Restriction in program algebra

Abstract We provide complete classifications of algebras of partial maps for a significant swathe of combinations of operations not previously classified. Our focus is the many subsidiary operations that arise in recent considerations of the ‘override’ and ‘update’ operations arising in specificatio...

Full description

Saved in:
Bibliographic Details
Published inLogic journal of the IGPL Vol. 31; no. 5; pp. 926 - 960
Main Authors Jackson, Marcel, Stokes, Tim
Format Journal Article
LanguageEnglish
Published Oxford University Press 25.09.2023
Subjects
Online AccessGet full text
ISSN1367-0751
1368-9894
DOI10.1093/jigpal/jzac058

Cover

Abstract Abstract We provide complete classifications of algebras of partial maps for a significant swathe of combinations of operations not previously classified. Our focus is the many subsidiary operations that arise in recent considerations of the ‘override’ and ‘update’ operations arising in specification languages. These other operations turn out to have an older pedigree: domain restriction, set subtraction and intersection. All signatures considered include domain restriction, at least as a term. Combinations of the operations are classified and given complete axiomatizations with and without the presence of functional composition. Each classification is achieved by way of providing a concrete representation of the corresponding abstract algebras as partial maps acting on special kinds of filters determined with respect to various induced orders. In contrast to many negative results in the broader area, all of the considered combinations lead to finite axiomatizations.
AbstractList Abstract We provide complete classifications of algebras of partial maps for a significant swathe of combinations of operations not previously classified. Our focus is the many subsidiary operations that arise in recent considerations of the ‘override’ and ‘update’ operations arising in specification languages. These other operations turn out to have an older pedigree: domain restriction, set subtraction and intersection. All signatures considered include domain restriction, at least as a term. Combinations of the operations are classified and given complete axiomatizations with and without the presence of functional composition. Each classification is achieved by way of providing a concrete representation of the corresponding abstract algebras as partial maps acting on special kinds of filters determined with respect to various induced orders. In contrast to many negative results in the broader area, all of the considered combinations lead to finite axiomatizations.
Author Stokes, Tim
Jackson, Marcel
Author_xml – sequence: 1
  givenname: Marcel
  surname: Jackson
  fullname: Jackson, Marcel
  email: m.g.jackson@latrobe.edu.au
– sequence: 2
  givenname: Tim
  surname: Stokes
  fullname: Stokes, Tim
  email: stokes@waikato.ac.nz
BookMark eNotz89LwzAYxvEgE9ymV4_Sq4e4N83vowydwkAY8xzepElp6dqS1oP-9aLb6fmeHvisyKIf-kjIPYMnBpZv2qYesdu0PxhAmiuyZFwZao0Vi__WFLRkN2Q1TS0ACFPKJXk4xGnOTZiboS-avhjzUGc8FdjV0We8JdcJuyneXXZNPl9fjts3uv_YvW-f9zSUyswUrRJV5EZ6ZaTWlWc-GK7AVigEBB6lSYqXWoKKHjlPRkawVgOWSdrk-Zo8nn-Hr9GNuTlh_nYM3B_MnWHuAuO_gntEEA
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
DBID TOX
DOI 10.1093/jigpal/jzac058
DatabaseName Oxford Journals Open Access Collection
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
Philosophy
EISSN 1368-9894
EndPage 960
ExternalDocumentID 10.1093/jigpal/jzac058
GroupedDBID .2P
.4S
.DC
.I3
0R~
1TH
29L
4.4
482
48X
5GY
5VS
5WA
70D
8VB
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABDTM
ABEJV
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACMRT
ACUFI
ACUTJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APWMN
AQDSO
ARCSS
ATGXG
ATTQO
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EBU
EDO
EE~
EJD
ELUNK
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JAVBF
K1G
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QWB
R44
RD5
RNI
ROL
ROX
RUSNO
RW1
RXO
RZF
RZO
TCN
TH9
TJP
TOX
TUS
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ID FETCH-LOGICAL-c268t-a964de385b68577db1bc83609da440c3e58f6327506eba33f85e09970a2f59fb3
IEDL.DBID TOX
ISSN 1367-0751
IngestDate Tue Nov 26 06:00:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords finite axiomatization
update
partial function
Override
domain restriction
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-a964de385b68577db1bc83609da440c3e58f6327506eba33f85e09970a2f59fb3
OpenAccessLink https://dx.doi.org/10.1093/jigpal/jzac058
PageCount 35
ParticipantIDs oup_primary_10_1093_jigpal_jzac058
PublicationCentury 2000
PublicationDate 2023-09-25
PublicationDateYYYYMMDD 2023-09-25
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-25
  day: 25
PublicationDecade 2020
PublicationTitle Logic journal of the IGPL
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0004825
Score 2.2861314
Snippet Abstract We provide complete classifications of algebras of partial maps for a significant swathe of combinations of operations not previously classified. Our...
SourceID oup
SourceType Publisher
StartPage 926
Title Restriction in program algebra
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3InuaD6Pz-GEHEt7C2-WjyKOIYsqnIBn0rSZrKhtRh64P-epO2VhEffCykgdyEnJvcnHMALoJA-WJbiCPDFKbcGKy5pNghIQkMjfPAeoLz7I5PFvQ2YUkrFl3-UcKXZLRaPq3V82j1oYzr1e22DoH9ip7fJ98MSFHbq3r9MexAMOzkGX__3vDYfkDIeBu22twPXTWTtQMbthjAwbS9MSzRJZp2IsflADZnnaSq--o_fJkOvO_C8NF6v42ak4CWBWpfWSFv2uGOv3uwGN_Mrye4dTrAJuKiwkpymlkimOaCxXGmQ208u0JmitLAEMtEzomXYudWK0JywaynvAYqypnMNdmHXvFS2ENAsQ5ZxoxLg4ygmmQyY1a5LIW50cd5LI_g3AUgXTdaFmlTgyZpE6W0jdLxfxqdQN97r_vHExE7hV71-mbPHEJXelhPzifyPY3J
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restriction+in+program+algebra&rft.jtitle=Logic+journal+of+the+IGPL&rft.au=Jackson%2C+Marcel&rft.au=Stokes%2C+Tim&rft.date=2023-09-25&rft.pub=Oxford+University+Press&rft.issn=1367-0751&rft.eissn=1368-9894&rft.volume=31&rft.issue=5&rft.spage=926&rft.epage=960&rft_id=info:doi/10.1093%2Fjigpal%2Fjzac058&rft.externalDocID=10.1093%2Fjigpal%2Fjzac058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-0751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-0751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-0751&client=summon