Parameterized algorithms for min–max 2-cluster editing

For a given graph and an integer t , the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t . It has been shown that the pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 34; no. 1; pp. 47 - 63
Main Authors Chen, Li-Hsuan, Wu, Bang Ye
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a given graph and an integer t , the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t . It has been shown that the problem can be solved in polynomial time for t < n / 4 , where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t . Let k = t - n / 4 . We show that the problem is polynomial-time solvable when roughly k < n / 32 . When k ∈ o ( n ) , we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in O ( 2 n / r · n 2 ) time for k < n / 12 and in O ( n 2 · 2 3 n / 4 + k ) time for n / 12 ≤ k < n / 4 , where r = 2 + ⌊ ( n / 4 - 3 k - 2 ) / ( 2 k + 1 ) ⌋ ≥ 2 .
AbstractList For a given graph and an integer t , the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t . It has been shown that the problem can be solved in polynomial time for t < n / 4 , where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t . Let k = t - n / 4 . We show that the problem is polynomial-time solvable when roughly k < n / 32 . When k ∈ o ( n ) , we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in O ( 2 n / r · n 2 ) time for k < n / 12 and in O ( n 2 · 2 3 n / 4 + k ) time for n / 12 ≤ k < n / 4 , where r = 2 + ⌊ ( n / 4 - 3 k - 2 ) / ( 2 k + 1 ) ⌋ ≥ 2 .
For a given graph and an integer t, the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques by inserting or deleting edges such that the number of the editing edges incident to each vertex is at most t. It has been shown that the problem can be solved in polynomial time for t < n / 4 , where n is the number of vertices. In this paper, we design parameterized algorithms for different ranges of t. Let k = t - n / 4 . We show that the problem is polynomial-time solvable when roughly k < n / 32 . When k ∈ o ( n ) , we design a randomized and a deterministic algorithm with sub-exponential time parameterized complexity, i.e., the problem is in SUBEPT. We also show that the problem can be solved in O ( 2 n / r · n 2 ) time for k < n / 12 and in O ( n 2 · 2 3 n / 4 + k ) time for n / 12 ≤ k < n / 4 , where r = 2 + ⌊ ( n / 4 - 3 k - 2 ) / ( 2 k + 1 ) ⌋ ≥ 2 .
Author Chen, Li-Hsuan
Wu, Bang Ye
Author_xml – sequence: 1
  givenname: Li-Hsuan
  surname: Chen
  fullname: Chen, Li-Hsuan
  organization: National Chung Cheng University
– sequence: 2
  givenname: Bang Ye
  surname: Wu
  fullname: Wu, Bang Ye
  email: bangye@ccu.edu.tw
  organization: National Chung Cheng University
BookMark eNp1kL1OwzAUhS1UJNrCA7BFYjZc_8YZUcWfVAkGmC3XuSmpmqTYqQSZeAfekCfBVRhYmO4Zzneu9M3IpO1aJOScwSUDyK8iA5MbCkxTAFXQ4YhMmcoF5cboScrCcKoLUCdkFuMGAFKWU2KeXHAN9hjqAcvMbdddqPvXJmZVF7Kmbr8_vxr3nnHqt_uYahmWdV-361NyXLltxLPfOycvtzfPi3u6fLx7WFwvqefa9FSgRpSFAVW5SqpSaseF0MysvESsVgqcrETptfaglfQovdRcCgc5l4U2Yk4uxt1d6N72GHu76fahTS8tKyA3vBBpcE7Y2PKhizFgZXehblz4sAzsQZAdBdkkyB4E2SExfGRi6rZrDH-W_4V-AOXravQ
Cites_doi 10.1016/j.jcss.2011.04.001
10.1007/978-3-642-11269-0_8
10.1016/j.dam.2012.05.019
10.1007/s00453-014-9874-8
10.1007/s00224-008-9150-x
10.1017/CBO9780511815478
10.1016/j.jda.2012.04.005
10.1016/j.ipl.2015.12.004
10.1016/j.jcss.2014.04.015
10.1007/978-3-662-44465-8_40
10.1142/S0218213004001867
10.1016/j.tcs.2008.10.021
10.1016/j.tcs.2009.05.006
10.1307/mmj/1028989917
10.1016/j.jcss.2007.06.024
10.1016/j.disopt.2010.09.006
10.1016/j.cosrev.2007.05.001
10.1007/s00224-004-1178-y
10.1023/B:MACH.0000033116.57574.95
10.7155/jgaa.00337
10.1016/j.dam.2004.01.007
10.1007/s00453-004-1090-5
10.4086/toc.2006.v002a013
10.1145/1411509.1411513
10.1007/s00224-008-9130-1
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s10878-016-0059-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 63
ExternalDocumentID 10_1007_s10878_016_0059_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c268t-3e6ee49805faf45d46a233618bc4eefb50a4f3dc66c0654ce4c46243a07249683
IEDL.DBID U2A
ISSN 1382-6905
IngestDate Fri Jul 25 11:09:48 EDT 2025
Tue Jul 01 03:13:02 EDT 2025
Fri Feb 21 02:33:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Subexponential algorithm
Parameterized algorithm
Graph modification
Clustering
Randomized algorithm
Parameterized complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c268t-3e6ee49805faf45d46a233618bc4eefb50a4f3dc66c0654ce4c46243a07249683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1907829323
PQPubID 2043856
PageCount 17
ParticipantIDs proquest_journals_1907829323
crossref_primary_10_1007_s10878_016_0059_z
springer_journals_10_1007_s10878_016_0059_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DamaschkePFixed-parameter enumerability of cluster editing and related problemsTheory Comput Syst201046261283257655510.1007/s00224-008-9130-11209.68360
BöckerSA golden ratio parameterized algorithm for Cluster EditingJ Discrete Algorithms2012167989296034610.1016/j.jda.2012.04.0051257.05164
Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5):231:23–27
GuoJA more effective linear kernelization for cluster editingTheoret Comput Sci20094108–10718726249201010.1016/j.tcs.2008.10.0211162.68025
HüffnerFKomusiewiczCMoserHNiedermeierRFixed-parameter algorithms for cluster vertex deletionTheory Comput Syst201047196217264391610.1007/s00224-008-9150-x1205.68263
SchaefferSEGraph clusteringComput Sci Rev200711276410.1016/j.cosrev.2007.05.0011302.68237
GrammJGuoJHüffnerFNiedermeierRGraph-modeled data clustering: exact algorithms for clique generationTheory Comput Syst2005384373392214011610.1007/s00224-004-1178-y1084.68117
FilkovVSkienaSIntegrating microarray data by consensus clusteringInt J Artif Intell Tools2004130486388010.1142/S02182130040018671122.68410
WassermanSFaustKSocial network analysis: methods and applications1994CambridgeCambridge University Press10.1017/CBO97805118154780926.91066
HararyFOn the notion of balance of a signed graphMich Math J1953221431466746810.1307/mmj/10289899170056.42103
ChenLHChangMSWangCCWuBYOn the min–max 2-cluster editing problemJ Inf Sci Eng201329110911203137567
BonizzoniPVedovaGDDondiRJiangTOn the approximation of correlation clustering and consensus clusteringJ Comput Syst Sci2008745671696241634510.1016/j.jcss.2007.06.0241169.68586
ShamirRSharanRTsurDCluster graph modification problemsDiscrete Appl Math20041441–2173182209539210.1016/j.dam.2004.01.0071068.68107
DamaschkePMogrenOEditing simple graphsJ Graph Algorithms Appl201418557576331055010.7155/jgaa.003371305.05220
WuBYChenLHParameterized algorithms for the 2-clustering problem with minimum sum and minimum sum of squares objective functionsAlgorithmica201572818835335583710.1007/s00453-014-9874-81328.68098
KováčISelečéniováISteinováMCsuhaj-VarjúEDietzfelbingerMÉsikZOn the clique editing problemMathematical foundations of computer science 20142014BerlinSpringer469480
Fellows MR, Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2011) Graph-based data clustering with overlaps. Discrete Optim 8(1): 2–17 (Parameterized Complexity of Discrete Optimization)
DamaschkePSufficient conditions for edit-optimal clustersInf Process Lett20161164267272343829310.1016/j.ipl.2015.12.0041348.05201
GrammJGuoJHüffnerFNiedermeierRAutomated generation of search tree algorithms for hard graph modification problemsAlgorithmica200439321347205726910.1007/s00453-004-1090-51090.68027
FominFVKratschSPilipczukMPilipczukMVillangerYTight bounds for parameterized complexity of cluster editing with a small number of clustersJ Comput Syst Sci201480714301447321232210.1016/j.jcss.2014.04.0151311.68076
BansalNBlumAChawlaSCorrelation clusteringMach Learn20045689113336342310.1023/B:MACH.0000033116.57574.951089.68085
KomusiewiczCUhlmannJCluster editing with locally bounded modificationsDiscrete Appl Math20121601522592270295476710.1016/j.dam.2012.05.0191252.05178
BöckerSBriesemeisterSBuiQTrussAGoing weighted: parameterized algorithms for cluster editingTheoret Comput Sci20094105254675480256764610.1016/j.tcs.2009.05.0061178.68373
Bonizzoni P, Vedova GD, Dondi R (2009) A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Eleventh Italian Conference on Theoretical Computer Science
FinneyRLWeirWDGiordanoFRThomas’ calculus2001ReadingAddison-Wesley
ChenJMengJA 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k$$\end{document} kernel for the cluster editing problemJ Comput Syst Sci2012781211220289635810.1016/j.jcss.2011.04.0011238.68062
GiotisIGuruswamiVCorrelation clustering with a fixed number of clustersTheory Comput2006213249266232288010.4086/toc.2006.v002a0131213.68704
DamaschkePChenJFominFBounded-degree techniques accelerate some parameterized graph algorithmsParameterized and exact computation2009BerlinSpringer9810910.1007/978-3-642-11269-0_8
P Damaschke (59_CR11) 2016; 116
59_CR13
59_CR1
SE Schaeffer (59_CR25) 2007; 1
J Gramm (59_CR19) 2004; 39
S Wasserman (59_CR27) 1994
59_CR5
I Giotis (59_CR17) 2006; 2
S Böcker (59_CR4) 2012; 16
P Damaschke (59_CR12) 2014; 18
N Bansal (59_CR2) 2004; 56
P Bonizzoni (59_CR6) 2008; 74
P Damaschke (59_CR9) 2009
J Gramm (59_CR18) 2005; 38
RL Finney (59_CR15) 2001
I Kováč (59_CR24) 2014
V Filkov (59_CR14) 2004; 13
J Guo (59_CR20) 2009; 410
F Hüffner (59_CR22) 2010; 47
C Komusiewicz (59_CR23) 2012; 160
LH Chen (59_CR8) 2013; 29
P Damaschke (59_CR10) 2010; 46
FV Fomin (59_CR16) 2014; 80
J Chen (59_CR7) 2012; 78
BY Wu (59_CR28) 2015; 72
F Harary (59_CR21) 1953; 2
S Böcker (59_CR3) 2009; 410
R Shamir (59_CR26) 2004; 144
References_xml – reference: BansalNBlumAChawlaSCorrelation clusteringMach Learn20045689113336342310.1023/B:MACH.0000033116.57574.951089.68085
– reference: FinneyRLWeirWDGiordanoFRThomas’ calculus2001ReadingAddison-Wesley
– reference: GrammJGuoJHüffnerFNiedermeierRGraph-modeled data clustering: exact algorithms for clique generationTheory Comput Syst2005384373392214011610.1007/s00224-004-1178-y1084.68117
– reference: HararyFOn the notion of balance of a signed graphMich Math J1953221431466746810.1307/mmj/10289899170056.42103
– reference: DamaschkePSufficient conditions for edit-optimal clustersInf Process Lett20161164267272343829310.1016/j.ipl.2015.12.0041348.05201
– reference: FilkovVSkienaSIntegrating microarray data by consensus clusteringInt J Artif Intell Tools2004130486388010.1142/S02182130040018671122.68410
– reference: KomusiewiczCUhlmannJCluster editing with locally bounded modificationsDiscrete Appl Math20121601522592270295476710.1016/j.dam.2012.05.0191252.05178
– reference: GiotisIGuruswamiVCorrelation clustering with a fixed number of clustersTheory Comput2006213249266232288010.4086/toc.2006.v002a0131213.68704
– reference: SchaefferSEGraph clusteringComput Sci Rev200711276410.1016/j.cosrev.2007.05.0011302.68237
– reference: FominFVKratschSPilipczukMPilipczukMVillangerYTight bounds for parameterized complexity of cluster editing with a small number of clustersJ Comput Syst Sci201480714301447321232210.1016/j.jcss.2014.04.0151311.68076
– reference: KováčISelečéniováISteinováMCsuhaj-VarjúEDietzfelbingerMÉsikZOn the clique editing problemMathematical foundations of computer science 20142014BerlinSpringer469480
– reference: GuoJA more effective linear kernelization for cluster editingTheoret Comput Sci20094108–10718726249201010.1016/j.tcs.2008.10.0211162.68025
– reference: ChenLHChangMSWangCCWuBYOn the min–max 2-cluster editing problemJ Inf Sci Eng201329110911203137567
– reference: BöckerSBriesemeisterSBuiQTrussAGoing weighted: parameterized algorithms for cluster editingTheoret Comput Sci20094105254675480256764610.1016/j.tcs.2009.05.0061178.68373
– reference: Fellows MR, Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2011) Graph-based data clustering with overlaps. Discrete Optim 8(1): 2–17 (Parameterized Complexity of Discrete Optimization)
– reference: BonizzoniPVedovaGDDondiRJiangTOn the approximation of correlation clustering and consensus clusteringJ Comput Syst Sci2008745671696241634510.1016/j.jcss.2007.06.0241169.68586
– reference: ChenJMengJA 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k$$\end{document} kernel for the cluster editing problemJ Comput Syst Sci2012781211220289635810.1016/j.jcss.2011.04.0011238.68062
– reference: DamaschkePChenJFominFBounded-degree techniques accelerate some parameterized graph algorithmsParameterized and exact computation2009BerlinSpringer9810910.1007/978-3-642-11269-0_8
– reference: BöckerSA golden ratio parameterized algorithm for Cluster EditingJ Discrete Algorithms2012167989296034610.1016/j.jda.2012.04.0051257.05164
– reference: DamaschkePMogrenOEditing simple graphsJ Graph Algorithms Appl201418557576331055010.7155/jgaa.003371305.05220
– reference: ShamirRSharanRTsurDCluster graph modification problemsDiscrete Appl Math20041441–2173182209539210.1016/j.dam.2004.01.0071068.68107
– reference: WassermanSFaustKSocial network analysis: methods and applications1994CambridgeCambridge University Press10.1017/CBO97805118154780926.91066
– reference: Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5):231:23–27
– reference: DamaschkePFixed-parameter enumerability of cluster editing and related problemsTheory Comput Syst201046261283257655510.1007/s00224-008-9130-11209.68360
– reference: WuBYChenLHParameterized algorithms for the 2-clustering problem with minimum sum and minimum sum of squares objective functionsAlgorithmica201572818835335583710.1007/s00453-014-9874-81328.68098
– reference: Bonizzoni P, Vedova GD, Dondi R (2009) A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Eleventh Italian Conference on Theoretical Computer Science
– reference: GrammJGuoJHüffnerFNiedermeierRAutomated generation of search tree algorithms for hard graph modification problemsAlgorithmica200439321347205726910.1007/s00453-004-1090-51090.68027
– reference: HüffnerFKomusiewiczCMoserHNiedermeierRFixed-parameter algorithms for cluster vertex deletionTheory Comput Syst201047196217264391610.1007/s00224-008-9150-x1205.68263
– volume: 78
  start-page: 211
  issue: 1
  year: 2012
  ident: 59_CR7
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2011.04.001
– start-page: 98
  volume-title: Parameterized and exact computation
  year: 2009
  ident: 59_CR9
  doi: 10.1007/978-3-642-11269-0_8
– volume: 160
  start-page: 2259
  issue: 15
  year: 2012
  ident: 59_CR23
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2012.05.019
– volume: 72
  start-page: 818
  year: 2015
  ident: 59_CR28
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9874-8
– volume: 47
  start-page: 196
  year: 2010
  ident: 59_CR22
  publication-title: Theory Comput Syst
  doi: 10.1007/s00224-008-9150-x
– volume-title: Social network analysis: methods and applications
  year: 1994
  ident: 59_CR27
  doi: 10.1017/CBO9780511815478
– volume: 16
  start-page: 79
  year: 2012
  ident: 59_CR4
  publication-title: J Discrete Algorithms
  doi: 10.1016/j.jda.2012.04.005
– volume: 116
  start-page: 267
  issue: 4
  year: 2016
  ident: 59_CR11
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2015.12.004
– volume: 80
  start-page: 1430
  issue: 7
  year: 2014
  ident: 59_CR16
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2014.04.015
– start-page: 469
  volume-title: Mathematical foundations of computer science 2014
  year: 2014
  ident: 59_CR24
  doi: 10.1007/978-3-662-44465-8_40
– volume: 13
  start-page: 863
  issue: 04
  year: 2004
  ident: 59_CR14
  publication-title: Int J Artif Intell Tools
  doi: 10.1142/S0218213004001867
– volume: 29
  start-page: 1109
  year: 2013
  ident: 59_CR8
  publication-title: J Inf Sci Eng
– volume: 410
  start-page: 718
  issue: 8–10
  year: 2009
  ident: 59_CR20
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2008.10.021
– volume: 410
  start-page: 5467
  issue: 52
  year: 2009
  ident: 59_CR3
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2009.05.006
– volume: 2
  start-page: 143
  issue: 2
  year: 1953
  ident: 59_CR21
  publication-title: Mich Math J
  doi: 10.1307/mmj/1028989917
– volume: 74
  start-page: 671
  issue: 5
  year: 2008
  ident: 59_CR6
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2007.06.024
– ident: 59_CR13
  doi: 10.1016/j.disopt.2010.09.006
– ident: 59_CR5
– volume: 1
  start-page: 27
  issue: 1
  year: 2007
  ident: 59_CR25
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2007.05.001
– volume: 38
  start-page: 373
  issue: 4
  year: 2005
  ident: 59_CR18
  publication-title: Theory Comput Syst
  doi: 10.1007/s00224-004-1178-y
– volume: 56
  start-page: 89
  year: 2004
  ident: 59_CR2
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000033116.57574.95
– volume: 18
  start-page: 557
  year: 2014
  ident: 59_CR12
  publication-title: J Graph Algorithms Appl
  doi: 10.7155/jgaa.00337
– volume: 144
  start-page: 173
  issue: 1–2
  year: 2004
  ident: 59_CR26
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2004.01.007
– volume: 39
  start-page: 321
  year: 2004
  ident: 59_CR19
  publication-title: Algorithmica
  doi: 10.1007/s00453-004-1090-5
– volume: 2
  start-page: 249
  issue: 13
  year: 2006
  ident: 59_CR17
  publication-title: Theory Comput
  doi: 10.4086/toc.2006.v002a013
– volume-title: Thomas’ calculus
  year: 2001
  ident: 59_CR15
– ident: 59_CR1
  doi: 10.1145/1411509.1411513
– volume: 46
  start-page: 261
  year: 2010
  ident: 59_CR10
  publication-title: Theory Comput Syst
  doi: 10.1007/s00224-008-9130-1
SSID ssj0009054
Score 2.0833144
Snippet For a given graph and an integer t , the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques...
For a given graph and an integer t, the Min – Max 2-Clustering problem asks if there exists a modification of a given graph into two maximal disjoint cliques...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 47
SubjectTerms Algorithms
Clustering
Clusters
Combinatorics
Complexity
Convex and Discrete Geometry
Design parameters
Editing
Graph theory
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Parameterization
Satellites
Theory of Computation
Title Parameterized algorithms for min–max 2-cluster editing
URI https://link.springer.com/article/10.1007/s10878-016-0059-z
https://www.proquest.com/docview/1907829323
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFHyCdoEB8SkKBWVgAllKHNt1xgq1VCAQA5XKFDm2A0htikgroU78B_4hv4TnNKEFwcAYJfJwifPu9O6dAU5cbzAwfotoJQ1hkdYkSWhEsDZJGqQp06ZwW9yIXp9dDvignOPOK7d71ZIs_tRLw27SpcEGqICRE5DZKtQ5Snfn4-rT9iJp1-fzk2yROqL041Ur87clvhejBcP80RQtak13EzZKkui15291C1Zstg3rS9GBeHX9lbea74C8Vc5k5XKXZ9Z4avgwRtH_OMo95KTe6Cn7eHsfqVePEj2cumgED2uWMzzvQr_buTvvkfJMBKKpkBMSWmEti6TPU5UybphQNAxFIBPNrE0T7iuWhkYLod3YqLZMM0FZqPwWCi0hwz2oZePM7oMXaRnZKIlYijIpNSh9qDI8SKRGjog6pgGnFTjx8zz6Il6EHDskY2cPc0jGswY0K_jichfkMZINJCDIEMMGnFWQLt3-a7GDfz19CGvU1drCQ9uE2uRlao-QKUySY6i3L-6vOsfFF_IJvca3Tg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFL0qMAAD4inKMwMsIEuJ47jOwICAqqVQMVCJLTiOA5X6QE0Q0Il_4BP4M76E67ShBcHA0DFKZEU317nn6J57DLBneoNOZJeIkiIizFeKhCH1CdYmQZ04ZirK1BZ1Xmmw8xvvpgDv-SxMpnbPW5LZn3ps2E0YN1gHGTBiAtIfKilr-uUJeVpyVD3Fj7pPafns-qRChkcJEEW5SImrudbMF7YXy5h5EeOSui53RKiY1nHo2ZLFbqQ4V2baUmmmGKfMlXYJ-QkXLq47BTOIPYTZOg16PHL2tb3BybkIVZFqennr9LdX_l78Roj2RxM2q23lRVgYglLreJBFS1DQnWWYH7MqxKvLL3_XZAXElTSiLuPz3NeRJVt33V4zvW8nFmJgq93sfLy-teWzRYlqPRorBgtrpBFYr0JjIoFbg-lOt6PXwfKV8LUf-ixGWhZHSLWojDwnFAoxKfKmIhzkwQkeBlYbwchU2UQyMHI0E8mgX4StPHzBcNclAYIbBDyISN0iHOYhHbv912Ib_3p6F2Yr15cXwUW1XtuEOWrqfKbf3YLptPeotxGlpOFOliUW3E46LT8BjvjyMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFWUNQe4gCwSxzHOgQMCKnZxoBK34HgBJBpQmwroiX_gQ_gnvoRx2tCC4MCBY5TIsiZjzXuaN88Aq643GGh_iygpNGGxUiRNaUywNgkaWMuULtQWZ_ygxo4uo8sBeCtnYQq1e9mS7Mw0OJemLN980Hazb_BNOGfYANkw4gPS7qoqj83zI3K25vbhHv7gNUqr-xe7B6R7rQBRlIuchIYbw2LhR1ZaFmnGJQ1DHohUMWNsGvmS2VArzpWbvFSGKcYpC6W_hVyFixDXHYRh5oaP8QDV6E7P5dePOrfoImxF2hmVbdSftvy1EPbQ7beGbFHnqhMw3gWo3k4noyZhwGRTMNZnW4hPp59er81pEOfSCbyc53PbaE_eXd83bvObetNDPOzVb7P3l9e6fPIoUXctZ8vgYb10YusZqP1L4GZhKLvPzBx4sRKxidOYWaRoViPtolJHQSoU4lPkUBVYL4OTPHRsN5KewbKLZOKkaS6SSbsCi2X4ku4JbCYIdBD8IDoNK7BRhrTv9W-Lzf_p6xUYOd-rJieHZ8cLMEpdyS-kvIswlDdaZgkBS54uF0niwdV_Z-UHA9D2Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+algorithms+for+min%E2%80%93max+2-cluster+editing&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Chen%2C+Li-Hsuan&rft.au=Wu%2C+Bang+Ye&rft.date=2017-07-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=34&rft.issue=1&rft.spage=47&rft.epage=63&rft_id=info:doi/10.1007%2Fs10878-016-0059-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_016_0059_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon