On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”
Earlier, the author described up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group 𝐺 with socle subscript 𝐿 2 𝑞 for which 𝐴 superscript 𝐵 𝑔 1 for any element of 𝐺 . A similar description was obtained by the author later for primary subgroups 𝐴 and 𝐵 of a finite group 𝐺 with so...
Saved in:
Published in | Proceedings of the Steklov Institute of Mathematics Vol. 323; no. Suppl 1; pp. S321 - S332 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0081-5438 1531-8605 |
DOI | 10.1134/S0081543823060251 |
Cover
Loading…
Abstract | Earlier, the author described up to conjugacy all pairs
𝐴
𝐵
of nilpotent subgroups of a finite group
𝐺
with socle
subscript
𝐿
2
𝑞
for which
𝐴
superscript
𝐵
𝑔
1
for any element of
𝐺
. A similar description was obtained by the author later for primary subgroups
𝐴
and
𝐵
of a finite group
𝐺
with socle
subscript
𝐿
𝑛
superscript
2
𝑚
. In this paper, we describe up to conjugacy all pairs
𝐴
𝐵
of nilpotent subgroups of a finite group
𝐺
with simple socle from the “Atlas of Finite Groups” for which
𝐴
superscript
𝐵
𝑔
1
for any element
𝑔
of
𝐺
. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group
𝐺
for any nilpotent subgroups
𝑁
contains an element
𝑔
such that
𝑁
superscript
𝑁
𝑔
1
. |
---|---|
AbstractList | Earlier, the author described up to conjugacy all pairs
𝐴
𝐵
of nilpotent subgroups of a finite group
𝐺
with socle
subscript
𝐿
2
𝑞
for which
𝐴
superscript
𝐵
𝑔
1
for any element of
𝐺
. A similar description was obtained by the author later for primary subgroups
𝐴
and
𝐵
of a finite group
𝐺
with socle
subscript
𝐿
𝑛
superscript
2
𝑚
. In this paper, we describe up to conjugacy all pairs
𝐴
𝐵
of nilpotent subgroups of a finite group
𝐺
with simple socle from the “Atlas of Finite Groups” for which
𝐴
superscript
𝐵
𝑔
1
for any element
𝑔
of
𝐺
. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group
𝐺
for any nilpotent subgroups
𝑁
contains an element
𝑔
such that
𝑁
superscript
𝑁
𝑔
1
. Earlier, the author described up to conjugacy all pairs ð´ðµ of nilpotent subgroups of a finite group ðº with socle subscriptð¿2ð' for which ð´superscriptðµð'"1 for any element of ðº. A similar description was obtained by the author later for primary subgroups ð´ and ðµ of a finite group ðº with socle subscriptð¿ð'>superscript2ð'. In this paper, we describe up to conjugacy all pairs ð´ðµ of nilpotent subgroups of a finite group ðº with simple socle from the “Atlas of Finite Groups” for which ð´superscriptðµð'"1 for any element ð'" of ðº. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group ðº for any nilpotent subgroups ð' contains an element ð'" such that ð'superscriptð'ð'"1. |
Author | Zenkov, V. I. |
Author_xml | – sequence: 1 givenname: V. I. surname: Zenkov fullname: Zenkov, V. I. email: v1i9z52@mail.ru organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University |
BookMark | eNp1UMtKAzEUDVLBWv0AdwHXo3nNa1mKrYViF6PrISaZNmWajEkGcdcP0Z_rlzjjCCLi5l7ueV0452BkrFEAXGF0gzFltwVCGY4ZzQhFCSIxPgFjHFMcZQmKR2Dc01HPn4Fz73cIsThl-Rg0awOXJijnlQjaGg9tBR903digTIBF-7xxtm081AbOtdFBwcUAvOqwhYXeN7WChRXdrJzdw7BV8Hh4n4aaf2X9Mh0PHxfgtOK1V5ffewKe5nePs_totV4sZ9NVJEiShYjxilNBJMOSZJSkWFQJo4rLpMc5zyvGZUooz3NBOZWSKdwdSMq0k8uMTsD1kNs4-9IqH8qdbZ3pXpYkJ3HMGGG9Cg8q4az3TlVl4_Seu7cSo7IvtvxTbOchg8d3WrNR7if5f9Mn4vp-sA |
Cites_doi | 10.17377/semi.2017.14.121 10.1112/plms/s2-1.1.388 10.17377/semi.2018.15.058 10.1134/S0001434619030076 10.1007/978-1-4684-8497-7 10.1134/S0037446618020088 10.1007/BF02547953 10.1090/S0002-9939-1963-0142631-X 10.1017/S0027763000017438 10.1007/BF02110750 10.1017/CBO9781139192576 10.1134/S0037446616060070 10.1134/S0037446613010102 10.1017/S0013091500004065 10.1007/s10958-017-3232-8 10.1007/s10469-020-09603-x 10.1134/S0081543814050228 10.1112/plms/s2-2.1.432 10.1007/BF02757885 10.1007/BF01158735 10.17516/1997-1397-2018-11-2-171-177 10.1017/S0013091500026328 10.1016/0021-8693(71)90086-X 10.1007/BF02367025 10.1007/BF01877481 10.1007/BF02789326 10.21538/0134-4889-2021-27-1-70-78 10.17377/semi.2016.13.087 10.1134/S0081543816090182 10.1007/BF02287057 10.1016/j.jalgebra.2010.09.024 |
ContentType | Journal Article Conference Proceeding |
Copyright | Pleiades Publishing, Ltd. 2023 Pleiades Publishing, Ltd. 2023. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023 – notice: Pleiades Publishing, Ltd. 2023. |
DBID | AAYXX CITATION |
DOI | 10.1134/S0081543823060251 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1531-8605 |
EndPage | S332 |
ExternalDocumentID | 10_1134_S0081543823060251 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR YNT ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c268t-4afa3c2d41d283271cf643ead6fa3caa9f4ad723a99c3a3dd4e13a90dd7832d83 |
IEDL.DBID | AGYKE |
ISSN | 0081-5438 |
IngestDate | Fri Jul 25 11:06:06 EDT 2025 Tue Jul 01 03:08:48 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | nilpotent subgroup finite group intersection of subgroups Fitting subgroup |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c268t-4afa3c2d41d283271cf643ead6fa3caa9f4ad723a99c3a3dd4e13a90dd7832d83 |
Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
PQID | 2925544248 |
PQPubID | 2044165 |
ParticipantIDs | proquest_journals_2925544248 crossref_primary_10_1134_S0081543823060251 springer_journals_10_1134_S0081543823060251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Proceedings of the Steklov Institute of Mathematics |
PublicationTitleAbbrev | Proc. Steklov Inst. Math |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Burnside (CR7) 1904; 2 Alperin, Lyons (CR35) 1971; 19 Mazurov, Khukhro (CR15) 2010 Gorenstein (CR16) 1982 Zenkov (CR30) 2016; 13 Zenkov, Nuzhin (CR26) 2018; 11 Zenkov (CR6) 2016; 295 Bialostocki (CR14) 1975; 20 Kabanov, Makhnev, Starostin (CR12) 1976; 15 Laffey (CR4) 1977; 20 Harada, Yamaki (CR38) 1979; 1 Aschbacher, Seitz (CR31) 1976; 63 Zenkov (CR11) 1996; 2 Dempwolff, Wong (CR5) 1982; 25 Brodkey (CR3) 1963; 14 Zenkov (CR24) 2018; 15 Burnside (CR8) 1905; 2 Kurmazov (CR17) 2013; 54 Bray, Holt, Roney-Dougal (CR36) 2013 Herzog (CR13) 1972; 11 Zenkov (CR20) 2021; 27 Isaacs (CR2) 2008 Zenkov (CR28) 2018; 59 Zenkov (CR21) 2019; 105 Zenkov (CR1) 1994; 56 Zenkov (CR19) 2020; 59 Baer (CR33) 1957; 133 Mazurov, Zenkov (CR10) 1996; 35 Zenkov, Nuzhin (CR27) 2017; 221 Yang (CR32) 2011; 325 Conway, Curtis, Norton, Parker, Wilson (CR23) 1985 Gorenstein, Lyons, Solomon (CR29) 1998 Zenkov (CR25) 2017; 14 Kondrat’ev (CR37) 1985; 37 Ito (CR9) 1958; 9 Zenkov (CR18) 2014; 285 Zenkov (CR22) 2016; 57 Suzuki (CR34) 1968; 82 D Gorenstein (8389_CR16) 1982 VI Zenkov (8389_CR18) 2014; 285 N Bialostocki (8389_CR14) 1975; 20 VI Zenkov (8389_CR24) 2018; 15 (8389_CR15) 2010 VI Zenkov (8389_CR26) 2018; 11 VI Zenkov (8389_CR19) 2020; 59 VD Mazurov (8389_CR10) 1996; 35 VI Zenkov (8389_CR11) 1996; 2 JS Brodkey (8389_CR3) 1963; 14 VI Zenkov (8389_CR27) 2017; 221 JN Bray (8389_CR36) 2013 N Ito (8389_CR9) 1958; 9 VI Zenkov (8389_CR1) 1994; 56 VI Zenkov (8389_CR20) 2021; 27 VV Kabanov (8389_CR12) 1976; 15 R Baer (8389_CR33) 1957; 133 M Suzuki (8389_CR34) 1968; 82 W Burnside (8389_CR7) 1904; 2 VI Zenkov (8389_CR22) 2016; 57 M Aschbacher (8389_CR31) 1976; 63 J Alperin (8389_CR35) 1971; 19 JH Conway (8389_CR23) 1985 VI Zenkov (8389_CR21) 2019; 105 VI Zenkov (8389_CR6) 2016; 295 RK Kurmazov (8389_CR17) 2013; 54 U Dempwolff (8389_CR5) 1982; 25 M Herzog (8389_CR13) 1972; 11 Yong Yang (8389_CR32) 2011; 325 D Gorenstein (8389_CR29) 1998 VI Zenkov (8389_CR30) 2016; 13 AS Kondrat’ev (8389_CR37) 1985; 37 IM Isaacs (8389_CR2) 2008 TJ Laffey (8389_CR4) 1977; 20 W Burnside (8389_CR8) 1905; 2 VI Zenkov (8389_CR25) 2017; 14 VI Zenkov (8389_CR28) 2018; 59 K Harada (8389_CR38) 1979; 1 |
References_xml | – volume: 14 start-page: 1424 year: 2017 end-page: 1433 ident: CR25 article-title: On the intersection of two nilpotent subgroups in a finite group with socle $$\Omega^{+}_{8}(2)$$, $$E_{6}(2)$$, or $$E_{7}(2)$$ publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2017.14.121 – volume: 2 start-page: 388 issue: 1 year: 1904 end-page: 392 ident: CR7 article-title: On groups of order $$p^{a}q^{\beta}$$ publication-title: Proc. London Math. Soc. doi: 10.1112/plms/s2-1.1.388 – volume: 15 start-page: 728 year: 2018 end-page: 732 ident: CR24 article-title: On intersections of pairs of primary subgroups in a finite group with socle $$\Omega^{+}_{2n}(2^{m})$$ publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2018.15.058 – volume: 105 start-page: 366 issue: 3 year: 2019 end-page: 375 ident: CR21 article-title: On intersections of abelian and nilpotent subgroups in finite groups II publication-title: Math. Notes doi: 10.1134/S0001434619030076 – year: 1982 ident: CR16 publication-title: Finite Simple Groups: An Introduction to Their Classification doi: 10.1007/978-1-4684-8497-7 – volume: 59 start-page: 264 issue: 2 year: 2018 end-page: 269 ident: CR28 article-title: Intersections of primary subgroups in nonsoluble finite groups isomorphic to $$L_{n}(2^{m})$$ publication-title: Sib. Math. J. doi: 10.1134/S0037446618020088 – volume: 133 start-page: 256 year: 1957 end-page: 270 ident: CR33 article-title: Engelsche Elemente Noetherscher Gruppen publication-title: Math. Ann. doi: 10.1007/BF02547953 – volume: 14 start-page: 132 year: 1963 end-page: 133 ident: CR3 article-title: A note on finite groups with an abelian Sylow group publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1963-0142631-X – year: 1985 ident: CR23 publication-title: Atlas of Finite Groups – volume: 63 start-page: 1 year: 1976 end-page: 91 ident: CR31 article-title: Involutions in Chevalley groups over fields of even order publication-title: Nagoya Math. J. doi: 10.1017/S0027763000017438 – volume: 56 start-page: 869 issue: 2 year: 1994 end-page: 871 ident: CR1 article-title: Intersection of abelian subgroups in finite groups publication-title: Math. Notes doi: 10.1007/BF02110750 – volume: 1 start-page: 75 issue: 2 year: 1979 end-page: 78 ident: CR38 article-title: The irreducible subgroups of $$GL(n,2)$$ with $$n\leq 6$$ publication-title: Roy. Soc. Can. Math. Rep. – volume: 2 start-page: 1 issue: 1 year: 1996 end-page: 92 ident: CR11 article-title: Intersections of nilpotent subgroups in finite groups publication-title: Fundam. Prikl. Mat. – year: 2013 ident: CR36 publication-title: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups doi: 10.1017/CBO9781139192576 – volume: 57 start-page: 1002 issue: 6 year: 2016 end-page: 1010 ident: CR22 article-title: Intersections of two nilpotent subgroups in finite groups with socle $$L_{2}(q)$$ publication-title: Sib. Math. J. doi: 10.1134/S0037446616060070 – year: 2010 ident: CR15 publication-title: The Kourovka Notebook: Unsolved Problems in Group Theory – volume: 54 start-page: 73 issue: 1 year: 2013 end-page: 77 ident: CR17 article-title: On the intersection of conjugate nilpotent subgroups in permutation groups publication-title: Sib. Mat. J. doi: 10.1134/S0037446613010102 – volume: 82 start-page: 191 issue: 2 year: 1968 end-page: 212 ident: CR34 article-title: Finite groups in which the centralizer of any element of order 2 is 2-closed publication-title: Ann. Math. – volume: 25 start-page: 19 issue: 1 year: 1982 end-page: 20 ident: CR5 article-title: On cyclic subgroups of finite groups publication-title: Proc. Edinburgh Math. Soc. doi: 10.1017/S0013091500004065 – volume: 221 start-page: 384 issue: 3 year: 2017 end-page: 390 ident: CR27 article-title: On intersection of primary sub- groups of odd order in finite almost simple groups publication-title: J. Math. Sci. doi: 10.1007/s10958-017-3232-8 – volume: 59 start-page: 313 issue: 4 year: 2020 end-page: 321 ident: CR19 article-title: Intersections of nilpotent subgroups in finite groups with sporadic socle publication-title: Algebra Logic doi: 10.1007/s10469-020-09603-x – volume: 285 start-page: S203 year: 2014 end-page: S208 ident: CR18 article-title: On intersections of nilpotent subgroups in finite symmetric and alternating groups publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543814050228 – volume: 2 start-page: 432 issue: 2 year: 1905 end-page: 437 ident: CR8 article-title: On groups of order $$p^{a}q^{\beta}$$ (Second paper) publication-title: Proc. London Math. Soc. doi: 10.1112/plms/s2-2.1.432 – volume: 20 start-page: 178 issue: 2 year: 1975 end-page: 188 ident: CR14 article-title: On products of two nilpotent subgroups of a finite groups publication-title: Isr. J. Math. doi: 10.1007/BF02757885 – volume: 37 start-page: 178 issue: 3 year: 1985 end-page: 181 ident: CR37 article-title: Irreducible subgroups of the group $$GL(7,2)$$ publication-title: Math. Notes doi: 10.1007/BF01158735 – volume: 11 start-page: 605 issue: 2 year: 2018 end-page: 617 ident: CR26 article-title: Intersection of primary subgroups in the group $$\mathrm{Aut}\,(F_{4}(2))$$ publication-title: J. Sib. Fed. Univ. Math. Phys. doi: 10.17516/1997-1397-2018-11-2-171-177 – year: 1998 ident: CR29 publication-title: The Classification of the Finite Simple Groups: Number – volume: 20 start-page: 229 issue: 3 year: 1977 end-page: 232 ident: CR4 article-title: Disjoint conjugates of cyclic subgroups of finite groups publication-title: Proc. Edinburgh Math. Soc. doi: 10.1017/S0013091500026328 – volume: 19 start-page: 536 issue: 2 year: 1971 end-page: 537 ident: CR35 article-title: On conjugacy classes of p-elements publication-title: J. Algebra doi: 10.1016/0021-8693(71)90086-X – volume: 35 start-page: 236 issue: 4 year: 1996 end-page: 240 ident: CR10 article-title: The intersection of Sylow subgroups in finite groups publication-title: Algebra Logic doi: 10.1007/BF02367025 – volume: 15 start-page: 409 issue: 6 year: 1976 end-page: 412 ident: CR12 article-title: Finite groups with normal intersections of Sylow 2-subgroups publication-title: Algebra Logic doi: 10.1007/BF01877481 – volume: 11 start-page: 325 issue: 3 year: 1972 end-page: 327 ident: CR13 article-title: On 2-Sylow intersections publication-title: Isr. J. Math. doi: 10.1007/BF02789326 – volume: 27 start-page: 70 issue: 1 year: 2021 end-page: 78 ident: CR20 article-title: On intersections of nilpotent subgroups in finite groups with socle $$L_{3}(q)$$ or $$U_{3}(q)$$ publication-title: Trudy Inst. Mat. Mekh. UrO RAN doi: 10.21538/0134-4889-2021-27-1-70-78 – volume: 13 start-page: 1099 year: 2016 end-page: 1115 ident: CR30 article-title: On the intersection of two nilpotent subgroups in small finite groups publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2016.13.087 – year: 2008 ident: CR2 publication-title: Finite Group Theory – volume: 295 start-page: S174 year: 2016 end-page: S177 ident: CR6 article-title: On intersections of abelian and nilpotent subgroups in finite groups. I publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543816090182 – volume: 9 start-page: 27 year: 1958 end-page: 32 ident: CR9 article-title: Über den kleinsten $$p$$-Durchschnitt auflösbarer Gruppen publication-title: Arch. Math. doi: 10.1007/BF02287057 – volume: 325 start-page: 56 issue: 1 year: 2011 end-page: 69 ident: CR32 article-title: Regular orbits of nilpotent subgroups of solvable linear groups publication-title: J. Algebra doi: 10.1016/j.jalgebra.2010.09.024 – volume-title: The Kourovka Notebook: Unsolved Problems in Group Theory year: 2010 ident: 8389_CR15 – volume: 285 start-page: S203 year: 2014 ident: 8389_CR18 publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543814050228 – volume: 15 start-page: 409 issue: 6 year: 1976 ident: 8389_CR12 publication-title: Algebra Logic doi: 10.1007/BF01877481 – volume-title: The Classification of the Finite Simple Groups: Number year: 1998 ident: 8389_CR29 – volume: 11 start-page: 605 issue: 2 year: 2018 ident: 8389_CR26 publication-title: J. Sib. Fed. Univ. Math. Phys. doi: 10.17516/1997-1397-2018-11-2-171-177 – volume: 11 start-page: 325 issue: 3 year: 1972 ident: 8389_CR13 publication-title: Isr. J. Math. doi: 10.1007/BF02789326 – volume: 14 start-page: 132 year: 1963 ident: 8389_CR3 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1963-0142631-X – volume: 1 start-page: 75 issue: 2 year: 1979 ident: 8389_CR38 publication-title: Roy. Soc. Can. Math. Rep. – volume: 59 start-page: 264 issue: 2 year: 2018 ident: 8389_CR28 publication-title: Sib. Math. J. doi: 10.1134/S0037446618020088 – volume: 20 start-page: 178 issue: 2 year: 1975 ident: 8389_CR14 publication-title: Isr. J. Math. doi: 10.1007/BF02757885 – volume: 13 start-page: 1099 year: 2016 ident: 8389_CR30 publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2016.13.087 – volume: 2 start-page: 432 issue: 2 year: 1905 ident: 8389_CR8 publication-title: Proc. London Math. Soc. doi: 10.1112/plms/s2-2.1.432 – volume: 105 start-page: 366 issue: 3 year: 2019 ident: 8389_CR21 publication-title: Math. Notes doi: 10.1134/S0001434619030076 – volume-title: Finite Group Theory year: 2008 ident: 8389_CR2 – volume: 14 start-page: 1424 year: 2017 ident: 8389_CR25 publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2017.14.121 – volume: 63 start-page: 1 year: 1976 ident: 8389_CR31 publication-title: Nagoya Math. J. doi: 10.1017/S0027763000017438 – volume-title: Atlas of Finite Groups year: 1985 ident: 8389_CR23 – volume: 20 start-page: 229 issue: 3 year: 1977 ident: 8389_CR4 publication-title: Proc. Edinburgh Math. Soc. doi: 10.1017/S0013091500026328 – volume: 35 start-page: 236 issue: 4 year: 1996 ident: 8389_CR10 publication-title: Algebra Logic doi: 10.1007/BF02367025 – volume: 25 start-page: 19 issue: 1 year: 1982 ident: 8389_CR5 publication-title: Proc. Edinburgh Math. Soc. doi: 10.1017/S0013091500004065 – volume-title: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups year: 2013 ident: 8389_CR36 doi: 10.1017/CBO9781139192576 – volume: 2 start-page: 388 issue: 1 year: 1904 ident: 8389_CR7 publication-title: Proc. London Math. Soc. doi: 10.1112/plms/s2-1.1.388 – volume: 221 start-page: 384 issue: 3 year: 2017 ident: 8389_CR27 publication-title: J. Math. Sci. doi: 10.1007/s10958-017-3232-8 – volume: 325 start-page: 56 issue: 1 year: 2011 ident: 8389_CR32 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2010.09.024 – volume: 15 start-page: 728 year: 2018 ident: 8389_CR24 publication-title: Sib. Elektron. Math. Izv. doi: 10.17377/semi.2018.15.058 – volume: 9 start-page: 27 year: 1958 ident: 8389_CR9 publication-title: Arch. Math. doi: 10.1007/BF02287057 – volume: 2 start-page: 1 issue: 1 year: 1996 ident: 8389_CR11 publication-title: Fundam. Prikl. Mat. – volume: 37 start-page: 178 issue: 3 year: 1985 ident: 8389_CR37 publication-title: Math. Notes doi: 10.1007/BF01158735 – volume: 82 start-page: 191 issue: 2 year: 1968 ident: 8389_CR34 publication-title: Ann. Math. – volume: 133 start-page: 256 year: 1957 ident: 8389_CR33 publication-title: Math. Ann. doi: 10.1007/BF02547953 – volume: 27 start-page: 70 issue: 1 year: 2021 ident: 8389_CR20 publication-title: Trudy Inst. Mat. Mekh. UrO RAN doi: 10.21538/0134-4889-2021-27-1-70-78 – volume: 295 start-page: S174 year: 2016 ident: 8389_CR6 publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543816090182 – volume: 19 start-page: 536 issue: 2 year: 1971 ident: 8389_CR35 publication-title: J. Algebra doi: 10.1016/0021-8693(71)90086-X – volume: 59 start-page: 313 issue: 4 year: 2020 ident: 8389_CR19 publication-title: Algebra Logic doi: 10.1007/s10469-020-09603-x – volume-title: Finite Simple Groups: An Introduction to Their Classification year: 1982 ident: 8389_CR16 doi: 10.1007/978-1-4684-8497-7 – volume: 57 start-page: 1002 issue: 6 year: 2016 ident: 8389_CR22 publication-title: Sib. Math. J. doi: 10.1134/S0037446616060070 – volume: 54 start-page: 73 issue: 1 year: 2013 ident: 8389_CR17 publication-title: Sib. Mat. J. doi: 10.1134/S0037446613010102 – volume: 56 start-page: 869 issue: 2 year: 1994 ident: 8389_CR1 publication-title: Math. Notes doi: 10.1007/BF02110750 |
SSID | ssj0045749 |
Score | 2.2706687 |
Snippet | Earlier, the author described up to conjugacy all pairs
𝐴
𝐵
of nilpotent subgroups of a finite group
𝐺
with socle
subscript
𝐿
2
𝑞
for which
𝐴... Earlier, the author described up to conjugacy all pairs ð´ðµ of nilpotent subgroups of a finite group ðº with socle subscriptð¿2ð' for which... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | S321 |
SubjectTerms | Group theory Mathematics Mathematics and Statistics Subgroups |
Title | On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups” |
URI | https://link.springer.com/article/10.1134/S0081543823060251 https://www.proquest.com/docview/2925544248 |
Volume | 323 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YMnTQndbl9HMBSiAQ9Agqdmu9tNiKYltlw88UP0z_FL3O1DAurBY_cx6XanM9_uvABuqOywTMI0gU2mEeXf6DqmqVk80JkyW_EsT8FgaPUn5GFqTos47qT0di9NkpmkzuuOkCymV-p7ZbdqWQoZ70LV1B3XqUC13Xt-7JYCmJh2gXodXVMTCmPmr0Q21dEaY26ZRTNt4x3CuHzP3MnkpblIgyZ730rh-M-FHMFBgT5RO2eXY9gJoxPYH3ynbk1OYf4UoeyaMMmctKIExQINZ6_zWKLrFElBkwWCJGgWIW-mECvq5Q3qSheNZirdMBrFkj5SsStI0kar5Uc7lThd0dqYtFp-nsHE647v-1pRlkFj2HJSjVBBDYY50bmqc2TrTEhYIznSUu2UuoJQbmODui4zqME5CXX50OLclsO5Y5xDJYqj8AKQgmOmsClmdkBUajgJXmSLTgUhrsBGDW7L3fHnefYNPzu1GMT_8RlrUC_3zy9-xMTHrjwzEYKJU4O7cjvW3X8Su_zX6CvYU2XoczeXOlTSt0V4LcFKGjQkc3qdzrBRMOkXn5DhJQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5ROKgHdyOKOgdPmhLavm5HYliUxQOQ4KmZztCEaFpiy8UTP0T_HL_EmS4SUA8cO8tLp_P65nvzNoBbKjpMA5niawZTUPo3OrZhKCb3VCbNVjzJU9Dtma0hPo2MURbHHeXe7rlJMpHUad0RTGJ6xXkv7VZVUyLjbSiiUMGrBSjWmi_tei6A0bAy1GuripyQGTP_JLJ6HC0x5ppZNDltGgcwyN8zdTJ5rcxir8I-1lI4briQQ9jP0CeppexyBFvj4Bj2uj-pW6MTmD4HJLkmjBInrSAioU96k7dpKNB1TISgSQJBIjIJSGMiEStppg3ySpf0JzLdMOmHgj6RsStE0CaL-WctFjhd0lqZtJh_ncKwUR88tJSsLIPCNNOOFaQ-1ZnGUeWyzpGlMl_AGsGRpmyn1PGRckvTqeMwneqc41gVD1XOLTGc2_oZFIIwGJ8DkXDM8C2qMctDmRpOgBfRolIf0fE1vQR3-e640zT7hptoLTq6vz5jCcr5_rnZjxi5miN0JkQN7RLc59ux7P6X2MVGo29gpzXodtzOY699CbuyJH3q8lKGQvw-G18J4BJ71xmjfgMW6uKG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCMKBXzgBAo0yWQ7VtCWtSABEpyCa9dSBUorkl448SHwc3wJnixUZTkgjhnbk8WO_eyZeQOwzXWB66AwlOUIA8m_MfAdx3BlxxRktpIpT8F52z26wZNb5zbPcxoX3u6FSTKLaSCWpijZH0iV5yDBNL5Xr_1kw6q5hJInoYw1jf1LUK637k4bxWSMjpcjYN80qEFu2PxRyfjSNMKbX0yk6crTnIP74pkzh5OHvWHS2RPPX-gc__FS8zCbo1JWz4bRAkx0o0WYOf-kdI2XYHARsfT4ME6dt6KY9RVr9x4HfboF0xNQGiASs17Emj1CsqyVCeiol131iIaYXfW1fkYxLUzrZu8vr_VE43fSNdbo_eVtGW6ajeuDIyNP12AIy_UTA7nitrAkmpLyH3mmUBru6JHqkpzzQCGXnmXzIBA2t6XErqkvalJ6urr07RUoRf2ouwqMYJqjPG4Jr4NEGadBjZaYXCEGyrIrsFP0VDjIWDnCdDdjY_jtM1agWvRlmP-gcWgFei-FaKFfgd2ia0bFvypb-1PtLZi6PGyGZ8ft03WYpkz1mSdMFUrJ07C7ofFM0tnMx-wHktLrag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+Intersections+of+Nilpotent+Subgroups+in+Finite+Groups+with+Simple+Socle+from+the+%E2%80%9CAtlas+of+Finite+Groups%E2%80%9D&rft.au=Zenkov%2C+V+I&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=323&rft.issue=1&rft.spage=S321&rft.epage=S332&rft_id=info:doi/10.1134%2FS0081543823060251&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon |