On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”

Earlier, the author described up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with socle subscript 𝐿 2 𝑞 for which 𝐴 superscript 𝐵 𝑔 1 for any element of  𝐺 . A similar description was obtained by the author later for primary subgroups  𝐴 and  𝐵 of a finite group  𝐺 with so...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Steklov Institute of Mathematics Vol. 323; no. Suppl 1; pp. S321 - S332
Main Author Zenkov, V. I.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0081-5438
1531-8605
DOI10.1134/S0081543823060251

Cover

Loading…
Abstract Earlier, the author described up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with socle subscript 𝐿 2 𝑞 for which 𝐴 superscript 𝐵 𝑔 1 for any element of  𝐺 . A similar description was obtained by the author later for primary subgroups  𝐴 and  𝐵 of a finite group  𝐺 with socle subscript 𝐿 𝑛 superscript 2 𝑚 . In this paper, we describe up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with simple socle from the “Atlas of Finite Groups” for which 𝐴 superscript 𝐵 𝑔 1 for any element  𝑔 of  𝐺 . The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group  𝐺 for any nilpotent subgroups  𝑁 contains an element  𝑔 such that 𝑁 superscript 𝑁 𝑔 1 .
AbstractList Earlier, the author described up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with socle subscript 𝐿 2 𝑞 for which 𝐴 superscript 𝐵 𝑔 1 for any element of  𝐺 . A similar description was obtained by the author later for primary subgroups  𝐴 and  𝐵 of a finite group  𝐺 with socle subscript 𝐿 𝑛 superscript 2 𝑚 . In this paper, we describe up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with simple socle from the “Atlas of Finite Groups” for which 𝐴 superscript 𝐵 𝑔 1 for any element  𝑔 of  𝐺 . The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group  𝐺 for any nilpotent subgroups  𝑁 contains an element  𝑔 such that 𝑁 superscript 𝑁 𝑔 1 .
Earlier, the author described up to conjugacy all pairs 𝐴𝐵 of nilpotent subgroups of a finite group 𝐺 with socle subscript𝐿2ð'ž for which 𝐴superscript𝐵ð'"1 for any element of 𝐺. A similar description was obtained by the author later for primary subgroups 𝐴 and 𝐵 of a finite group 𝐺 with socle subscript𝐿ð'>superscript2ð'š. In this paper, we describe up to conjugacy all pairs 𝐴𝐵 of nilpotent subgroups of a finite group 𝐺 with simple socle from the “Atlas of Finite Groups” for which 𝐴superscript𝐵ð'"1 for any element ð'" of 𝐺. The results obtained in the considered cases confirm the hypothesis (Problem 15.40 from the “Kourovka Notebook”) that a finite simple nonabelian group 𝐺 for any nilpotent subgroups ð' contains an element ð'" such that ð'superscriptð'ð'"1.
Author Zenkov, V. I.
Author_xml – sequence: 1
  givenname: V. I.
  surname: Zenkov
  fullname: Zenkov, V. I.
  email: v1i9z52@mail.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University
BookMark eNp1UMtKAzEUDVLBWv0AdwHXo3nNa1mKrYViF6PrISaZNmWajEkGcdcP0Z_rlzjjCCLi5l7ueV0452BkrFEAXGF0gzFltwVCGY4ZzQhFCSIxPgFjHFMcZQmKR2Dc01HPn4Fz73cIsThl-Rg0awOXJijnlQjaGg9tBR903digTIBF-7xxtm081AbOtdFBwcUAvOqwhYXeN7WChRXdrJzdw7BV8Hh4n4aaf2X9Mh0PHxfgtOK1V5ffewKe5nePs_totV4sZ9NVJEiShYjxilNBJMOSZJSkWFQJo4rLpMc5zyvGZUooz3NBOZWSKdwdSMq0k8uMTsD1kNs4-9IqH8qdbZ3pXpYkJ3HMGGG9Cg8q4az3TlVl4_Seu7cSo7IvtvxTbOchg8d3WrNR7if5f9Mn4vp-sA
Cites_doi 10.17377/semi.2017.14.121
10.1112/plms/s2-1.1.388
10.17377/semi.2018.15.058
10.1134/S0001434619030076
10.1007/978-1-4684-8497-7
10.1134/S0037446618020088
10.1007/BF02547953
10.1090/S0002-9939-1963-0142631-X
10.1017/S0027763000017438
10.1007/BF02110750
10.1017/CBO9781139192576
10.1134/S0037446616060070
10.1134/S0037446613010102
10.1017/S0013091500004065
10.1007/s10958-017-3232-8
10.1007/s10469-020-09603-x
10.1134/S0081543814050228
10.1112/plms/s2-2.1.432
10.1007/BF02757885
10.1007/BF01158735
10.17516/1997-1397-2018-11-2-171-177
10.1017/S0013091500026328
10.1016/0021-8693(71)90086-X
10.1007/BF02367025
10.1007/BF01877481
10.1007/BF02789326
10.21538/0134-4889-2021-27-1-70-78
10.17377/semi.2016.13.087
10.1134/S0081543816090182
10.1007/BF02287057
10.1016/j.jalgebra.2010.09.024
ContentType Journal Article
Conference Proceeding
Copyright Pleiades Publishing, Ltd. 2023
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
DOI 10.1134/S0081543823060251
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8605
EndPage S332
ExternalDocumentID 10_1134_S0081543823060251
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
YNT
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c268t-4afa3c2d41d283271cf643ead6fa3caa9f4ad723a99c3a3dd4e13a90dd7832d83
IEDL.DBID AGYKE
ISSN 0081-5438
IngestDate Fri Jul 25 11:06:06 EDT 2025
Tue Jul 01 03:08:48 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords nilpotent subgroup
finite group
intersection of subgroups
Fitting subgroup
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-4afa3c2d41d283271cf643ead6fa3caa9f4ad723a99c3a3dd4e13a90dd7832d83
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 2925544248
PQPubID 2044165
ParticipantIDs proquest_journals_2925544248
crossref_primary_10_1134_S0081543823060251
springer_journals_10_1134_S0081543823060251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Proceedings of the Steklov Institute of Mathematics
PublicationTitleAbbrev Proc. Steklov Inst. Math
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Burnside (CR7) 1904; 2
Alperin, Lyons (CR35) 1971; 19
Mazurov, Khukhro (CR15) 2010
Gorenstein (CR16) 1982
Zenkov (CR30) 2016; 13
Zenkov, Nuzhin (CR26) 2018; 11
Zenkov (CR6) 2016; 295
Bialostocki (CR14) 1975; 20
Kabanov, Makhnev, Starostin (CR12) 1976; 15
Laffey (CR4) 1977; 20
Harada, Yamaki (CR38) 1979; 1
Aschbacher, Seitz (CR31) 1976; 63
Zenkov (CR11) 1996; 2
Dempwolff, Wong (CR5) 1982; 25
Brodkey (CR3) 1963; 14
Zenkov (CR24) 2018; 15
Burnside (CR8) 1905; 2
Kurmazov (CR17) 2013; 54
Bray, Holt, Roney-Dougal (CR36) 2013
Herzog (CR13) 1972; 11
Zenkov (CR20) 2021; 27
Isaacs (CR2) 2008
Zenkov (CR28) 2018; 59
Zenkov (CR21) 2019; 105
Zenkov (CR1) 1994; 56
Zenkov (CR19) 2020; 59
Baer (CR33) 1957; 133
Mazurov, Zenkov (CR10) 1996; 35
Zenkov, Nuzhin (CR27) 2017; 221
Yang (CR32) 2011; 325
Conway, Curtis, Norton, Parker, Wilson (CR23) 1985
Gorenstein, Lyons, Solomon (CR29) 1998
Zenkov (CR25) 2017; 14
Kondrat’ev (CR37) 1985; 37
Ito (CR9) 1958; 9
Zenkov (CR18) 2014; 285
Zenkov (CR22) 2016; 57
Suzuki (CR34) 1968; 82
D Gorenstein (8389_CR16) 1982
VI Zenkov (8389_CR18) 2014; 285
N Bialostocki (8389_CR14) 1975; 20
VI Zenkov (8389_CR24) 2018; 15
(8389_CR15) 2010
VI Zenkov (8389_CR26) 2018; 11
VI Zenkov (8389_CR19) 2020; 59
VD Mazurov (8389_CR10) 1996; 35
VI Zenkov (8389_CR11) 1996; 2
JS Brodkey (8389_CR3) 1963; 14
VI Zenkov (8389_CR27) 2017; 221
JN Bray (8389_CR36) 2013
N Ito (8389_CR9) 1958; 9
VI Zenkov (8389_CR1) 1994; 56
VI Zenkov (8389_CR20) 2021; 27
VV Kabanov (8389_CR12) 1976; 15
R Baer (8389_CR33) 1957; 133
M Suzuki (8389_CR34) 1968; 82
W Burnside (8389_CR7) 1904; 2
VI Zenkov (8389_CR22) 2016; 57
M Aschbacher (8389_CR31) 1976; 63
J Alperin (8389_CR35) 1971; 19
JH Conway (8389_CR23) 1985
VI Zenkov (8389_CR21) 2019; 105
VI Zenkov (8389_CR6) 2016; 295
RK Kurmazov (8389_CR17) 2013; 54
U Dempwolff (8389_CR5) 1982; 25
M Herzog (8389_CR13) 1972; 11
Yong Yang (8389_CR32) 2011; 325
D Gorenstein (8389_CR29) 1998
VI Zenkov (8389_CR30) 2016; 13
AS Kondrat’ev (8389_CR37) 1985; 37
IM Isaacs (8389_CR2) 2008
TJ Laffey (8389_CR4) 1977; 20
W Burnside (8389_CR8) 1905; 2
VI Zenkov (8389_CR25) 2017; 14
VI Zenkov (8389_CR28) 2018; 59
K Harada (8389_CR38) 1979; 1
References_xml – volume: 14
  start-page: 1424
  year: 2017
  end-page: 1433
  ident: CR25
  article-title: On the intersection of two nilpotent subgroups in a finite group with socle $$\Omega^{+}_{8}(2)$$, $$E_{6}(2)$$, or $$E_{7}(2)$$
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2017.14.121
– volume: 2
  start-page: 388
  issue: 1
  year: 1904
  end-page: 392
  ident: CR7
  article-title: On groups of order $$p^{a}q^{\beta}$$
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s2-1.1.388
– volume: 15
  start-page: 728
  year: 2018
  end-page: 732
  ident: CR24
  article-title: On intersections of pairs of primary subgroups in a finite group with socle $$\Omega^{+}_{2n}(2^{m})$$
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2018.15.058
– volume: 105
  start-page: 366
  issue: 3
  year: 2019
  end-page: 375
  ident: CR21
  article-title: On intersections of abelian and nilpotent subgroups in finite groups II
  publication-title: Math. Notes
  doi: 10.1134/S0001434619030076
– year: 1982
  ident: CR16
  publication-title: Finite Simple Groups: An Introduction to Their Classification
  doi: 10.1007/978-1-4684-8497-7
– volume: 59
  start-page: 264
  issue: 2
  year: 2018
  end-page: 269
  ident: CR28
  article-title: Intersections of primary subgroups in nonsoluble finite groups isomorphic to $$L_{n}(2^{m})$$
  publication-title: Sib. Math. J.
  doi: 10.1134/S0037446618020088
– volume: 133
  start-page: 256
  year: 1957
  end-page: 270
  ident: CR33
  article-title: Engelsche Elemente Noetherscher Gruppen
  publication-title: Math. Ann.
  doi: 10.1007/BF02547953
– volume: 14
  start-page: 132
  year: 1963
  end-page: 133
  ident: CR3
  article-title: A note on finite groups with an abelian Sylow group
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1963-0142631-X
– year: 1985
  ident: CR23
  publication-title: Atlas of Finite Groups
– volume: 63
  start-page: 1
  year: 1976
  end-page: 91
  ident: CR31
  article-title: Involutions in Chevalley groups over fields of even order
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000017438
– volume: 56
  start-page: 869
  issue: 2
  year: 1994
  end-page: 871
  ident: CR1
  article-title: Intersection of abelian subgroups in finite groups
  publication-title: Math. Notes
  doi: 10.1007/BF02110750
– volume: 1
  start-page: 75
  issue: 2
  year: 1979
  end-page: 78
  ident: CR38
  article-title: The irreducible subgroups of $$GL(n,2)$$ with $$n\leq 6$$
  publication-title: Roy. Soc. Can. Math. Rep.
– volume: 2
  start-page: 1
  issue: 1
  year: 1996
  end-page: 92
  ident: CR11
  article-title: Intersections of nilpotent subgroups in finite groups
  publication-title: Fundam. Prikl. Mat.
– year: 2013
  ident: CR36
  publication-title: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
  doi: 10.1017/CBO9781139192576
– volume: 57
  start-page: 1002
  issue: 6
  year: 2016
  end-page: 1010
  ident: CR22
  article-title: Intersections of two nilpotent subgroups in finite groups with socle $$L_{2}(q)$$
  publication-title: Sib. Math. J.
  doi: 10.1134/S0037446616060070
– year: 2010
  ident: CR15
  publication-title: The Kourovka Notebook: Unsolved Problems in Group Theory
– volume: 54
  start-page: 73
  issue: 1
  year: 2013
  end-page: 77
  ident: CR17
  article-title: On the intersection of conjugate nilpotent subgroups in permutation groups
  publication-title: Sib. Mat. J.
  doi: 10.1134/S0037446613010102
– volume: 82
  start-page: 191
  issue: 2
  year: 1968
  end-page: 212
  ident: CR34
  article-title: Finite groups in which the centralizer of any element of order 2 is 2-closed
  publication-title: Ann. Math.
– volume: 25
  start-page: 19
  issue: 1
  year: 1982
  end-page: 20
  ident: CR5
  article-title: On cyclic subgroups of finite groups
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500004065
– volume: 221
  start-page: 384
  issue: 3
  year: 2017
  end-page: 390
  ident: CR27
  article-title: On intersection of primary sub- groups of odd order in finite almost simple groups
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-017-3232-8
– volume: 59
  start-page: 313
  issue: 4
  year: 2020
  end-page: 321
  ident: CR19
  article-title: Intersections of nilpotent subgroups in finite groups with sporadic socle
  publication-title: Algebra Logic
  doi: 10.1007/s10469-020-09603-x
– volume: 285
  start-page: S203
  year: 2014
  end-page: S208
  ident: CR18
  article-title: On intersections of nilpotent subgroups in finite symmetric and alternating groups
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543814050228
– volume: 2
  start-page: 432
  issue: 2
  year: 1905
  end-page: 437
  ident: CR8
  article-title: On groups of order $$p^{a}q^{\beta}$$ (Second paper)
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s2-2.1.432
– volume: 20
  start-page: 178
  issue: 2
  year: 1975
  end-page: 188
  ident: CR14
  article-title: On products of two nilpotent subgroups of a finite groups
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02757885
– volume: 37
  start-page: 178
  issue: 3
  year: 1985
  end-page: 181
  ident: CR37
  article-title: Irreducible subgroups of the group $$GL(7,2)$$
  publication-title: Math. Notes
  doi: 10.1007/BF01158735
– volume: 11
  start-page: 605
  issue: 2
  year: 2018
  end-page: 617
  ident: CR26
  article-title: Intersection of primary subgroups in the group $$\mathrm{Aut}\,(F_{4}(2))$$
  publication-title: J. Sib. Fed. Univ. Math. Phys.
  doi: 10.17516/1997-1397-2018-11-2-171-177
– year: 1998
  ident: CR29
  publication-title: The Classification of the Finite Simple Groups: Number
– volume: 20
  start-page: 229
  issue: 3
  year: 1977
  end-page: 232
  ident: CR4
  article-title: Disjoint conjugates of cyclic subgroups of finite groups
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500026328
– volume: 19
  start-page: 536
  issue: 2
  year: 1971
  end-page: 537
  ident: CR35
  article-title: On conjugacy classes of p-elements
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(71)90086-X
– volume: 35
  start-page: 236
  issue: 4
  year: 1996
  end-page: 240
  ident: CR10
  article-title: The intersection of Sylow subgroups in finite groups
  publication-title: Algebra Logic
  doi: 10.1007/BF02367025
– volume: 15
  start-page: 409
  issue: 6
  year: 1976
  end-page: 412
  ident: CR12
  article-title: Finite groups with normal intersections of Sylow 2-subgroups
  publication-title: Algebra Logic
  doi: 10.1007/BF01877481
– volume: 11
  start-page: 325
  issue: 3
  year: 1972
  end-page: 327
  ident: CR13
  article-title: On 2-Sylow intersections
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02789326
– volume: 27
  start-page: 70
  issue: 1
  year: 2021
  end-page: 78
  ident: CR20
  article-title: On intersections of nilpotent subgroups in finite groups with socle $$L_{3}(q)$$ or $$U_{3}(q)$$
  publication-title: Trudy Inst. Mat. Mekh. UrO RAN
  doi: 10.21538/0134-4889-2021-27-1-70-78
– volume: 13
  start-page: 1099
  year: 2016
  end-page: 1115
  ident: CR30
  article-title: On the intersection of two nilpotent subgroups in small finite groups
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2016.13.087
– year: 2008
  ident: CR2
  publication-title: Finite Group Theory
– volume: 295
  start-page: S174
  year: 2016
  end-page: S177
  ident: CR6
  article-title: On intersections of abelian and nilpotent subgroups in finite groups. I
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543816090182
– volume: 9
  start-page: 27
  year: 1958
  end-page: 32
  ident: CR9
  article-title: Über den kleinsten $$p$$-Durchschnitt auflösbarer Gruppen
  publication-title: Arch. Math.
  doi: 10.1007/BF02287057
– volume: 325
  start-page: 56
  issue: 1
  year: 2011
  end-page: 69
  ident: CR32
  article-title: Regular orbits of nilpotent subgroups of solvable linear groups
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2010.09.024
– volume-title: The Kourovka Notebook: Unsolved Problems in Group Theory
  year: 2010
  ident: 8389_CR15
– volume: 285
  start-page: S203
  year: 2014
  ident: 8389_CR18
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543814050228
– volume: 15
  start-page: 409
  issue: 6
  year: 1976
  ident: 8389_CR12
  publication-title: Algebra Logic
  doi: 10.1007/BF01877481
– volume-title: The Classification of the Finite Simple Groups: Number
  year: 1998
  ident: 8389_CR29
– volume: 11
  start-page: 605
  issue: 2
  year: 2018
  ident: 8389_CR26
  publication-title: J. Sib. Fed. Univ. Math. Phys.
  doi: 10.17516/1997-1397-2018-11-2-171-177
– volume: 11
  start-page: 325
  issue: 3
  year: 1972
  ident: 8389_CR13
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02789326
– volume: 14
  start-page: 132
  year: 1963
  ident: 8389_CR3
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1963-0142631-X
– volume: 1
  start-page: 75
  issue: 2
  year: 1979
  ident: 8389_CR38
  publication-title: Roy. Soc. Can. Math. Rep.
– volume: 59
  start-page: 264
  issue: 2
  year: 2018
  ident: 8389_CR28
  publication-title: Sib. Math. J.
  doi: 10.1134/S0037446618020088
– volume: 20
  start-page: 178
  issue: 2
  year: 1975
  ident: 8389_CR14
  publication-title: Isr. J. Math.
  doi: 10.1007/BF02757885
– volume: 13
  start-page: 1099
  year: 2016
  ident: 8389_CR30
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2016.13.087
– volume: 2
  start-page: 432
  issue: 2
  year: 1905
  ident: 8389_CR8
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s2-2.1.432
– volume: 105
  start-page: 366
  issue: 3
  year: 2019
  ident: 8389_CR21
  publication-title: Math. Notes
  doi: 10.1134/S0001434619030076
– volume-title: Finite Group Theory
  year: 2008
  ident: 8389_CR2
– volume: 14
  start-page: 1424
  year: 2017
  ident: 8389_CR25
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2017.14.121
– volume: 63
  start-page: 1
  year: 1976
  ident: 8389_CR31
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000017438
– volume-title: Atlas of Finite Groups
  year: 1985
  ident: 8389_CR23
– volume: 20
  start-page: 229
  issue: 3
  year: 1977
  ident: 8389_CR4
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500026328
– volume: 35
  start-page: 236
  issue: 4
  year: 1996
  ident: 8389_CR10
  publication-title: Algebra Logic
  doi: 10.1007/BF02367025
– volume: 25
  start-page: 19
  issue: 1
  year: 1982
  ident: 8389_CR5
  publication-title: Proc. Edinburgh Math. Soc.
  doi: 10.1017/S0013091500004065
– volume-title: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
  year: 2013
  ident: 8389_CR36
  doi: 10.1017/CBO9781139192576
– volume: 2
  start-page: 388
  issue: 1
  year: 1904
  ident: 8389_CR7
  publication-title: Proc. London Math. Soc.
  doi: 10.1112/plms/s2-1.1.388
– volume: 221
  start-page: 384
  issue: 3
  year: 2017
  ident: 8389_CR27
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-017-3232-8
– volume: 325
  start-page: 56
  issue: 1
  year: 2011
  ident: 8389_CR32
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2010.09.024
– volume: 15
  start-page: 728
  year: 2018
  ident: 8389_CR24
  publication-title: Sib. Elektron. Math. Izv.
  doi: 10.17377/semi.2018.15.058
– volume: 9
  start-page: 27
  year: 1958
  ident: 8389_CR9
  publication-title: Arch. Math.
  doi: 10.1007/BF02287057
– volume: 2
  start-page: 1
  issue: 1
  year: 1996
  ident: 8389_CR11
  publication-title: Fundam. Prikl. Mat.
– volume: 37
  start-page: 178
  issue: 3
  year: 1985
  ident: 8389_CR37
  publication-title: Math. Notes
  doi: 10.1007/BF01158735
– volume: 82
  start-page: 191
  issue: 2
  year: 1968
  ident: 8389_CR34
  publication-title: Ann. Math.
– volume: 133
  start-page: 256
  year: 1957
  ident: 8389_CR33
  publication-title: Math. Ann.
  doi: 10.1007/BF02547953
– volume: 27
  start-page: 70
  issue: 1
  year: 2021
  ident: 8389_CR20
  publication-title: Trudy Inst. Mat. Mekh. UrO RAN
  doi: 10.21538/0134-4889-2021-27-1-70-78
– volume: 295
  start-page: S174
  year: 2016
  ident: 8389_CR6
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543816090182
– volume: 19
  start-page: 536
  issue: 2
  year: 1971
  ident: 8389_CR35
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(71)90086-X
– volume: 59
  start-page: 313
  issue: 4
  year: 2020
  ident: 8389_CR19
  publication-title: Algebra Logic
  doi: 10.1007/s10469-020-09603-x
– volume-title: Finite Simple Groups: An Introduction to Their Classification
  year: 1982
  ident: 8389_CR16
  doi: 10.1007/978-1-4684-8497-7
– volume: 57
  start-page: 1002
  issue: 6
  year: 2016
  ident: 8389_CR22
  publication-title: Sib. Math. J.
  doi: 10.1134/S0037446616060070
– volume: 54
  start-page: 73
  issue: 1
  year: 2013
  ident: 8389_CR17
  publication-title: Sib. Mat. J.
  doi: 10.1134/S0037446613010102
– volume: 56
  start-page: 869
  issue: 2
  year: 1994
  ident: 8389_CR1
  publication-title: Math. Notes
  doi: 10.1007/BF02110750
SSID ssj0045749
Score 2.2706687
Snippet Earlier, the author described up to conjugacy all pairs 𝐴 𝐵 of nilpotent subgroups of a finite group  𝐺 with socle subscript 𝐿 2 𝑞 for which 𝐴...
Earlier, the author described up to conjugacy all pairs 𝐴𝐵 of nilpotent subgroups of a finite group 𝐺 with socle subscript𝐿2ð'ž for which...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage S321
SubjectTerms Group theory
Mathematics
Mathematics and Statistics
Subgroups
Title On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups”
URI https://link.springer.com/article/10.1134/S0081543823060251
https://www.proquest.com/docview/2925544248
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YMnTQndbl9HMBSiAQ9Agqdmu9tNiKYltlw88UP0z_FL3O1DAurBY_cx6XanM9_uvABuqOywTMI0gU2mEeXf6DqmqVk80JkyW_EsT8FgaPUn5GFqTos47qT0di9NkpmkzuuOkCymV-p7ZbdqWQoZ70LV1B3XqUC13Xt-7JYCmJh2gXodXVMTCmPmr0Q21dEaY26ZRTNt4x3CuHzP3MnkpblIgyZ730rh-M-FHMFBgT5RO2eXY9gJoxPYH3ynbk1OYf4UoeyaMMmctKIExQINZ6_zWKLrFElBkwWCJGgWIW-mECvq5Q3qSheNZirdMBrFkj5SsStI0kar5Uc7lThd0dqYtFp-nsHE647v-1pRlkFj2HJSjVBBDYY50bmqc2TrTEhYIznSUu2UuoJQbmODui4zqME5CXX50OLclsO5Y5xDJYqj8AKQgmOmsClmdkBUajgJXmSLTgUhrsBGDW7L3fHnefYNPzu1GMT_8RlrUC_3zy9-xMTHrjwzEYKJU4O7cjvW3X8Su_zX6CvYU2XoczeXOlTSt0V4LcFKGjQkc3qdzrBRMOkXn5DhJQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5ROKgHdyOKOgdPmhLavm5HYliUxQOQ4KmZztCEaFpiy8UTP0T_HL_EmS4SUA8cO8tLp_P65nvzNoBbKjpMA5niawZTUPo3OrZhKCb3VCbNVjzJU9Dtma0hPo2MURbHHeXe7rlJMpHUad0RTGJ6xXkv7VZVUyLjbSiiUMGrBSjWmi_tei6A0bAy1GuripyQGTP_JLJ6HC0x5ppZNDltGgcwyN8zdTJ5rcxir8I-1lI4briQQ9jP0CeppexyBFvj4Bj2uj-pW6MTmD4HJLkmjBInrSAioU96k7dpKNB1TISgSQJBIjIJSGMiEStppg3ySpf0JzLdMOmHgj6RsStE0CaL-WctFjhd0lqZtJh_ncKwUR88tJSsLIPCNNOOFaQ-1ZnGUeWyzpGlMl_AGsGRpmyn1PGRckvTqeMwneqc41gVD1XOLTGc2_oZFIIwGJ8DkXDM8C2qMctDmRpOgBfRolIf0fE1vQR3-e640zT7hptoLTq6vz5jCcr5_rnZjxi5miN0JkQN7RLc59ux7P6X2MVGo29gpzXodtzOY699CbuyJH3q8lKGQvw-G18J4BJ71xmjfgMW6uKG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCMKBXzgBAo0yWQ7VtCWtSABEpyCa9dSBUorkl448SHwc3wJnixUZTkgjhnbk8WO_eyZeQOwzXWB66AwlOUIA8m_MfAdx3BlxxRktpIpT8F52z26wZNb5zbPcxoX3u6FSTKLaSCWpijZH0iV5yDBNL5Xr_1kw6q5hJInoYw1jf1LUK637k4bxWSMjpcjYN80qEFu2PxRyfjSNMKbX0yk6crTnIP74pkzh5OHvWHS2RPPX-gc__FS8zCbo1JWz4bRAkx0o0WYOf-kdI2XYHARsfT4ME6dt6KY9RVr9x4HfboF0xNQGiASs17Emj1CsqyVCeiol131iIaYXfW1fkYxLUzrZu8vr_VE43fSNdbo_eVtGW6ajeuDIyNP12AIy_UTA7nitrAkmpLyH3mmUBru6JHqkpzzQCGXnmXzIBA2t6XErqkvalJ6urr07RUoRf2ouwqMYJqjPG4Jr4NEGadBjZaYXCEGyrIrsFP0VDjIWDnCdDdjY_jtM1agWvRlmP-gcWgFei-FaKFfgd2ia0bFvypb-1PtLZi6PGyGZ8ft03WYpkz1mSdMFUrJ07C7ofFM0tnMx-wHktLrag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+Intersections+of+Nilpotent+Subgroups+in+Finite+Groups+with+Simple+Socle+from+the+%E2%80%9CAtlas+of+Finite+Groups%E2%80%9D&rft.au=Zenkov%2C+V+I&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=323&rft.issue=1&rft.spage=S321&rft.epage=S332&rft_id=info:doi/10.1134%2FS0081543823060251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon