Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion

TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challeng...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 18; no. 4
Main Authors Shu, Chang, Zheng, Zhiyu, Lei, Peiran, Xu, Haijie, Shu, Xuedao, Essa, Khamis
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s −1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.
AbstractList TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s −1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.
TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium alloy, effectively enhancing engine aerodynamic efficiency and service reliability. However, in laser powder bed fusion (L-PBF) of TC11, challenges such as inadequate defect control, inconsistent part quality, and limited optimization of key processing parameters hinder the process reliability and scalability. In this study, computational fluid dynamics (CFD) was used to simulate the L-PBF process, while design of experiments (DoE) was applied to analyze the effect of process parameters and determine the optimal process settings. Laser power was found to have the greatest impact on porosity. The optimal process parameters are 170 W laser power, 1100 mm·s−1 scanning speed, and 0.1 mm hatch spacing. Stripe, line, and chessboard scanning strategies were implemented using the optimal process parameters. The stripe scanning strategy has ∼33% (∼400 MPa) greater tensile strength over the line scanning strategy and ∼12% (∼170 MPa) over the chessboard scanning strategy. This research provides technical support for obtaining high-performance TC11 blisks.
ArticleNumber 240710
Author Lei, Peiran
Xu, Haijie
Zheng, Zhiyu
Essa, Khamis
Shu, Chang
Shu, Xuedao
Author_xml – sequence: 1
  givenname: Chang
  surname: Shu
  fullname: Shu, Chang
  organization: Department of Mechanical Engineering, University of Birmingham
– sequence: 2
  givenname: Zhiyu
  surname: Zheng
  fullname: Zheng, Zhiyu
  organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University
– sequence: 3
  givenname: Peiran
  surname: Lei
  fullname: Lei, Peiran
  organization: Department of Mechanical Engineering, University of Birmingham
– sequence: 4
  givenname: Haijie
  surname: Xu
  fullname: Xu, Haijie
  organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University
– sequence: 5
  givenname: Xuedao
  surname: Shu
  fullname: Shu, Xuedao
  email: shuxuedao@nbu.edu.cn
  organization: Faculty of Mechanical Engineering and Mechanics, Ningbo University, Zhejiang Key Laboratory of Part Rolling Forming Technology, Ningbo University
– sequence: 6
  givenname: Khamis
  surname: Essa
  fullname: Essa, Khamis
  email: k.e.a.essa@bham.ac.uk
  organization: Department of Mechanical Engineering, University of Birmingham
BookMark eNp1UE1LAzEQDaJgrf0B3gKeVzO7m6R7lOIXFHrpwVvIZpOSsk3WJFXaX2_qip6cyxuG997MvCt07rzTCN0AuQNC-H0E4IQVpKwLwoEUxzM0KUlD84TNz397-naJZjFuSS4KtKlhgvrVkOzOHmWy3mFv8BC80jHiQQa500mHiI0PeL0AwLLv_QF_WImTtL0P1m1wVNK57yYFmfTmgK3DvYw64MF_dhla3WGzj9n_Gl0Y2Uc9-8EpWj89rhcvxXL1_Lp4WBYq35sKqQijjVRVpcrKyK6VhDW0ZAo6rnjNmNGyJXpO56RhHTSU88q0NYWK13XLqym6HW3zL-97HZPY-n1weaOooC4ZgZLSzIKRpYKPMWgjhmB3MhwEEHGKVYyxihyrOMUqjllTjpo4nJ7X4c_5f9EXH1Z9XQ
Cites_doi 10.1016/j.addma.2023.103831
10.1016/j.jmrt.2023.10.283
10.1016/0021-9991(81)90145-5
10.1016/j.matchar.2020.110718
10.1016/j.jmatprotec.2010.12.016
10.1007/s00170-021-06810-3
10.1016/j.heliyon.2022.e11725
10.1007/s11706-015-0315-7
10.1007/s11665-021-05800-6
10.1016/j.addma.2014.08.001
10.3390/met12122053
10.3390/met13050983
10.1016/j.matdes.2019.108091
10.1016/j.msea.2014.10.044
10.1016/j.matdes.2013.11.044
10.1016/j.matdes.2016.10.037
10.1016/j.ijmachtools.2021.103797
10.1016/j.jmapro.2021.12.033
10.1016/j.actamat.2019.11.053
10.1016/j.addma.2019.02.020
10.1016/j.addma.2021.102278
10.1016/j.jmapro.2021.12.064
10.1016/j.addma.2014.08.002
10.1142/S0217984919504050
10.1016/j.actamat.2015.06.004
10.1016/j.matdes.2022.110505
10.1016/j.ijheatmasstransfer.2021.121602
10.1016/j.jmst.2020.08.061
10.1016/j.ijmachtools.2017.08.004
10.1016/j.matchar.2024.114434
10.1016/j.addma.2018.03.031
10.1016/j.jmrt.2022.07.121
10.1016/j.jallcom.2018.11.312
10.1016/j.cja.2020.10.021
10.1007/s40195-021-01297-z
10.1016/j.addma.2020.101249
10.1016/j.addma.2022.102913
10.1007/s11706-016-0354-8
10.1016/j.optlastec.2021.107246
10.1016/j.addma.2023.103504
10.1016/j.jallcom.2021.162665
10.1016/j.powtec.2023.118610
10.3390/mi13081366
10.1016/j.msea.2020.138989
ContentType Journal Article
Copyright Higher Education Press 2024
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: Higher Education Press 2024
– notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s11706-024-0710-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_024_0710_z
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c268t-ac0659ac33c23fadba069526c1d7c7466feab0e858096d195773fb4513744b73
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:17:56 EDT 2025
Tue Jul 01 02:09:55 EDT 2025
Fri Feb 21 02:44:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords numerical modelling
TC11
mechanical property
parameter optimization
laser powder bed fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-ac0659ac33c23fadba069526c1d7c7466feab0e858096d195773fb4513744b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3142601255
PQPubID 2044428
ParticipantIDs proquest_journals_3142601255
crossref_primary_10_1007_s11706_024_0710_z
springer_journals_10_1007_s11706_024_0710_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2024
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Q Huang (710_CR5) 2015; 9
A Chouhan (710_CR18) 2021; 178
N Ahmed (710_CR7) 2022; 75
N Sanaei (710_CR9) 2019; 182
C Shu (710_CR10) 2024; 217
J L Bartlett (710_CR44) 2019; 27
T Gao (710_CR1) 2020; 776
C Shu (710_CR14) 2023; 27
C Zeng (710_CR29) 2022; 8
H Jia (710_CR42) 2021; 113
C Qiu (710_CR33) 2015; 96
J Liu (710_CR40) 2022; 215
Z Yan (710_CR39) 2023; 67
C F Gao (710_CR23) 2022; 12
S R Narasimharaju (710_CR38) 2022; 75
X Zong (710_CR2) 2019; 781
X B Lu (710_CR16) 2023; 13
R Shi (710_CR19) 2020; 184
B Cox (710_CR21) 2023; 425
N T Aboulkhair (710_CR11) 2014; 1–4
C Wang (710_CR43) 2022; 895
J Colombo-Pulgarín (710_CR45) 2021; 30
D Zhang (710_CR20) 2018; 21
H Chen (710_CR28) 2017; 123
M Bayat (710_CR17) 2021; 47
L Cao (710_CR24) 2021; 142
H J Gong (710_CR13) 2014; 1–4
C W Hirt (710_CR35) 1981; 39
S Chowdhury (710_CR8) 2022; 20
C C Zhang (710_CR6) 2021; 75
Y Y Zhu (710_CR3) 2014; 56
P Zhao (710_CR26) 2015; 621
U S Bertoli (710_CR15) 2017; 113
X Tang (710_CR12) 2020; 170
A Queva (710_CR30) 2020; 35
X Li (710_CR34) 2021; 170
S Zhou (710_CR31) 2019; 33
E Li (710_CR32) 2022; 56
Z Li (710_CR41) 2022; 13
F Rahimi (710_CR37) 2023; 78
Q Huang (710_CR4) 2016; 10
Z H Zhao (710_CR27) 2021; 34
L Zhang (710_CR36) 2022; 35
C Körner (710_CR22) 2011; 211
G F Vander Voort (710_CR25) 2012
References_xml – volume: 78
  start-page: 103831
  year: 2023
  ident: 710_CR37
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2023.103831
– volume: 27
  start-page: 3835
  year: 2023
  ident: 710_CR14
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2023.10.283
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 710_CR35
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(81)90145-5
– volume: 170
  start-page: 110718
  year: 2020
  ident: 710_CR12
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2020.110718
– volume: 211
  start-page: 978
  issue: 6
  year: 2011
  ident: 710_CR22
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/j.jmatprotec.2010.12.016
– volume: 113
  start-page: 2413
  issue: 9–10
  year: 2021
  ident: 710_CR42
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-021-06810-3
– volume: 8
  start-page: e11725
  issue: 11
  year: 2022
  ident: 710_CR29
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e11725
– volume: 9
  start-page: 373
  issue: 4
  year: 2015
  ident: 710_CR5
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-015-0315-7
– volume: 30
  start-page: 6365
  issue: 9
  year: 2021
  ident: 710_CR45
  publication-title: Journal of Materials Engineering and Performance
  doi: 10.1007/s11665-021-05800-6
– volume: 1–4
  start-page: 77
  year: 2014
  ident: 710_CR11
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2014.08.001
– volume: 12
  start-page: 2053
  issue: 12
  year: 2022
  ident: 710_CR23
  publication-title: Metals
  doi: 10.3390/met12122053
– volume: 13
  start-page: 983
  issue: 5
  year: 2023
  ident: 710_CR16
  publication-title: Metals
  doi: 10.3390/met13050983
– volume: 182
  start-page: 108091
  year: 2019
  ident: 710_CR9
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2019.108091
– volume: 621
  start-page: 149
  year: 2015
  ident: 710_CR26
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2014.10.044
– volume: 56
  start-page: 445
  year: 2014
  ident: 710_CR3
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2013.11.044
– volume: 113
  start-page: 331
  year: 2017
  ident: 710_CR15
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2016.10.037
– volume: 170
  start-page: 103797
  year: 2021
  ident: 710_CR34
  publication-title: International Journal of Machine Tools & Manufacture
  doi: 10.1016/j.ijmachtools.2021.103797
– volume: 75
  start-page: 375
  year: 2022
  ident: 710_CR38
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.12.033
– volume: 184
  start-page: 284
  year: 2020
  ident: 710_CR19
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2019.11.053
– volume-title: Applied Metallography
  year: 2012
  ident: 710_CR25
– volume: 27
  start-page: 131
  year: 2019
  ident: 710_CR44
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2019.02.020
– volume: 47
  start-page: 102278
  year: 2021
  ident: 710_CR17
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2021.102278
– volume: 75
  start-page: 415
  year: 2022
  ident: 710_CR7
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.12.064
– volume: 1–4
  start-page: 87
  year: 2014
  ident: 710_CR13
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2014.08.002
– volume: 33
  start-page: 1950405
  issue: 32
  year: 2019
  ident: 710_CR31
  publication-title: Modern Physics Letters B
  doi: 10.1142/S0217984919504050
– volume: 96
  start-page: 72
  year: 2015
  ident: 710_CR33
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.06.004
– volume: 215
  start-page: 110505
  year: 2022
  ident: 710_CR40
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2022.110505
– volume: 178
  start-page: 121602
  year: 2021
  ident: 710_CR18
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2021.121602
– volume: 75
  start-page: 174
  year: 2021
  ident: 710_CR6
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/j.jmst.2020.08.061
– volume: 123
  start-page: 146
  year: 2017
  ident: 710_CR28
  publication-title: International Journal of Machine Tools & Manufacture
  doi: 10.1016/j.ijmachtools.2017.08.004
– volume: 217
  start-page: 114434
  year: 2024
  ident: 710_CR10
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2024.114434
– volume: 21
  start-page: 567
  year: 2018
  ident: 710_CR20
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2018.03.031
– volume: 20
  start-page: 2109
  year: 2022
  ident: 710_CR8
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2022.07.121
– volume: 781
  start-page: 47
  year: 2019
  ident: 710_CR2
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2018.11.312
– volume: 34
  start-page: 73
  issue: 7
  year: 2021
  ident: 710_CR27
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2020.10.021
– volume: 35
  start-page: 439
  issue: 3
  year: 2022
  ident: 710_CR36
  publication-title: 5Zr–0.3Si titanium alloy. Acta Metallurgica Sinica-English Letters
  doi: 10.1007/s40195-021-01297-z
– volume: 35
  start-page: 101249
  year: 2020
  ident: 710_CR30
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2020.101249
– volume: 56
  start-page: 102913
  year: 2022
  ident: 710_CR32
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2022.102913
– volume: 10
  start-page: 428
  issue: 4
  year: 2016
  ident: 710_CR4
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-016-0354-8
– volume: 142
  start-page: 107246
  year: 2021
  ident: 710_CR24
  publication-title: Optics & Laser Technology
  doi: 10.1016/j.optlastec.2021.107246
– volume: 67
  start-page: 103504
  year: 2023
  ident: 710_CR39
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2023.103504
– volume: 895
  start-page: 162665
  year: 2022
  ident: 710_CR43
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.162665
– volume: 425
  start-page: 118610
  year: 2023
  ident: 710_CR21
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2023.118610
– volume: 13
  start-page: 1366
  issue: 8
  year: 2022
  ident: 710_CR41
  publication-title: Micromachines
  doi: 10.3390/mi13081366
– volume: 776
  start-page: 138989
  year: 2020
  ident: 710_CR1
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2020.138989
SSID ssj0000515941
Score 2.3358455
Snippet TC11, with a nominal composition of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si, is the preferred material for engine blisk due to its high-performance dual-phase titanium...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Beds (process engineering)
Blisks
Chemistry and Materials Science
Computational fluid dynamics
Design of experiments
Impact analysis
Lasers
Materials Science
Optimization
Powder beds
Process parameters
Reliability
Research Article
Tensile strength
Titanium alloys
Titanium base alloys
Title Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion
URI https://link.springer.com/article/10.1007/s11706-024-0710-z
https://www.proquest.com/docview/3142601255
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20vehB_MRqLXvwpCxks585ltJaFPXSQj2FJLuBgk1L0yrtr3d3kxgVPXgKJGEPs5nM25k3bwC4DqQk2ngCkgH1kYHUCkmVcKSpEBHTBjC7POTjEx-O6f2ETco-7rxiu1clSfenrpvdrNILMjHFNt14aLsLmswc3S2Pa-x3PxMrdmhJ4CZW-p7rPmaTqpr52yrf41ENMn_URV24GRyCgxInwm6xsUdgR2fHYP-LeuAJeH027j4r-yjhPIWLgvQPrZz3zNJccmggKRz1MIa2vr6Bb9MIWsqoY93BPCkGFsG8kKjdwGkGDZrWS7iYvytzibWC6dom1E7BaNAf9YaoHJ6AEp_LFYoSWzGNEkISn6SRiiOPB8znCVYiEZTzVEexpyWT5hCjcMCEIGlMGSaC0liQM9DI5pk-B5CYu8ynMddU0kCmBjEyLLSw6MPDUrXATWXBcFFIZIS1GLI1d2jMHVpzh9sWaFc2DktvyUOCrU6-gVqsBW4ru9eP_1zs4l9vX4I93-6746K0QWO1XOsrgyhWcQc0u3cvD_2O-5I-AF-gw4M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEtJ_MxYVVQF2rKkUjcrD0eqRNOqaUHtr8d2EgIIBqZIieXhcpf74vvuOwBufSGw0pGAhE88pCF1gkQSM6QI5yFVGjDbc8jBkPVG5GlMx2Ufd16x3auSpP1S181uRukF6Zximm4ctNkGOxoLCOPKI6_9ebBihpb4dmKl59juYzquqpm_7fI9H9Ug80dd1Kab7iE4KHEibBcv9ghsqewY7H9RDzwBry863KdlHyWcpXBekP6hkfOeGppLDjUkhUHHdaGpr6_h2ySEhjJqWXcwj4uBRTAvJGrXcJJBjabVAs5n74m-RCqB6cocqJ2CoPsQdHqoHJ6AYo-JJQpjUzENY4xjD6dhEoUO86nHYjfhMSeMpSqMHCWo0D8xietTznEaEepiTkjE8RloZLNMnQOI9V3qkYgpIogvUo0YqcsVN-jDcUXSBHeVBeW8kMiQtRiyMbfU5pbG3HLTBK3KxrKMllxi1-jka6hFm-C-snv9-M_NLv61-gbs9oJBX_Yfh8-XYM8zPmB5KS3QWC5W6kqji2V0bb3pA5b7xOI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUuz2d3s5liqpb6qhxZ6C0l2AwWbhiZV2l_vbh5GRQ-eAknYw2SG-TIz3zcAXLpCEKUjAQmX2khDaomEDB2kKOc-Uxow53XIp4HTH9H7MRuXe07Tatq9akkWnAaj0hRn7URG7Zr4ZlRfkM4vhoBjodU62KCGDKwdemR3PossZoGJm2-vtK2ciczGVWfzt1O-56YacP7okeapp7cLdkrMCDvFR94DayreB9tflAQPwOuzDv1pyamEswgmBQEAGmnvqRl5SaGGp3DYxRiaXvsSvk18aMZH8wk8mIbF8iKYFnK1SziJoUbWag6T2bvUl0BJGC1Mce0QDHu3w24flYsUUGg7IkN-aLqnfkhIaJPIl4FvOS6znRBLHnLqOJHyA0sJJvQPjcQu45xEAWWYcEoDTo5AI57F6hhAou8ymwaOooK6ItLokWGuuEEiFhayCa4qC3pJIZfh1cLIxtyeNrdnzO2tmqBV2dgrIyf1CDaa-Rp2sSa4ruxeP_7zsJN_vX0BNl9uet7j3eDhFGzZxgXyEZUWaGTzhTrTQCMLznNn-gAiJskV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+process+parameters+for+TC11+alloy+via+tailoring+scanning+strategy+in+laser+powder+bed+fusion&rft.jtitle=Frontiers+of+materials+science&rft.au=Shu%2C+Chang&rft.au=Zheng%2C+Zhiyu&rft.au=Lei%2C+Peiran&rft.au=Xu%2C+Haijie&rft.date=2024-12-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1007%2Fs11706-024-0710-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_024_0710_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon