdkrMCDvFR94DayreB9tflAQPwOuzDv1pyamEswgmBQEAGmnvqRl5SaGGp3DYxRiaXvsSvk18aMZH8wk8mIbF8iKYFnK1SziJoUbWag6T2bvUl0BJGC1Mce0QDHu3w24flYsUUGg7IkN-aLqnfkhIaJPIl4FvOS6znRBLHnLqOJHyA0sJJvQPjcQu45xEAWWYcEoDTo5AI57F6hhAou8ymwaOooK6ItLokWGuuEEiFhayCa4qC3pJIZfh1cLIxtyeNrdnzO2tmqBV2dgrIyf1CDaa-Rp2sSa4ruxeP_7zsJN_vX0BNl9uet7j3eDhFGzZxgXyEZUWaGTzhTrTQCMLznNn-gAiJskV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+process+parameters+for+TC11+alloy+via+tailoring+scanning+strategy+in+laser+powder+bed+fusion&rft.jtitle=Frontiers+of+materials+science&rft.au=Shu%2C+Chang&rft.au=Zheng%2C+Zhiyu&rft.au=Lei%2C+Peiran&rft.au=Xu%2C+Haijie&rft.date=2024-12-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1007%2Fs11706-024-0710-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_024_0710_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |