Study into the Influence of Technological Conditions of Electric Discharge Installation Operation on the Prebreakdown Characteristics of Electric Discharge

This work deals with the influence of the parameters of the working fluid (hydrostatic pressure, temperature, specific electrical conductivity) and the geometry of the electrode system (the length of the interelectrode gap and the uninsulated part of the anode) on the prebreakdown characteristics of...

Full description

Saved in:
Bibliographic Details
Published inSurface engineering and applied electrochemistry Vol. 59; no. 4; pp. 529 - 541
Main Authors Smirnov, A. P., Khvoshchan, O. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work deals with the influence of the parameters of the working fluid (hydrostatic pressure, temperature, specific electrical conductivity) and the geometry of the electrode system (the length of the interelectrode gap and the uninsulated part of the anode) on the prebreakdown characteristics of an electric discharge in a liquid aqueous electrolyte (breakdown voltage and breakdown delay time) and the minimum charging voltage, which provides a stable high-voltage breakdown of the interelectrode gap. The research has shown that an increase in the hydrostatic pressure leads to an increase in most of the characteristics under study. At the same time, an increase in the specific electrical conductivity and temperature was observed to lead to their decrease. It was suggested that the effect of temperature on the prebreakdown characteristics is associated with a change in the specific electrical conductivity of the working fluid during its heating. The data obtained showed no effect of the length of the interelectrode gap on the breakdown voltage and its breakdown delay time as well as the minimum charging voltage. The results of the experimental studies made it possible to develop a criterion for determining the charging voltage that provides a stable high-voltage breakdown of the water interelectrode gap. Its experimental verification has shown that it can be applied to the design of electric discharge equipment and to the choice of technological modes of operation in the specified range of parameters.
ISSN:1068-3755
1934-8002
DOI:10.3103/S1068375523040142