Numerical Solutions of Fractional Variable Order Differential Equations via Using Shifted Legendre Polynomials

In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional differential equations (FDEs) subject to the boundary and initial conditions is developed. We use shifted Legendre polynomials for the required numerical algorithm to develop some operationa...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 134; no. 2; pp. 941 - 955
Main Author Shah, Kamal
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional differential equations (FDEs) subject to the boundary and initial conditions is developed. We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices. Further, operational matrices are constructed using variable order differentiation and integration. We are finding the operational matrices of variable order differentiation and integration by omitting the discretization of data. With the help of aforesaid matrices, considered FDEs are converted to algebraic equations of Sylvester type. Finally, the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions. Some examples are given to check the proposed method’s accuracy and graphical representations. Exact and numerical solutions are also compared in the paper for some examples. The efficiency of the method can be enhanced further by increasing the scale level.
AbstractList In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional differential equations (FDEs) subject to the boundary and initial conditions is developed. We use shifted Legendre polynomials for the required numerical algorithm to develop some operational matrices. Further, operational matrices are constructed using variable order differentiation and integration. We are finding the operational matrices of variable order differentiation and integration by omitting the discretization of data. With the help of aforesaid matrices, considered FDEs are converted to algebraic equations of Sylvester type. Finally, the algebraic equations we get are solved with the help of mathematical software like Matlab or Mathematica to compute numerical solutions. Some examples are given to check the proposed method’s accuracy and graphical representations. Exact and numerical solutions are also compared in the paper for some examples. The efficiency of the method can be enhanced further by increasing the scale level.
Author Shah, Kamal
Author_xml – sequence: 1
  givenname: Kamal
  surname: Shah
  fullname: Shah, Kamal
BookMark eNpNkE9PAjEQxRujiYB-AG9NPIP93-VoENSEiAnitSndFkt2W2h3Tfj2Lq4HT2_ezJtJ5jcElyEGC8AdRhNKBGIPprZ5QhAhE0QwK-gFGGBOxBhzJC7_1ddgmPMeISpoMR2A8NbWNnmjK7iOVdv4GDKMDi6SNmfT9T918npbWbhKpU3wyTtnkw2N72bzY6v7nW-v4Sb7sIPrL-8aW8Kl3dlQJgvfY3UKse7y-QZcuU7s7Z-OwGYx_5i9jJer59fZ43JsiCiacbE1iHFLzLSzRkuuOZHclVxS5LhjRgthCimcJIJTWRiJiXRGM8ZK5iSlI3Df3z2keGxtbtQ-tqn7JitKEMIE4aLoUrhPmRRzTtapQ_K1TieFkfrFqs5Y1Rmr6rHSH6AObkI
Cites_doi 10.1016/j.camwa.2009.07.006
10.1098/rspa.2019.0498
10.1002/asjc.1687
10.1007/s10915-016-0343-1
10.1017/CBO9780511618352
10.1007/978-3-540-30728-0
10.11121/ijocta.01.2017.00368
10.1016/j.chaos.2019.05.039
10.4249/scholarpedia.3163
10.1112/S146115701700002X
10.1007/978-3-642-84108-8_10
10.1186/1687-1847-2012-8
10.1515/IJNSNS.2001.2.4.365
10.1007/s13398-018-0616-7
10.1016/j.camwa.2010.07.056
10.1007/s00366-020-01227-0
10.1002/num.20504
10.1016/j.cnsns.2007.09.014
10.3390/mca20010093
10.1016/j.mcm.2011.01.037
10.1155/S1110757X04311010
10.1002/mma.5676
10.1515/fca-2019-0003
10.1137/0724020
10.1016/j.aml.2015.02.010
10.1137/16M1097109
10.1016/j.camwa.2014.03.008
10.1155/2013/816803
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.32604/cmes.2022.021483
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 955
ExternalDocumentID 10_32604_cmes_2022_021483
GroupedDBID -~X
AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
OK1
PHGZM
PHGZT
PIMPY
RTS
7SC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c268t-8bc045e2c9268ca75a5275fd5730f5f4ca66c876f7265378c7127fca444d4f733
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Mon Jun 30 07:52:33 EDT 2025
Tue Jul 01 03:43:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-8bc045e2c9268ca75a5275fd5730f5f4ca66c876f7265378c7127fca444d4f733
Notes addendum
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200120188?pq-origsite=%requestingapplication%
PQID 3200120188
PQPubID 2048798
PageCount 15
ParticipantIDs proquest_journals_3200120188
crossref_primary_10_32604_cmes_2022_021483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Khalil (ref16) 2017; 16
Mao (ref15) 2017; 39
Borhanifar (ref9) 2015; 20
Podlubny (ref2) 1998
Chen (ref18) 2015; 46
Sun (ref22) 2019; 22
Dattoli (ref29) 2001; 2
Canuto (ref25) 1988
Hesthaven (ref33) 2007; 21
Rihan (ref12) 2013; 2013
Patnaik (ref21) 2020; 476
Shah (ref13) 2019; 113
Shah (ref14) 2017; 20
Kendall (ref26) 2007; 2
Akgül (ref23) 2017; 7
Hashim (ref6) 2009; 14
Ganji (ref19) 2019; 4
Gottlieb (ref24) 1987; 24
Rihan (ref17) 2010; 26
Alrabaiah (ref31) 2021; 2021
Chinnathambi (ref5) 2021; 44
Dattoli (ref30) 2011; 54
Ray (ref4) 2004; 2004
Saadatmandi (ref10) 2010; 59
Canuto (ref8) 2007
Adibi (ref28) 2010; 60
Khalil (ref11) 2014; 67
Miller (ref1) 1993
Moghaddam (ref20) 2017; 71
Oldham (ref3) 1974
Heydari (ref32) 2018; 20
Rihan (ref7) 2019; 126
Bhrawy (ref27) 2012; 2012
References_xml – volume: 59
  start-page: 1326
  year: 2010
  ident: ref10
  article-title: A new operational matrix for solving fractional-order differential equations
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2009.07.006
– volume: 476
  start-page: 20190498
  year: 2020
  ident: ref21
  article-title: Applications of variable-order fractional operators: A review
  publication-title: Proceedings of the Royal Society A
  doi: 10.1098/rspa.2019.0498
– volume: 20
  start-page: 1804
  year: 2018
  ident: ref32
  article-title: A new wavelet method for variable-order fractional optimal control problems
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.1687
– volume: 71
  start-page: 1351
  year: 2017
  ident: ref20
  article-title: Extended algorithms for approximating variable order fractional derivatives with applications
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-016-0343-1
– year: 1998
  ident: ref2
  publication-title: Fractional differential equations
– volume: 21
  year: 2007
  ident: ref33
  publication-title: Spectral methods for time-dependent problems
  doi: 10.1017/CBO9780511618352
– year: 2007
  ident: ref8
  publication-title: Spectral methods: Fundamentals in single domains
  doi: 10.1007/978-3-540-30728-0
– volume: 7
  start-page: 112
  year: 2017
  ident: ref23
  article-title: On solutions of variable-order fractional differential equations
  publication-title: International Journal of Optimization and Control: Theories & Applications
  doi: 10.11121/ijocta.01.2017.00368
– volume: 126
  start-page: 97
  year: 2019
  ident: ref7
  article-title: A fractional-order epidemic model with time-delay and nonlinear incidence rate
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2019.05.039
– volume: 2
  start-page: 3163
  year: 2007
  ident: ref26
  article-title: Numerical analysis
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.3163
– volume: 20
  start-page: 11
  year: 2017
  ident: ref14
  article-title: A generalized scheme based on shifted jacobi polynomials for numerical simulation of coupled systems of multi-term fractional-order partial differential equations
  publication-title: LMS Journal of Computation and Mathematics
  doi: 10.1112/S146115701700002X
– start-page: 315
  year: 1988
  ident: ref25
  publication-title: Spectral methods in fluid dynamics
  doi: 10.1007/978-3-642-84108-8_10
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref27
  article-title: A shifted legendre spectral method for fractional-order multi-point boundary value problems
  publication-title: Advances in Difference Equations
  doi: 10.1186/1687-1847-2012-8
– volume: 2
  start-page: 365
  year: 2001
  ident: ref29
  article-title: A note on legendre polynomials
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
  doi: 10.1515/IJNSNS.2001.2.4.365
– year: 1974
  ident: ref3
  publication-title: The fractional calculus theory and applications of differentiation and integration to arbitrary order
– volume: 113
  start-page: 2277
  year: 2019
  ident: ref13
  article-title: A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations
  publication-title: Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas
  doi: 10.1007/s13398-018-0616-7
– volume: 60
  start-page: 2126
  year: 2010
  ident: ref28
  article-title: On using a modified legendre-spectral method for solving singular IVPs of Lane–Emden type
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2010.07.056
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref31
  article-title: A numerical method for fractional variable order pantograph differential equations based on haar wavelet
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01227-0
– volume: 26
  start-page: 1556
  year: 2010
  ident: ref17
  article-title: Computational methods for delay parabolic and time-fractional partial differential equations
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.20504
– volume: 14
  start-page: 674
  year: 2009
  ident: ref6
  article-title: Homotopy analysis method for fractional IVPs
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2007.09.014
– volume: 20
  start-page: 76
  year: 2015
  ident: ref9
  article-title: Shifted jacobi collocation method based on operational matrix for solving the systems of fredholm and volterra integral equations
  publication-title: Mathematical and Computational Applications
  doi: 10.3390/mca20010093
– volume: 4
  start-page: 64
  year: 2019
  ident: ref19
  article-title: Numerical solution of variable order integro-differential equations
  publication-title: Advanced Mathematical Models & Applications
– volume: 54
  start-page: 80
  year: 2011
  ident: ref30
  article-title: A novel theory of legendre polynomials
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2011.01.037
– volume: 2004
  start-page: 331
  year: 2004
  ident: ref4
  article-title: Solution of an extraordinary differential equation by adomian decomposition method
  publication-title: Journal of Applied Mathematics
  doi: 10.1155/S1110757X04311010
– volume: 44
  start-page: 8011
  year: 2021
  ident: ref5
  article-title: A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.5676
– volume: 22
  start-page: 27
  year: 2019
  ident: ref22
  article-title: A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications
  publication-title: Fractional Calculus and Applied Analysis
  doi: 10.1515/fca-2019-0003
– volume: 24
  start-page: 241
  year: 1987
  ident: ref24
  article-title: Stability analysis of spectral methods for hyperbolic initial-boundary value systems
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0724020
– volume: 16
  start-page: 269
  year: 2017
  ident: ref16
  article-title: Approximate solution of boundary value problems using shifted legendre polynomials
  publication-title: Applied and Computational Mathematics
– volume: 46
  start-page: 83
  year: 2015
  ident: ref18
  article-title: Numerical solution for a class of nonlinear variable order fractional differential equations with legendre wavelets
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2015.02.010
– volume: 39
  start-page: A1928
  year: 2017
  ident: ref15
  article-title: Hermite spectral methods for fractional PDEs in unbounded domains
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/16M1097109
– year: 1993
  ident: ref1
  publication-title: An introduction to the fractional calculus and fractional differential equations
– volume: 67
  start-page: 1938
  year: 2014
  ident: ref11
  article-title: A new method based on legendre polynomials for solutions of the fractional two-dimensional heat conduction equation
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2014.03.008
– volume: 2013
  year: 2013
  ident: ref12
  article-title: Numerical modeling of fractional-order biological systems
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2013/816803
SSID ssj0036389
Score 2.3312268
Snippet In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional differential equations (FDEs) subject to the...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 941
SubjectTerms Algebra
Algorithms
Approximation
Calculus
Differential equations
Differentiation
Fractional calculus
Graphical representations
Initial conditions
Mathematical analysis
Methods
Numerical analysis
Polynomials
Researchers
Title Numerical Solutions of Fractional Variable Order Differential Equations via Using Shifted Legendre Polynomials
URI https://www.proquest.com/docview/3200120188
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgvXBhRxQK8oETkoF4TU6IpRVCUCo2cYscL6JSaUtbkPh7xokD4sIxzu155s3mmUHowBUyc54zYjTThCfKksxKT5i1hVNKZJkOCf3bnrx64tcv4iUm3GbxWWXNiSVR27EJOfJjRss-zyRNTyfvJGyNCtXVuEJjETWBglMIvprnnV7_vuZiFuxxOTGVSgKxAK3qmuCynPBj8-bCvG5Kj8LcsJT9tUx_ibm0Nt1VtBzdRHxW3esaWnCjdbRSr2DAUSM30Kj3UZVchvgnwYXHHnenVcMCnD9DNBz6o_BdmLKJL-NGFNDsIe68V5O-Z_hzoHH5fAA_vA48uKH4xoFs2anD_fHwKzQvg6Buoqdu5_HiisQVCsRQmc5JWhjw2Rw1GXwarYQWVAlvBSi2F54bLaUBQvSKSsFUalRClTeac265V4xtocZoPHLbCHsAkYnCFJnXnKlE-0RSm9jUAq7eZi10WMOXT6pJGTlEGCXWecA6D1jnFdYt1K4BzqPSzPLfK975__cuWgpb36tMSBs15tMPtwe-wbzYjwLwDRuXudA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6hcKCXAn2oFFr20F4qban3aR9Q1UKiUEKKWqi4mfU-VKSQQBKo-FP8Rma9NhUXbhxt3z5_-81rZwbgg69U4YPg1BpuqMi0o4VTgXLnKq-1LAoTE_oHQ9U_Fj9O5MkC3La9MPFaZauJtVC7iY058i3O6j7PLM-_XlzSuDUqVlfbFRqJFvv-5h-GbLPtvV38vx8Z63WPdvq02SpALVP5nOaVRTfGM1vgozVaGsm0DE4i14MMwhqlLGpE0ExJrnOrM6aDNUIIJ4KOCVCU_EXBMZTpwOL37vDwV6v9PNr_ekIrUxRjD5bqqOgifRFb9tzH-eCMfY5zynL-0BI-NAS1deutwPPGLSXfEo9WYcGPX8Byu_KBNArwEsbDq1TiGZH7hBqZBNKbpgYJfP8Ho-_Yj0V-xqmeZLfZwIJKMiLdyzRZfEauzwypryuQ33_PArq9ZOCRy27qyeFkdBObpfFgvILjJwH3NXTGk7F_AyQgiFxWtiqCEVxnJmSKuczlDnENrliDTy185UWazFFiRFNjXUasy4h1mbBeg40W4LI5pLPyP6XePv55E5b6RweDcrA33F-HZ3HjfMrCbEBnPr3y79AvmVfvGzIQOH1q_t0BpBz1kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solutions+of+Fractional+Variable+Order+Differential+Equations+via+Using+Shifted+Legendre+Polynomials&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Shah%2C+Kamal&rft.date=2023&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=134&rft.issue=2&rft.spage=941&rft.epage=955&rft_id=info:doi/10.32604%2Fcmes.2022.021483&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2022_021483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon